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A comprehensive textbook for undergraduate and graduate AI courses, explaining
modern artificial intelligence and its social impact, and integrating theory and prac-
tice. This extensively revised new edition now includes chapters on deep learning,
including generative AI, the social impacts of AI, and causality.

Students and instructors will benefit from these features:

• The novel agent design space, which provides a coherent framework for teaching
and learning, making both easier.

• Every concept or algorithm is illustrated with a motivating concrete example.
• Each chapter now has a social impact section, enabling students to understand the

impact of the various techniques as they learn.
• Agent designs progress gradually from the simple to the complex.
• Every algorithm is presented in pseudocode and in open-source AIPython code,

enabling students to experiment with and build on the implementations.
• Five larger case studies are developed throughout the book, and connect the design

approaches to the applications.
• Appendices review the underlying mathematics, and provide the necessary map-

ping to open-source ML packages.
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“This is an important textbook. Based on their broad experience, the authors harmo-
nize some of the most exciting recent developments in the field, such as generative AI,
with more traditional methods, within a unified agent framework. This will broaden
the perspective of those relatively new to the field, for whom AI and deep learning
appear almost synonymous.”

Yoav Shoham, Stanford University and AI21 Labs

“This book is a tour de force. It provides a comprehensive introduction to so many
topics in modern AI. The clarity of the exposition and the ability to capture the
intuition underlying complex concepts make this book compelling and appealing to a
broad audience.”

Pascal Van Hentenryck, Georgia Institute of Technology

“This new edition offers an up-to-date account of AI, presenting the field in an
accessible and unified manner. I particularly like the ‘relations-late’ approach, in which
first-order logic and relational AI are covered later, after thoroughly covering more
basic, feature-based methods. The hybrid data-driven/model-based approach to agent
design that the authors propose will be essential to the development of reliable and
trustworthy intelligent systems.”

Kevin Patrick Murphy, Google Brain, author of Probabilistic Machine Learning

“Poole and Mackworth’s now classic textbook has guided my senior undergraduate
AI class since its first edition. Coupled with online resources, the book presents a
comprehensive overview, with technical substance and many pointers for further
study, in a coherent structure that fosters learning of key interrelated concepts. The
third edition updates the content to cover the massive recent AI advances.”

Jesse Hoey, University of Waterloo

“Machine learning has undergone spectacular advances over the last few years,
but to harvest the new capabilities one needs an engineering framework to build
computational agents. This book teaches students about the concepts and techniques
that make that possible.”

Rodney Brooks, MIT and Robust AI

“Wide-ranging, well-organized, up-to-date, and in-depth coverage of the AI world.
The numerous figures, algorithms, and extensive references make this a valuable
resource that readers will return to repeatedly. Instructors and students will benefit
from the well-crafted end-of-chapter exercises. The thought-provoking social impact
sections in each chapter and the social impact chapter admirably address the positive
and harmful impacts on people. These complement the strong technical descriptions,
wisely encouraging researchers and practitioners to limit the risks by highlighting
human-centred AI. Poole and Mackworth are highly acclaimed experts who eagerly
present their subject with enthusiasm and thoroughness.”

Ben Shneiderman, University of Maryland, author of Human-Centered AI

“This revised and extended edition of Artificial Intelligence: Foundations of Computational
Agents should become the standard text of AI education. Computer science students
will find in this volume a broad and uniquely coherent perspective on many com-
putational models of learning, reasoning, and decision-making. Students of causal
inference, in particular, will rejoice at viewing the causal revolution reconnected to its
roots in formal logic and probabilistic decision-making, strengthened and reinforced



by concrete algorithms, challenging exercises, and open source AIPython codes.
Highly recommended.”

Judea Pearl, UCLA, Turing Award winner and author of Causality and The Book of Why

“This textbook is impressively comprehensive, covering all the major AI paradigms
that have been introduced and studied over the years. At the same time, it is up to
date with the latest technical advances and interdisciplinary perspectives on social
impacts. I expect it to be a valuable resource for both teachers and students.”

Peter Stone, University of Texas at Austin

“Artificial Intelligence: Foundations of Computational Agents is a great AI textbook written
by prominent leaders in the field. It covers everything you want to know about AI in
a very accessible style, accompanied by a wide range of thoughtful and challenging
exercises. I find this book to be an extremely valuable resource, not only for teaching,
but even more so for offering an updated reference to a wide spectrum of foundational
subjects at the current frontier of AI.”

Rina Dechter, University of California, Irvine, author of Constraint Programming

“Poole and Mackworth’s book has been my go-to resource for students who need
an introduction to Artificial Intelligence. While the previous versions have provided
a complete overview of the field, the newer version organizes this information in a
crystal clear manner. The division of the topics based on what the agent knows, what
is in the world, and what the effects of its actions are allow for a logical flow of topics
inside AI. As a comprehensive textbook for AI that includes slides, solutions, and code,
this book is a must-have on the bookshelf for AI instructors, students, researchers, and
practitioners.”

Sriram Natarajan, University of Texas at Dallas

“This is a great foundational book on the science of AI, covering the main concepts and
techniques using a simple structured approach. The extensive material on the social
impact of AI provides much needed attention to the responsible design and use of
AI. AI researchers can find here the indispensable foundational knowledge and the
needed ethical attitude to create beneficial AI innovation.”

Francesca Rossi, IBM Fellow

“The latest edition of Poole and Mackworth’s book emphasizes the societal impacts of
AI in every chapter, making it an essential read for anyone interested in AI, especially
those who will shape its future to ensure these powerful technologies benefit society
and minimize harms.”

Saleema Amershi, Microsoft Research

“This textbook provides an amazing introduction to the field of AI. By bringing
together learning, reasoning, and decision-making, it shows the rich interconnections
across the various AI subfields. The writing is just at the right level to introduce
students to the different facets of AI. The updated edition seamlessly integrates
the exciting developments in deep learning into the broader AI context. The text
also highlights the societal impact of AI, including AI ethics and computational
sustainability.”

Carla Gomes, Cornell University



“Poole and Mackworth – two pioneers of AI – present an admirably broad and
complete introduction to the field, with a very useful focus on intelligent agents. From
deep learning to causal reasoning, from Bayesian networks to knowledge graphs,
from fundamental algorithms to effective heuristics, this book covers a wide range
of important topics, each accompanied by a timely section on social impact. Highly
recommended!”

Holger Hoos, RWTH Aachen

“Poole and Mackworth’s Artificial Intelligence: Foundations of Computational Agents 3e is
a tour de force. This is a comprehensive and clearly written text that takes the reader
through core concepts in symbolic AI and machine learning, providing pathways
for broad introductory undergraduate courses, or focused graduate courses. It’s an
outstanding resource for student and instructor alike. Whether you’re a seasoned AI
researcher or a student entering the field, you’ll learn a great deal from reading this
book.”

Sheila McIlraith, University of Toronto

“An outstanding and lucid blast of fresh air, in a world that has lost contact with what
AI should be about.”

Gary Marcus, NYU, author of Rebooting AI

“Artificial Intelligence: Foundations of Computational Agents skillfully delivers a compre-
hensive exploration of AI ideas, demonstrating exceptional organization and clarity of
presentation. Navigating the broad arc of important concepts and methods in AI, the
book covers essential technical topics, historical context, and the growing importance
of the societal influences of AI, making it an outstanding primary text for students and
educators, and a valuable reference for professionals.”

Eric Horvitz, Technical Fellow and Chief Scientific Officer, Microsoft
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Preface

Artificial Intelligence: Foundations of Computational Agents is a book about the
science of artificial intelligence (AI). AI is the study of intelligent computational
agents. Our book is structured as a textbook but it is designed to be accessible
to a wide audience.

We wrote this book because we are excited about the emergence of AI as
an integrated science. As with any science being developed, AI has a coher-
ent, formal theory and a rambunctious experimental wing. Here we balance
theory and experiment and show how to link them together intimately. We de-
velop the science of AI together with its engineering applications. We believe
the adage, “There is nothing so practical as a good theory.” The spirit of our
approach is captured by the dictum, “Everything should be made as simple
as possible, but not simpler.” We must build the science on solid foundations;
we present the foundations, but only sketch, and give some examples of, the
complexity required to build useful intelligent systems. Although the result-
ing systems will be complex, the foundations and the building blocks should
be simple.

New to This Edition

This third edition results from extensive revision throughout the text. We have
added three new chapters:

• Neural Networks and Deep Learning
• Causality
• The Social Impact of Artificial Intelligence

There is also a social impact section for each chapter, covering either beneficial
applications or harmful impacts of AI, and often both. With the rise in the

xxi
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use of AI in society, it is imperative that all AI researchers and practitioners
understand the possible social impact of their work.

We have restructured the material based on feedback from instructors who
have used the book in classes. We have brought it up to date to reflect the cur-
rent state of the art, made parts that were difficult for students more straightfor-
ward, added more intuitive explanations, and coordinated the pseudocode al-
gorithms with open-source Python implementations at AIPython (aipython.org).
We have resisted the temptation to cover every recent advance.

AI research is expanding so rapidly now that the volume of potential new
text material is vast. However, research teaches us not only what works but
also what does not work so well, allowing us to be highly selective. We have
included more material on techniques that have proven successful. However,
research also has trends and fashions. We have removed techniques that have
been shown to be less promising, but we distinguish them from the techniques
for problems that are merely out of fashion. We include some currently unfash-
ionable material if the problems attacked still remain and the techniques have
the potential to form the basis for future research and development. We have
further developed the concept of a single design space for intelligent agents,
showing how many bewilderingly diverse techniques can be seen in a simple,
uniform framework. This allows us to emphasize the principles underlying
the foundations of computational agents, making those ideas more accessible
to students.

Who This Book is For

The book can be used as an introductory text on artificial intelligence for ad-
vanced undergraduate or graduate students in computer science or related dis-
ciplines such as computer engineering, philosophy, cognitive science, or psy-
chology. It will appeal more to the technically minded; parts are technically
challenging, focusing on learning by doing: designing, building, and imple-
menting systems. Any curious scientifically oriented reader will benefit from
studying the book. Previous experience with computational systems is desir-
able, but prior study of the foundations upon which we build, including logic,
probability, calculus, and control theory, is not necessary, because we develop
the concepts as required.

The serious student will gain valuable skills at several levels ranging from
expertise in the specification and design of intelligent agents to skills for imple-
menting, testing, and improving real software systems for several challenging
application domains. The thrill of participating in the emergence of a new sci-
ence of intelligent agents is one of the attractions of this approach. The practical
skills of dealing with a world of ubiquitous, intelligent, embedded agents are
now in great demand in the marketplace.
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Our Approach

The focus is on an intelligent agent acting in an environment. We start with
simple agents acting in simple, static environments and gradually increase the
power of the agents to cope with more challenging worlds. We explore ten
dimensions of complexity that allow us to introduce, gradually and with mod-
ularity, what makes building intelligent agents challenging. We have tried to
structure the book so that the reader can understand each of the dimensions
separately and we make this concrete by repeatedly illustrating the ideas with
four different agent tasks: a delivery robot, a diagnostic assistant, a tutoring
agent, and a trading agent.

The agent we want the student to envision is a hierarchically designed
agent that acts intelligently in a stochastic environment that it can only par-
tially observe – one that reasons online about individuals and relationships
among them, has complex preferences, learns while acting, takes into account
other agents, and acts appropriately given its own computational limitations.
Of course, we cannot start with such an agent; it is still a research question to
build such agents. So we introduce the simplest agents and then show how to
add each of these complexities in a modular way.

We have made a number of design choices which distinguish this book
from competing books, including our earlier book.

• We have tried to give a coherent framework in which to understand AI.
We have chosen not to present disconnected topics that do not fit to-
gether. For example, we do not present disconnected logical and prob-
abilistic views of AI, but we have presented a multidimensional design
space in which students can understand the big picture, in which proba-
bilistic and logical reasoning coexist.

• We decided that it is better to clearly explain the foundations upon which
more sophisticated techniques can be built, rather than present all these
more sophisticated techniques. This means that a larger gap may exist
between what is covered in this book and the frontier of science. But it
also means that the student will have a better foundation to understand
current and future research.

• One of the more difficult decisions we made was how to linearize the de-
sign space. We have chosen a relations-late approach. This approach
probably reflects better the research over the past few decades where
there has been much progress in reasoning and learning for feature-based
representations. The problems of relational learning and reasoning have
not gone away, only become more urgent.

This should help students and instructors avoid being overwhelmed by the
amount of technical details to be mastered before having a comprehensive view
of AI.
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Online Resources

We provide open-source Python implementations of most of the algorithms at
http://www.aipython.org. These are as close to pseudo-code as we can make
them while they still run. We have chosen clarity over efficiency, with good
asymptotic complexity. They are not a replacement for a well-engineered li-
brary, because they are sometimes a few orders of magnitude slower. How-
ever, by keeping everything as simple as possible, the student can see how the
algorithms work. The code provides the basic algorithms, and variants can be
used as exercises. One choice we have made that might not match every in-
structor’s preference is to minimize the number of external Python libraries.
We only use matplotlib, as we cannot get away without a plotting library if we
want to present information.

How to Use This Book in Your Course

We have chosen not to present an encyclopedic view of AI. Not every major
idea that has been investigated is presented here. We have chosen some ba-
sic ideas upon which other, more sophisticated, techniques are based and have
tried to explain the basic ideas in detail, sketching how these can be expanded.
Once a student has understood the principles here they can go into more spe-
cialized topics such as vision, natural language understanding, or robotics.

Figure 1 (page xxv) shows the topics covered in the book. The solid lines
depict prerequisites. Often the prerequisite structure does not include all sub-
topics. Given the medium of a book, we have had to linearize the topics. How-
ever, the book is designed so the topics are teachable in any order satisfying
the prerequisite structure.

The references given at the end of each chapter are not meant to be compre-
hensive; we have referenced works that we have directly used and works that
we think provide good overviews of the literature, by referencing both classic
works and more recent surveys. We hope that no researchers feel slighted by
their omission, and we are happy to have feedback where someone feels that
an idea has been misattributed. Remember that this book is not a survey of AI
research.

Acknowledgments
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All remaining mistakes are ours.
We invite you to join us in an intellectual adventure: building a science of

intelligent agents.

1: AI & 
Agents

2: Architecture 
& Control 3: Searching 

for Solutions 4: Reasoning 
with Constraints

5: Propositions 
& Inference 

7: Supervised 
Learning

9: Reasoning 
with Uncertainty

6: Deterministic 
Planning

12: Planning 
with Uncertainty

14: Multiagent 
Systems

10: Learning 
with Uncertainty

15: Individuals 
& Relations

16: Knowledge 
Graphs & Ontologies

17: Relational Learning & 
Probabilistic Reasoning

13: Reinforcement 
Learning

19: Retrospect & 
Prospect

8: Neural Networks 
& Deep Learning

11: Causality

18: Social Impact of AI

Figure 1: Overview of chapters and dependencies
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Part I

Agents in the World
What are Agents and How Can They be Built?
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Chapter 1

Artificial Intelligence and Agents

The history of AI is a history of fantasies, possibilities, demonstrations,
and promise. Ever since Homer wrote of mechanical “tripods” waiting on
the gods at dinner, imagined mechanical assistants have been a part of our
culture. However, only in the last half century have we, the AI commu-
nity, been able to build experimental machines that test hypotheses about
the mechanisms of thought and intelligent behavior and thereby demon-
strate mechanisms that formerly existed only as theoretical possibilities.

– Bruce Buchanan [2005]

This book is about artificial intelligence (AI), a field built on centuries of thought,
which has been a recognized discipline for over 60 years. As well as solving
practical tasks, AI provides tools to test hypotheses about the nature of thought
itself. Deep scientific and engineering problems have already been solved and
many more are waiting to be solved. Many practical applications are currently
deployed and the potential exists for an almost unlimited number of future
applications. This book presents the principles that underlie intelligent com-
putational agents.

1.1 What is Artificial Intelligence?

Artificial intelligence, or AI, is the field that studies the synthesis and analysis of
computational agents that act intelligently. Consider each part of this definition.

An agent is something that acts in an environment; it does something.
Agents include worms, dogs, thermostats, airplanes, robots, humans, compa-
nies, and countries.

An agent is judged solely by how it acts. Agents that have the same effect
in the world are equally good.

3
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Intelligence is a matter of degree. The aspects that go into an agent acting
intelligently include

• what it does is appropriate for its circumstances, its goals, and its percep-
tual and computational limitations

• it takes into account the short-term and long-term consequences of its
actions, including the effects on society and the environment

• it learns from experience
• it is flexible to changing environments and changing goals.

A computational agent is an agent whose decisions about its actions can be
explained in terms of computation. That is, the decision can be broken down
into primitive operations that can be implemented in a physical device. This
computation can take many forms. In humans, this computation is carried out
in “wetware”; in computers it is carried out in “hardware.” Although there are
some agents that are arguably not computational, such as the wind and rain
eroding a landscape, it is an open question whether all intelligent agents are
computational.

All agents are limited. No agent is omniscient (all knowing) or omnipotent
(can do anything). Agents can only observe everything in very specialized and
constrained domains. Agents have finite memory. Agents in the real world do
not have unlimited time to act.

The central scientific goal of AI is to understand the principles that make
intelligent behavior possible in natural or artificial systems. This is done by

• the analysis of natural and artificial agents
• formulating and testing hypotheses about what it takes to construct in-

telligent agents
• designing, building, and experimenting with computational systems that

perform tasks commonly viewed as requiring intelligence.

As part of science, researchers build empirical systems to test hypotheses or to
explore the space of possible designs. These are distinct from applications that
are built to be useful for an application domain.

The definition is not for intelligent thought. The role of thought is to affect
action and lead to more intelligent behavior.

The central engineering goal of AI is the design and synthesis of agents
that act intelligently, which leads to useful artifacts.

Building general intelligence isn’t the only goal of AI researchers. The aim
of intelligence augmentation is to augment human intelligence and creativity.
A diagnostic agent helps medical practitioners make better decisions, a search
engine augments human memory, and natural language translation systems
help people communicate. AI systems are often in human-in-the-loop mode,
where humans and agents work together to solve problems. Sometimes the
actions of artificial agents are to give advice to a human. Sometimes humans
give advice or feedback to artificial agents, particularly for cases where deci-
sions are made quickly or repeatedly.
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1.1. What is Artificial Intelligence? 5

1.1.1 Artificial and Natural Intelligence

Artificial intelligence (AI) is the established name for the field, but the term “ar-
tificial intelligence” is a source of much confusion because artificial intelligence
may be interpreted as the opposite of real intelligence.

For any phenomenon, you can distinguish real versus fake, where the fake
is non-real. You can also distinguish natural versus artificial. Natural means
occurring in nature and artificial means made by people.

Example 1.1 A tsunami is a large wave in an ocean. Natural tsunamis oc-
cur from time to time and are caused by earthquakes or landslides. You could
imagine an artificial tsunami that was made by people, for example, by ex-
ploding a bomb in the ocean, yet which is still a real tsunami. One could also
imagine fake tsunamis: either artificial, using computer graphics, or natural,
such as a mirage that looks like a tsunami but is not one.

It is arguable that intelligence is different: you cannot have fake intelligence.
If an agent behaves intelligently, it is intelligent. It is only the external behavior
that defines intelligence; acting intelligently is being intelligent. Thus, artificial
intelligence, if and when it is achieved, will be real intelligence created artifi-
cially.

This idea of intelligence being defined by external behavior was the moti-
vation for a test for intelligence designed by Turing [1950], which has become
known as the Turing test. The Turing test consists of an imitation game where
an interrogator can ask a witness, via a text interface, any question. If the in-
terrogator cannot distinguish the witness from a human, the witness must be
intelligent. Figure 1.1 shows a possible dialog that Turing suggested. An agent
that is not really intelligent could not fake intelligence for arbitrary topics.

Interrogator: In the first line of your sonnet which reads “Shall I compare thee
to a summer’s day,” would not ”a spring day” do as well or better?

Witness: It wouldn’t scan.

Interrogator: How about “a winter’s day,” That would scan all right.

Witness: Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

Witness: In a way.

Interrogator: Yet Christmas is a winter’s day, and I do not think Mr. Pickwick
would mind the comparison.

Witness: I don’t think you’re serious. By a winter’s day one means a typical
winter’s day, rather than a special one like Christmas.

Figure 1.1: Part of Turing’s possible dialog for the Turing test
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There has been much debate about the usefulness of the Turing test. Un-
fortunately, although it may provide a test for how to recognize intelligence, it
does not provide a way to realize intelligence.

Levesque [2014] suggested a new form of question, a Winograd schema
after the following example of Winograd [1972]:

• The city councilmen refused the demonstrators a permit because they
feared violence. Who feared violence?

• The city councilmen refused the demonstrators a permit because they
advocated violence. Who advocated violence?

These two sentences only differ in one word – feared/advocated – but have the
opposite answer.

Winograd schemas have the property that (a) humans can easily disam-
biguate them and (b) there is no simple grammatical or statistical test that could
disambiguate them. For example, the sentences above would not qualify if the
phrase “demonstrators feared violence” was much less or more likely than the
phrase “councilmen feared violence” independently of the context, and simi-
larly with advocating.

Example 1.2 The following examples are due to Davis [2015]:

• Steve follows Fred’s example in everything. He [admires/influences] him
hugely. Who [admires/influences] whom?

• The table won’t fit through the doorway because it is too [wide/narrow].
What is too [wide/narrow]?

• Grace was happy to trade me her sweater for my jacket. She thinks it looks
[great/dowdy] on her. What looks [great/dowdy] on Grace?

• Bill thinks that calling attention to himself was rude [to/of] Bert. Who
called attention to himself?

Each of these have their own reasons why one answer is preferred to the other.
A computer that can reliably answer these questions needs to know about all of
these reasons, and arguably requires the ability to do commonsense reasoning.
Common sense should also allow it to reject sentences such as “The doorway
won’t fit through the chair because it is too narrow. What is too narrow?”.

Figure 1.2 (page 7) shows some answers provided by ChatGPT [OpenAI,
2022], based on GPT-3 [Brown et al., 2020], one of the most capable large lan-
guage models in 2022. ChatGPT gives a different answer each time it is called.
You can decide whether it solves this Winograd schema. The technology be-
hind GPT-3 and related models is described in Section 8.5 (page 350).

Grosz [2012], arguing that language is inherently social and connected to
human cooperation, suggested that a more appropriate test should involve
purposeful natural language, not language just for the purpose of tricking a
human. She suggested the question:
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Human: The table won’t fit through the doorway because it is too narrow.
What is too narrow?

ChatGPT: If a table won’t fit through a doorway because it is too narrow,
it means that the width of the table is greater than the width of the doorway.
In other words, the doorway is not wide enough to allow the table to pass
through it. This can be a problem if you are trying to move the table from one
room to another and the only way to do so is through the doorway. In order
to solve this problem, you may need to remove the door or trim the table so
that it fits through the doorway. Alternatively, you may need to find a different
route to move the table, such as through a window or by taking it apart and
reassembling it in the other room.

Human: The table won’t fit through the doorway because it is too wide.
What is too wide?

ChatGPT: If a table won’t fit through a doorway because it is too wide, it
means that the width of the doorway is smaller than the width of the table.
In other words, the table is too big to fit through the doorway. This can be
a problem if you are trying to move the table from one room to another and
the only way to do so is through the doorway. In order to solve this problem,
you may need to remove the door or trim the table so that it fits through the
doorway. Alternatively, you may need to find a different route to move the
table, such as through a window or by taking it apart and reassembling it in
the other room.

Human: The doorway won’t fit through the chair because it is too narrow.
What is too narrow?

ChatGPT: ”Too narrow” means that the doorway is not wide enough to
fit through the chair. In this context, the doorway is the object that is being
compared to the chair, and it is not wide enough to pass through the chair
without encountering some difficulty or obstruction. This could be because
the doorway is physically smaller in width than the chair, or because there is
some other physical feature of the chair that is preventing the doorway from
fitting through it. For example, the chair might have armrests or other protu-
berances that make it difficult for the doorway to pass through. In general, the
phrase ”too narrow” is used to describe something that is not wide enough to
fit through or pass a particular opening or gap.

Human: The doorway won’t fit through the chair because it is too narrow.
What is too narrow?

ChatGPT: If a doorway is too narrow to fit through a chair, it means that the
width of the doorway is smaller than the width of the chair. This can happen if
the chair is too wide to fit through the doorway, or if the doorway is not wide
enough to accommodate the chair. In either case, the chair will not be able to
pass through the doorway because there is not enough space for it to fit.

Figure 1.2: ChatGPT answers to some Winograd schemas
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Is it imaginable that a computer (agent) team member could behave, over
the long term and in uncertain, dynamic environments, in such a way that
people on the team will not notice it is not human?

– Barbara Grosz [2012]

An equal member of the team needs to be trusted enough to act in the world
appropriately, know when to ask questions, and when to not act. This chal-
lenge also allows for incremental improvement; starting with simple group
interactions before moving to complex ones.

Interacting in natural language is not the only aspect of intelligence. An
agent acting in an environment needs common sense, “the ability to make
effective use of ordinary, everyday, experiential knowledge in achieving or-
dinary, practical goals” [Brachman and Levesque, 2022b]. Here, knowledge
is used in a general way to mean any non-transient information in an agent.
Such knowledge is typically not stated in natural language; people do not state
what everyone knows. Some knowledge, such as how to ride a bike or recog-
nize a face, cannot be effectively conveyed by natural language. Formalizing
common sense has a long history [McCarthy, 1958; Davis, 1990], including the
development of representations and actual commonsense knowledge.

1.1.2 Natural Intelligence

The obvious naturally intelligent agent is the human being. Some people might
say that worms, insects, or bacteria are intelligent, but more people would say
that dogs, whales, or monkeys are intelligent (see Exercise 1.1 (page 48)). One
class of intelligent agents that may be more intelligent than humans is the class
of organizations. Ant colonies are a prototypical example of organizations.
Each individual ant may not be very intelligent, but an ant colony can act more
intelligently than any individual ant. The colony can discover food and ex-
ploit it very effectively, as well as adapt to changing circumstances. Corpo-
rations can be more intelligent than individual people. Companies develop,
manufacture, and distribute products where the sum of the skills required is
much more than any individual could master. Modern computers, from low-
level hardware to high-level software, are more complicated than any single
human can understand, yet they are manufactured daily by organizations of
humans. Human society viewed as an agent is arguably the most intelligent
agent known.

It is instructive to consider where human intelligence comes from. There
are three main sources:

Biology Humans have evolved into adaptable animals that can survive in var-
ious habitats.

Culture Culture provides not only language, but also useful tools, useful con-
cepts, and the wisdom that is passed from parents and teachers to chil-
dren.
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Lifelong learning Humans learn throughout their life and accumulate knowl-
edge and skills.

These sources interact in complex ways. Biological evolution has provided
stages of growth that allow for different learning at different stages of life.
Biology and culture have evolved together; humans can be helpless at birth,
presumably because of our culture of looking after infants. Culture interacts
strongly with learning. A major part of lifelong learning is what people are
taught by parents and teachers. Language, which is part of culture, provides
distinctions in the world that are useful for learning.

When building an intelligent system, the designers have to decide which
of these sources of intelligence need to be programmed in, and which can be
learned. It is very unlikely that anyone will be able to build an agent that starts
with a clean slate and learns everything, particularly for non-repetitive tasks.
Similarly, most interesting and useful intelligent agents learn to improve their
behavior.

1.2 A Brief History of Artificial Intelligence

Throughout human history, people have used technology to model themselves.
There is evidence of this from ancient China, Egypt, and Greece, bearing wit-
ness to the universality of this activity. Each new technology has, in its turn,
been exploited to build intelligent agents or models of mind. Clockwork, hy-
draulics, telephone switching systems, holograms, analog computers, and dig-
ital computers have all been proposed both as technological metaphors for in-
telligence and as mechanisms for modeling mind.

Hobbes (1588–1679), who has been described by Haugeland [1985, p. 85]
as the “Grandfather of AI,” espoused the position that thinking was symbolic
reasoning, like talking out loud or working out an answer with pen and pa-
per. The idea of symbolic reasoning was further developed by Descartes (1596–
1650), Pascal (1623–1662), Spinoza (1632–1677), Leibniz (1646–1716), and others
who were pioneers in the European philosophy of mind.

The idea of symbolic operations became more concrete with the develop-
ment of computers. Babbage (1792–1871) designed the first general-purpose
computer, the Analytical Engine. Leonardo Torres y Quevedo build a chess
playing machine based on similar ideas in 1911 [Randell, 1982]. In the early
part of the twentieth century, there was much work done on understanding
computation. Several models of computation were proposed, including the
Turing machine by Alan Turing (1912–1954), a theoretical machine that writes
symbols on an infinitely long tape, and the lambda calculus of Church (1903–
1995), which is a mathematical formalism for rewriting formulas. It can be
shown that these very different formalisms are equivalent in that any function
computable by one is computable by the others. This leads to the Church–
Turing thesis:
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Any effectively computable function can be carried out on a Turing
machine (and so also in the lambda calculus or any of the other
equivalent formalisms).

Effectively computable means following well-defined operations. In Turing’s
day, “computers” were people who followed well-defined steps; computers
as known today did not exist. This thesis says that all computation can be
carried out on a Turing machine or one of the other equivalent computational
machines. The Church–Turing thesis cannot be proved but it is a hypothesis
that has stood the test of time. No one has built a machine that has carried
out computation that cannot be computed by a Turing machine. There is no
evidence that people can compute functions that are not Turing computable.
This provides an argument that computation is more than just a metaphor for
intelligence; reasoning is computation and computation can be carried out by
a computer.

Some of the first applications of computers were AI programs. Samuel
[1959] built a checkers program in 1952 and implemented a program that learns
to play checkers in the late 1950s. His program beat the Connecticut state
checkers champion in 1961. Wang [1960] implemented a program that proved
every logic theorem (nearly 400) in Principia Mathematica [Whitehead and Rus-
sell, 1925, 1927]. Newell and Simon [1956] built a program, Logic Theorist,
that discovers proofs in propositional logic.

In parallel, there was also much work on neural networks learning inspired
by how neurons work. McCulloch and Pitts [1943] showed how a simple
thresholding “formal neuron” could be the basis for a Turing-complete ma-
chine. Learning for artificial neural networks was first described by Minsky
[1952]. One of the early significant works was the perceptron of Rosenblatt
[1958]. The work on neural networks became less prominent for a number of
years after the 1968 book by Minsky and Papert [1988], which argued that the
representations learned were inadequate for intelligent action. Many technical
foundations for neural networks were laid in the 1980s and 1990s [Rumelhart
et al., 1986; Hochreiter and Schmidhuber, 1997; LeCun et al., 1998a]. Widespread
adoption followed the success by Krizhevsky et al. [2012] for ImageNet [Deng
et al., 2009], a dataset of over 3 million images labelled with over 5000 cate-
gories. Subsequent major advances include the introduction of generative ad-
versarial networks (GANs) [Goodfellow et al., 2014] and transformers [Vaswani
et al., 2017]. Neural networks in various forms are now the state of the art for
predictive models for large perceptual datasets, including images, video, and
speech, as well as some tasks for text. They are also used for generative AI,
to generate images, text, code, molecules, and other structured output. See
Chapter 8.

Neural networks are one of many machine learning tools used for making
predictions from data in modern applications. Other methods have been devel-
oped though the years, including decision trees [Breiman et al., 1984; Quinlan,
1993] and logistic regression, introduced by Verhulst in 1832 [Cramer, 2002].
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These have diverse applications in many areas of science. Combining these al-
gorithms leads to the state-of-the-art gradient-boosted trees [Friedman, 2001;
Chen and Guestrin, 2016], which demonstrates the close interconnections be-
tween statistics and machine learning.

While useful, making predictions is not sufficient to determine what an
agent should do; an agent also needs to plan. Planning in AI was initially
based on deterministic actions. Fikes and Nilsson [1971] used deterministic
actions to control a mobile robot. Planning under uncertainty has a long his-
tory. Markov decision processes (MDPs), the foundation for much of planning
under uncertainty, and dynamic programming, a general way to solve them,
were invented by Bellman [1957]. These were extended into decision-theoretic
planning in the 1990’s [Boutilier et al., 1999]. Decision-theoretic planning with
learning is called reinforcement learning. The first reinforcement learning
programs were due to Andreae [1963] and Michie [1963]. Major advances
came with the inventions of temporal-difference learning [Sutton, 1988] and
Q-learning [Watkins and Dayan, 1992]. Work in reinforcement learning has
exploded, including superhuman performance in chess, Go and other games
[Silver et al., 2017].

Planning requires representations. The need for representations was recog-
nized early.

A computer program capable of acting intelligently in the world must have
a general representation of the world in terms of which its inputs are in-
terpreted. Designing such a program requires commitments about what
knowledge is and how it is obtained. . . . More specifically, we want a com-
puter program that decides what to do by inferring in a formal language
that a certain strategy will achieve its assigned goal. This requires formal-
izing concepts of causality, ability, and knowledge.

– McCarthy and Hayes [1969]

Many of the early representations were ad hoc, such as frames [Minsky,
1975], like the schemas of Kant [1787], Bartlett [1932], and Piaget [1953]. Later
representations were based on logic [Kowalski, 1979], with knowledge being
defined in logic and efficient inference. This resulted in languages such as Pro-
log [Kowalski, 1988; Colmerauer and Roussel, 1996].

Probabilities were eschewed in AI, because of the number of parameters
required, until the breakthrough of Bayesian networks (belief networks) and
graphical models [Pearl, 1988], which exploit conditional independence, and
form a basis for modeling causality. Combining first-order logic and probabil-
ity is the topic of statistical relational AI [De Raedt et al., 2016].

There has been a continual tension between how much knowledge is learned
and how much is provided by human experts or is innate to an agent. It has
long been recognized that learning is needed, and it is known that learning
cannot be achieved with data alone (page 315). During the 1970s and 1980s,

https://doi.org/10.1017/9781009258227.003


12 1. Artificial Intelligence and Agents

expert systems came to prominence, where the aim was to capture the knowl-
edge of an expert in some domain so that a computer could carry out expert
tasks. DENDRAL [Buchanan and Feigenbaum, 1978], developed from 1965 to
1983 in the field of organic chemistry, proposed plausible structures for new
organic compounds. MYCIN [Buchanan and Shortliffe, 1984], developed from
1972 to 1980, diagnosed infectious diseases of the blood, prescribed antimicro-
bial therapy, and explained its reasoning.

An alternative approach, de-emphasizing explicit knowledge representa-
tions, emphasized situated embodied agents [Brooks, 1990; Mackworth, 2009].
The hypothesis is that intelligence emerges, in evolution and individual devel-
opment, through ongoing interaction and coupling with a real environment.

During the 1960s and 1970s, natural language understanding systems were
developed for limited domains. For example, the STUDENT program of Bo-
brow [1967] could solve high-school algebra tasks expressed in natural lan-
guage. Winograd’s [1972] SHRDLU system could, using restricted natural
language, discuss and carry out tasks in a simulated blocks world. CHAT-
80 [Warren and Pereira, 1982] could answer geographical questions placed to it
in natural language. Figure 1.3 (page 13) shows some questions that CHAT-80
answered based on a database of facts about countries, rivers, and so on. These
systems could only reason in very limited domains using restricted vocabu-
lary and sentence structure. Interestingly, IBM’s Watson, which beat the world
champion in the TV game show Jeopardy! in 2011, used a technique similar
to CHAT-80 [Lally et al., 2012] for understanding questions; see Section 15.7
(page 674).

In applications using language in the wild, such as speech recognition and
translation in phones, many technologies are combined, including neural net-
works; see Chapter 8. Large language models (page 364), trained on huge
datasets, can be used to predict the next word in a text, enabling predictive
spelling and the creation of new text.

1.2.1 Relationship to Other Disciplines

AI is a very young discipline. Other disciplines as diverse as philosophy, neu-
robiology, evolutionary biology, psychology, economics, political science, soci-
ology, anthropology, control engineering, statistics, and many more have been
studying aspects of intelligence much longer.

The science of AI could be described as “synthetic psychology,” “experi-
mental philosophy,” or “computational epistemology” – epistemology is the
study of knowledge. AI can be seen as a way to study the nature of knowledge
and intelligence, but with more powerful experimental tools than were previ-
ously available. Instead of being able to observe only the external behavior of
intelligent systems, as philosophy, psychology, economics, and sociology have
traditionally been able to do, AI researchers experiment with executable mod-
els of intelligent behavior. Most important, such models are open to inspection,
redesign, and experimentation in a complete and rigorous way. Modern com-
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puters provide a way to construct the models about which philosophers have
only been able to theorize. AI researchers can experiment with these mod-
els as opposed to just discussing their abstract properties. AI theories can be
empirically grounded in implementations. Sometimes simple agents exhibit
complex behavior, and sometimes sophisticated, theoretically motivated algo-
rithms don’t work in real-world domains, which would not be known without
implementing the agents.

It is instructive to consider an analogy between the development of fly-
ing machines over the past few centuries and the development of thinking
machines over the past few decades. There are several ways to understand
flying. One is to dissect known flying animals and hypothesize their com-
mon structural features as necessary fundamental characteristics of any flying
agent. With this method, an examination of birds, bats, and insects would sug-
gest that flying involves the flapping of wings made of some structure covered
with feathers or a membrane. Furthermore, the hypothesis could be tested by
strapping feathers to one’s arms, flapping, and jumping into the air, as Icarus
did. An alternative methodology is to try to understand the principles of flying
without restricting oneself to the natural occurrences of flying. This typically
involves the construction of artifacts that embody the hypothesized principles,

Does Afghanistan border China?
What is the capital of Upper Volta?
Which country’s capital is London?
Which is the largest African country?
How large is the smallest American country?
What is the ocean that borders African countries and that borders
Asian countries?
What are the capitals of the countries bordering the Baltic?
How many countries does the Danube flow through?
What is the total area of countries south of the Equator and not in
Australasia?
What is the average area of the countries in each continent?
Is there more than one country in each continent?
What are the countries from which a river flows into the Black Sea?
What are the continents no country in which contains more than two
cities whose population exceeds 1 million?
Which country bordering the Mediterranean borders a country that
is bordered by a country whose population exceeds the population
of India?
Which countries with a population exceeding 10 million border the
Atlantic?

Figure 1.3: Some questions CHAT-80 could answer
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even if they do not behave like flying animals in any way except flying. This
second method has provided both useful tools – airplanes – and a better un-
derstanding of the principles underlying flying, namely aerodynamics. Birds
are still much better at flying though forests.

AI takes an approach analogous to that of aerodynamics. AI researchers
are interested in testing general hypotheses about the nature of intelligence
by building machines that are intelligent and that do not necessarily mimic
humans or organizations. This also offers an approach to the question, “Can
computers really think?” by considering the analogous question, “Can air-
planes really fly?”

AI is intimately linked with the discipline of computer science because the
study of computation is central to AI. It is essential to understand algorithms,
data structures, and combinatorial complexity to build intelligent machines. It
is also surprising how much of computer science started as a spinoff from AI,
from timesharing to computer algebra systems.

Finally, AI can be seen as coming under the umbrella of cognitive science.
Cognitive science links various disciplines that study cognition and reason-
ing, from psychology to linguistics to anthropology to neuroscience. AI distin-
guishes itself within cognitive science by providing tools to build intelligence
rather than just studying the external behavior of intelligent agents or dissect-
ing the inner workings of intelligent systems.

1.3 Agents Situated in Environments

AI is about practical reasoning: reasoning in order to do something. A coupling
of perception, reasoning, and acting comprises an agent. An agent acts in an
environment. An agent’s environment often includes other agents. An agent
together with its environment is called a world.

An agent could be, for example, a coupling of a computational engine with
physical sensors and actuators, called a robot, where the environment is a
physical setting. An autonomous agent is one that acts in the world with-
out human intervention. A semi-autonomous agent acts with a human-in-
the-loop who may provide perceptual information and carry out the task. An
agent could be a program that acts in a purely computational environment, a
software agent, often called a bot.

Figure 1.4 (page 15) shows a black-box view of an agent in terms of its
inputs and outputs. At any time, what an agent does depends on:

• prior knowledge about the agent and the environment
• stimuli received from the environment, which can include observations

about the environment (e.g., light, sound, keyboard commands, web re-
quests) as well as actions that the environment imposes on the agent (e.g.,
bumping the agent)

• past experiences, including history of interaction with the environment
(its previous actions and stimuli) and other data, from which it can learn
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• goals that it must try to achieve or preferences over states of the world

• abilities, the primitive actions the agent is capable of carrying out.

Inside the black box, an agent has a belief state that can encode beliefs
about its environment, what it has learned, what it is trying to do, and what
it intends to do. An agent updates this internal state based on stimuli. It uses
the belief state and stimuli to decide on its actions. Much of this book is about
what is inside this black box.

Purposive agents have preferences or goals. They prefer some states of the
world to other states, and they act to try to achieve the states they prefer most.
The non-purposive agents are grouped together and called nature. Whether
or not an agent is purposive is a modeling assumption that may, or may not,
be appropriate. For example, for some applications it may be appropriate to
model a dog as purposive, such as drug-sniffing dogs, and for others it may
suffice to model a dog as non-purposive, such as when they are just part of the
environment.

If an agent does not have preferences, by definition it does not care what
world state it ends up in, and so it does not matter to it what it does. The reason
to design an agent is to instill preferences in it – to make it prefer some world
states and try to achieve them. An agent does not have to know its preferences
explicitly. For example, a thermostat for a heater is an agent that senses the
world and turns the heater either on or off. There are preferences embedded
in the thermostat, such as to keep the room at a pleasant temperature, even
though the thermostat arguably does not know these are its preferences. The
preferences of an agent are often the preferences of the designer of the agent,
but sometimes an agent can acquire goals and preferences at run time.

Prior Knowledge

Environment

Stimuli
ActionsPast Experiences

Goals/Preferences

Agent

Abilities

Figure 1.4: An agent interacting with an environment
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This is an all-encompassing view of intelligent agents varying in complex-
ity from a simple thermostat, to a diagnostic advising system whose percep-
tions and actions are mediated by human beings, to a team of mobile robots,
to society itself. An agent does not have access to anything else; anything that
does not affect one of these inputs cannot affect the agent’s action.

1.4 Prototypical Applications

AI applications are widespread and diverse and include medical diagnosis,
scheduling factory processes, robots for hazardous environments, game play-
ing, autonomous cars, natural language translation systems, choosing adver-
tisements, personal assistants, and tutoring agents. Rather than treating each
application separately, we abstract the essential features of such applications to
better understand the principles behind intelligent reasoning and action.

Five main application domains are developed in examples throughout the
book. Although the particular examples presented are simple – otherwise they
would not fit into the book – the application domains are representative of the
range of domains in which AI techniques can be, and are being, used.

1.4.1 An Autonomous Delivery and Helping Robot

Imagine a robot with wheels and the ability to pick up, put down and manip-
ulate objects. It has sensing capabilities allowing it to recognize objects and
to avoid obstacles. It can be given orders in natural language and obey them,
making reasonable choices about what to do when its goals conflict. Such a
robot could deliver packages or coffee in an office environment, clean a home
and put things in their appropriate place, or help caregivers in a hospital. Em-
bedded in a wheelchair, it could help disabled people. It should be useful as
well as safe.

In terms of the black-box characterization of an agent in Figure 1.4 (page 15),
the autonomous delivery robot has as inputs:

• prior knowledge, provided by the agent designer, about the agent’s ca-
pabilities, what objects it may encounter and have to differentiate, what
requests mean, and perhaps about its environment, such as a map

• past experience obtained while acting, for instance, about the effects of its
actions (and – hopefully limited – experiences of breaking objects), what
objects are common in the world, and what requests to expect at different
times of the day

• goals in terms of what it should deliver and when, as well as preferences
specifying trade-offs, such as when it must forgo one goal to pursue an-
other, or the trade-off between acting quickly and acting safely

• stimuli about its environment from observations from input devices such
as cameras, sonar, touch, sound, laser range finders, or keyboards as well
as stimuli such as the agent being forcibly moved or crashing.
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The robot’s outputs are motor controls specifying how its wheels should turn,
where its limbs should move, and what it should do with its grippers. Other
outputs may include speech and a video display.

Example 1.3 Figure 1.5 depicts a typical laboratory environment for a delivery
robot. This environment consists of four laboratories and many offices. In our
examples, the robot can only push doors, and the directions of the doors in
the diagram reflect the directions in which the robot can travel. Rooms require
keys and those keys can be obtained from various sources. The robot must
deliver parcels, beverages, and dishes from room to room. The environment
also contains a stairway that is potentially hazardous to the robot.

1.4.2 A Diagnostic Assistant

A diagnostic assistant is intended to advise a human about some particular
system such as a medical patient, the electrical system in a home, or an au-
tomobile. The diagnostic assistant should advise about potential underlying
faults or diseases, what tests to carry out, and what treatment to prescribe. To
give such advice, the assistant requires a model of the system, including knowl-
edge of potential causes, available tests, available treatments, and observations
of the system (which are often called symptoms).

stairs

lab A lab B

lab Clab D

r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

main
office

Figure 1.5: A typical laboratory environment for the delivery robot. This shows
the locations of the doors and which way they open.

https://doi.org/10.1017/9781009258227.003


18 1. Artificial Intelligence and Agents

To be useful, the diagnostic assistant must provide added value, be easy for
a human to use, and not be more trouble than it is worth. A diagnostic assistant
connected to the Internet can draw on expertise from throughout the world,
and its actions can be based on the most up-to-date research. However, it must
be able to justify why the suggested diagnoses or actions are appropriate. Hu-
mans are, and should be, suspicious of computer systems that are opaque and
impenetrable. When humans are responsible for what they do, even if their
actions are based on a computer system’s advice, the system needs to convince
the human that the suggested actions are defensible.

Example 1.4 Figure 1.6 shows an electrical distribution system in a home.
In this home, power comes into the home through circuit breakers and then it
goes to power outlets or to lights through light switches. For example, light l1
is on if there is power coming into the home, if circuit breaker cb1 is on, and if
switches s1 and s2 are either both up or both down. This is the sort of model that
someone may have of the electrical power in the home, which they could use
to determine what is wrong given evidence about the position of the switches
and which lights are on and which are off. The diagnostic assistant is there to
help a resident or an electrician troubleshoot electrical problems.

In terms of the black-box definition of an agent in Figure 1.4 (page 15), the
diagnostic assistant has as inputs:

• prior knowledge, such as how switches and lights normally work, how
diseases or malfunctions manifest themselves, what information tests pro-
vide, the effects of repairs or treatments, and how to find out information

w0

s2

w4

s1

s3

w1

w2

l1

l2

cb1

w3

p1

cb2

w6

p2

outside_power

w5

switch

circuit 
breaker

light

power
outlet

Figure 1.6: An electrical environment for the diagnostic assistant

https://doi.org/10.1017/9781009258227.003


1.4. Prototypical Applications 19

• past experience, in terms of data of previous cases that include the effects
of repairs or treatments, the prevalence of faults or diseases, the preva-
lence of symptoms for these faults or diseases, and the accuracy of tests

• goals of fixing the device or preferences between repairing or replacing
components, or a patient’s preferences between living longer or reducing
pain

• stimuli that are observations of symptoms of a device or patient.

The output of the diagnostic assistant is in terms of recommendations of treat-
ments and tests, along with a rationale for its recommendations.

1.4.3 A Tutoring Agent

A tutoring agent tutors students in some domain of study. The environment
of the agent includes students who interact through a computer or tablet inter-
face, and perhaps the students’ parents and teachers.

Example 1.5 Consider a tutoring agent to teach elementary physics, such as
mechanics, that interacts with a student. In order to successfully tutor a stu-
dent, the agent needs to be able to solve problems in the physics domain, de-
termine the student’s knowledge and misunderstanding based on interacting
with them, and converse using natural language, mathematics, and diagrams.

In terms of the black-box definition of an agent in Figure 1.4 (page 15), a
tutoring agent has the following as inputs:

• prior knowledge, provided by the agent designer, about the subject matter
being taught, teaching strategies, possible student errors and misconcep-
tions.

• past experience, which the tutoring agent has acquired by interacting with
students, such as, what errors students make, how many examples and
problems it takes various students to learn various topics, and what stu-
dents forget; this can be information about students in general as well as
about a particular student.

• preferences about the importance of each topic, the level of achievement
of the student that is desired, and the importance given to student moti-
vation and engagement; there are often complex trade-offs among these.

• stimuli include observations of a student’s test results and observations of
the student’s interaction (or non-interaction) with the agent; students can
also ask questions or request help on new examples and problems.

The actions of the tutoring agent include presenting the theory and worked-
out examples, proposing suitable problems, providing help and feedback on
a student’s solution, asking the student questions, answering their questions,
and producing reports for parents and teachers.
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1.4.4 A Trading Agent

A trading agent is like a robot, but instead of interacting with a physical en-
vironment, it interacts with an information environment. Its task is to pro-
cure goods and services for a user. It must be able to be told the needs of a
user, and it must interact with sellers (e.g., on the Web). The simplest trading
agent involves proxy bidding for a user on an auction site, where the system
will keep bidding until the user’s price limit is reached. A more complicated
trading agent will buy multiple complementary items, like booking a flight, a
hotel, and a rental car that fit together, in addition to trading off competing
preferences of the user. Web services provide tools on the Web designed to
be combined by trading agents. Another example of a trading agent is one
that monitors how much food and groceries are in a household, monitors the
prices, and orders goods before they are needed, while trying to keep costs to
a minimum.

In terms of the black-box definition of an agent in Figure 1.4 (page 15), the
trading agent has as inputs:

• prior knowledge about types of goods and services, selling practices, and
how auctions work

• past experience about where is the best place to look for specials, how
prices vary with time in an auction, and when specials tend to turn up

• preferences in terms of what the user wants and how to trade off compet-
ing goals

• stimuli including observations about what items are available, their price,
and, perhaps, how long they are available.

The output of the trading agent is either a recommendation the user can accept
or reject, or an actual purchase.

Because of the personalized nature of the trading agent, it should be able
to do better than a generic purchaser that, for example, only offers packaged
tours.

1.4.5 Smart Home

A smart home is a home that looks after itself and its inhabitants. It can be seen
as a mix of the other applications.

A smart home is an inside-out robot. It has physical sensors and actuators.
It should be able to sense where people, pets, and objects are. It should be able
to adjust lighting, sound, heat, etc., to suit the needs of its occupants, while
reducing costs and minimizing environmental impacts. A smart home will
not only have fixed sensors and actuators, but will be combined with mobile
robots, and other actuators, such as arms on the kitchen walls to help with
cooking, cleaning, and finding ingredients.

A purchaser of a smart home may expect it to be able to clean floors, dishes,
and clothes and to put things where they are kept. It is easy to clean a floor with
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the assumption that everything small on the floor is garbage. It is much more
difficult to know which of the small items are precious toys and which are
junk that should be discarded, and this depends on the individual inhabitants
and their age. Each person may have their own categorization of objects and
where they are expected to be kept, which forces a smart home to adapt to the
inhabitants.

A smart home also must act as a diagnostician. When something goes
wrong, it should be able to determine what is the problem and fix it. It should
also be able to observe the inhabitants and determine if there is something
wrong, such as someone has been injured or there is a burglary.

Sometimes a smart home needs to act as a tutoring agent. It may have
to teach the occupants how the appliances work, and how to interact with the
home (e.g., what should an person expect to happen when they put their coffee
cup on the vacuum cleaner). In order to do this, it has to take into account the
knowledge and level of understanding of the person.

A smart home may also need to act as a purchasing agent. The home should
notice when items, such as toilet paper, soap, or essential foodstuffs, are run-
ning low and order more of them. Given a decision about what food each
inhabitant wants, it should make sure the ingredients are in stock. It might
even need to decide when inessential items, such as junk food, should be kept
in stock. It also might need to decide when to discard perishable items, without
creating too much waste or putting people’s health at risk.

A smart home would include energy management. For example, with solar
energy providing power during daylight hours, it could determine whether to
store the energy locally or buy and sell energy on the smart grid. It could
manage appliances to minimize the cost of energy, such as washing clothes
when water and electricity are cheaper.

1.5 Agent Design Space

Agents acting in environments range in complexity from thermostats to com-
panies with multiple goals acting in competitive environments. The ten di-
mensions of complexity in the design of intelligent agents below are designed
to help us understand work that has been done, as well as the potential and
limits of AI. These dimensions may be considered separately but must be com-
bined to build an intelligent agent. These dimensions define a design space
for AI; different points in this space are obtained by varying the values on each
dimension.

These dimensions give a coarse division of the design space for intelligent
agents. There are many other design choices that must also be made to build
an intelligent agent.
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1.5.1 Modularity

The first dimension is the level of modularity.
Modularity is the extent to which a system can be decomposed into inter-

acting modules that can be understood separately.
Modularity is important for reducing complexity. It is apparent in the struc-

ture of the brain, serves as a foundation of computer science, and is an impor-
tant aspect of any large organization.

Modularity is typically expressed in terms of a hierarchical decomposition.
In the modularity dimension, an agent’s structure is one of the following:

• flat – there is no organizational structure
• modular – the system is decomposed into interacting modules that can

be understood on their own
• hierarchical – the system is modular, and the modules themselves are de-

composed into simpler modules, each of which are hierarchical systems
or simple components.

In a flat or modular structure the agent typically reasons at a single level of
abstraction. In a hierarchical structure the agent reasons at multiple levels of
abstraction. The lower levels of the hierarchy involve reasoning at a lower level
of abstraction.

Example 1.6 The delivery robot at the highest level has to plan its day, making
sure it can deliver coffee on time, but still has time for longer trips and cleaning
a room. At the lowest level, it needs to choose what motor controls to send to its
wheels, and what movement its gripper should do. Even a task like picking up
a glass involves many precise movements that need to be coordinated. Picking
up a glass may be just one part of the larger task of cleaning part of a room.
Cleaning the room might be one task that has to be scheduled into the robot’s
day.

In a flat representation, the agent chooses one level of abstraction and rea-
sons at that level. A modular representation would divide the task into a num-
ber of subtasks that can be solved separately (e.g., pick up coffee, move from
the corridor to lab B, put down coffee). In a hierarchical representation, the
agent will solve these subtasks in a hierarchical way, until the task is reduced
to simple tasks such a sending an http request or making a particular motor
control.

Example 1.7 A tutoring agent may have high-level teaching strategies, where
it needs to decide which topics are taught and in what order. At a much lower
level, it must design the details of concrete examples and specific questions for
a test. At the lowest level it needs to combine words and lines in diagrams to
express the examples and questions. Students can also be treated as learning in
a hierarchical way, with detailed examples as well as higher-level concepts.
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Example 1.8 For the trading agent, consider the task of making all of the ar-
rangements and purchases for a custom holiday for a traveler. The agent should
be able to make bookings for flights that fit together. Only when it knows where
the traveller is staying and when, can it make more detailed arrangements such
as dinner and event reservations.

A hierarchical decomposition is important for reducing the complexity of
building an intelligent agent that acts in a complex environment. Large organi-
zations have a hierarchical organization so that the top-level decision makers
are not overwhelmed by details and do not have to micromanage all activities
of the organization. Procedural abstraction and object-oriented programming
in computer science are designed to enable simplification of a system by ex-
ploiting modularity and abstraction. There is much evidence that biological
systems are also hierarchical.

To explore the other dimensions, initially ignore the hierarchical structure
and assume a flat representation. Ignoring hierarchical decomposition is often
fine for small or moderately sized tasks, as it is for simple animals, small or-
ganizations, or small to moderately sized computer programs. When tasks or
systems become complex, some hierarchical organization is required.

How to build hierarchically organized agents is discussed in Section 2.2
(page 58).

1.5.2 Planning Horizon

The planning horizon dimension is how far ahead in time the agent plans. For
example, consider a dog as an agent. When a dog is called to come, it should
turn around to start running in order to get a reward in the future. It does not
act only to get an immediate reward. Plausibly, a dog does not act for goals
arbitrarily far in the future (e.g., in a few months), whereas people do (e.g.,
working hard now to get a holiday next year).

How far the agent “looks into the future” when deciding what to do is
called the planning horizon. For completeness, let’s include the non-planning
case where the agent is not reasoning in time. The time points considered by
an agent when planning are called stages.

In the planning horizon dimension, an agent is one of the following:

• A non-planning agent is an agent that does not consider the future when
it decides what to do or when time is not involved.

• A finite horizon planner is an agent that looks for a fixed finite number
of stages. For example, a doctor may have to treat a patient but may have
time for a test and so there may be two stages to plan for: a testing stage
and a treatment stage. In the simplest case, a greedy or myopic agent
only looks one time step ahead.

• An indefinite horizon planner is an agent that looks ahead some finite,
but not predetermined, number of stages. For example, an agent that
must get to some location may not know a priori how many steps it will
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take to get there, but, when planning, it does not consider what it will do
after it gets to the location.

• An infinite horizon planner is an agent that plans on going on forever.
This is often called a process. For example, the stabilization module of
a legged robot should go on forever; it cannot stop when it has achieved
stability, because the robot has to keep from falling over.

The modules in a hierarchical decomposition may have different horizons,
as in the following example.

Example 1.9 For the delivery and helping agent, at the lowest level the mod-
ule that keeps the robot stable, safe, and attentive to requests may be on an
infinite horizon, assuming it is running forever. The task of delivering coffee to
a particular person may be an indefinite horizon problem. Planning for a fixed
number of hours may be a finite horizon problem.

Example 1.10 In a tutoring agent, for some subtasks, a finite horizon may be
appropriate, such as in a fixed teach, test, re-teach sequence. For other cases,
there may be an indefinite horizon where the system may not know at design
time how many steps it will take until the student has mastered some concept.
It may also be possible to model teaching as an ongoing process of learning and
testing with appropriate breaks, with no expectation of the system finishing.

1.5.3 Representation

The representation dimension concerns how the world is described.
The different ways the world could be are called states. A state of the world

specifies the agent’s internal state (its belief state) and the environment state.
At the simplest level, an agent can reason explicitly in terms of individually

identified states.

Example 1.11 A thermostat for a heater may have two belief states: off and
heating. The environment may have three states: cold, comfortable, and hot. There
are thus six states corresponding to the different combinations of belief and
environment states. These states may not fully describe the world, but they
are adequate to describe what a thermostat should do. The thermostat should
move to, or stay in, heating if the environment is cold and move to, or stay in,
off if the environment is hot. If the environment is comfortable, the thermostat
should stay in its current state. The thermostat agent turns or keeps the heater
on in the heating state and turns or keeps the heater off in the off state.

Instead of enumerating states, it is often easier to reason in terms of features
of the state or propositions that are true or false of the state. A state may be
described in terms of features, where a feature has a value in each state (see
Section 4.1, page 127).
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Example 1.12 Consider designing an agent to diagnose electrical problems
in the home of Figure 1.6 (page 18). It may have features for the position of
each switch, the status of each switch (whether it is working okay, whether it
is shorted, or whether it is broken), and whether each light works. The feature
position s2 may be a feature that has value up when switch s2 is up and has
value down when the switch is down. The state of the home’s lighting may be
described in terms of values for each of these features. These features depend
on each other, but not in arbitrarily complex ways; for example, whether a light
is on may just depend on whether it is okay, whether the switch is turned on,
and whether there is electricity.

A proposition is a Boolean feature, which means that its value is either true
or false. Thirty propositions can encode 230 = 1, 073, 741, 824 states. It may be
easier to specify and reason with the thirty propositions than with more than a
billion states. Moreover, having a compact representation of the states indicates
understanding, because it means that an agent has captured some regularities
in the domain.

Example 1.13 Consider an agent that has to recognize digits. Suppose the
agent observes a binary image, a 28× 28 grid of pixels, where each of the 282 =
784 grid points is either black or white. The action is to determine which of the
digits {0, . . . , 9} is shown in the image. There are 2784 different possible states
of the image, and so 102784

different functions from the image state into the
characters {a, . . . , z}. You cannot represent such functions in terms of the state
space. Instead, handwriting recognition systems define features of the image,
such as line segments, and define the function from images to characters in
terms of these features. Modern implementations learn the features that are
useful; see Example 8.3 (page 336).

When describing a complex world, the features can depend on relations
and individuals. An individual is also called a thing, an object, or an entity. A
relation on a single individual is a property. There is a feature for each possible
relationship among the individuals.

Example 1.14 The agent that looks after a home in Example 1.12 could have
the lights and switches as individuals, and relations position and connected to.
Instead of the feature position s2 = up, it could use the relation position(s2, up).
This relation enables the agent to reason about all switches or for an agent to
have general knowledge about switches that can be used when the agent en-
counters a switch.

Example 1.15 If an agent is enrolling students in courses, there could be a
feature that gives the grade of a student in a course, for every student–course
pair where the student took the course. There would be a passed feature for
every student–course pair, which depends on the grade feature for that pair. It
may be easier to reason in terms of individual students, courses, and grades,
and the relations grade and passed. By defining how passed depends on grade
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once, the agent can apply the definition for each student and course. Moreover,
this can be done before the agent knows which individuals exist, and so before
it knows any of the features.

The two-argument relation passed, with 1000 students and 100 courses, can
represent 1000 ∗ 100 = 100, 000 propositions and so 2100,000 states.

By reasoning in terms of relations and individuals, an agent can reason
about whole classes of individuals without ever enumerating the features or
propositions, let alone the states. An agent may have to reason about infinite
sets of individuals, such as the set of all numbers or the set of all sentences. To
reason about an unbounded or infinite number of individuals, an agent cannot
reason in terms of states or features; it must reason at the relational level.

In the representation dimension, the agent reasons in terms of

• states
• features, or
• individuals and relations (often called relational representations).

Some of the frameworks will be developed in terms of states, some in terms of
features, and some in terms of individuals and relations.

Reasoning in terms of states is introduced in Chapter 3. Reasoning in terms
of features is introduced in Chapter 4. Relational reasoning is considered start-
ing from Chapter 15.

1.5.4 Computational Limits

Sometimes an agent can decide on its best action quickly enough for it to act.
Often there are computational resource limits that prevent an agent from car-
rying out the best action. That is, the agent may not be able to find the best
action quickly enough within its memory limitations to act while that action is
still the best thing to do. For example, it may not be much use to take 10 min-
utes to derive what was the best thing to do 10 minutes ago, when the agent
has to act now. Often, instead, an agent must trade off how long it takes to get
a solution with how good the solution is; it may be better to find a reasonable
solution quickly than to find a better solution later because the world will have
changed during the computation.

The computational limits dimension determines whether an agent has

• perfect rationality, where an agent reasons about the best action without
taking into account its limited computational resources, or

• bounded rationality, where an agent decides on the best action that it
can find given its computational limitations.

Computational resource limits include computation time, memory, and numer-
ical accuracy caused by computers not representing real numbers exactly.

An anytime algorithm is an algorithm where the solution quality improves
with time. In particular, it is one that can produce its current best solution at
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any time, but given more time it could produce even better solutions. To ensure
that the quality does not decrease, the agent can store the best solution found
so far, and return that when asked for a solution. Although the solution quality
may increase with time, waiting to act has a cost; it may be better for an agent
to act before it has found what would be the best solution.

Example 1.16 The delivery robot cannot think for a long time about how to
avoid a person. There might be a best way to avoid the person and to achieve
its other goals, however it might take time to determine that optimal path, and
it might be better to act quickly and then recover from a non-optimal action. In
the simplest case, a robot could just stop if it encounters a person, but even that
is error prone as robots have momentum, so it cannot stop immediately and
people behind may run into it if it stops suddenly.

Example 1.17 Even a tutoring agent that can act at longer scales than a robot
sometimes has to act quickly. When a student has completed a task and wants
a new task, the agent needs to decide whether it should assign the student
the best task it has found so far, or compute for longer, trying to find an even
better task. As the student waits, they might become distracted, which might
be worse than giving them a non-optimal task. The computer can be planning
the next task when the student is working. Modern computers, as fast as they
may be, cannot find optimal solutions to difficult problems quickly.

Example 1.18 Figure 1.7 shows how the computation time of an anytime al-
gorithm can affect the solution quality. The agent has to carry out an action but
can do some computation to decide what to do. The absolute solution quality,
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Figure 1.7: Solution quality as a function of time for an anytime algorithm. The
meaning is described in Example 1.18
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had the action been carried out at time zero, shown as the dashed line at the
top, is improving as the agent takes time to reason. However, there is a penalty
associated with taking time to act. In this figure, the penalty, shown as the dot-
ted line at the bottom, is negative and proportional to the time taken before
the agent acts. These two values can be added to get the discounted quality,
the time-dependent value of computation; this is the solid line in the middle of
the graph. For the example of Figure 1.7 (page 27), an agent should compute
for about 2.5 time units, and then act, at which point the discounted quality
achieves its maximum value. If the computation lasts for longer than 4.3 time
units, the resulting discounted solution quality is worse than if the algorithm
outputs the initial guess it can produce with virtually no computation. It is typ-
ical that the solution quality improves in jumps; when the current best solution
changes, there is a jump in the quality. The penalty associated with waiting is
rarely a straight line; it is typically a function of deadlines, which may not be
known by the agent.

To take into account bounded rationality, an agent must decide whether it
should act or reason for longer. This is challenging because an agent typically
does not know how much better off it would be if it only spent a little bit more
time reasoning. Moreover, the time spent thinking about whether it should
reason may detract from actually reasoning about the domain.

1.5.5 Learning

In some cases, a designer of an agent may have a good model of the agent and
its environment. But often a designer does not have a good model, and so an
agent should use data from its past experiences and other sources to help it
decide what to do.

The learning dimension determines whether

• knowledge is given, or
• knowledge is learned (from prior knowledge and data or past experi-

ence).

Learning typically means finding the best model that fits the data. Some-
times this is as simple as tuning a fixed set of parameters, but it can also mean
choosing the best representation out of a class of representations. Learning is
a huge field in itself but does not stand in isolation from the rest of AI. There
are many issues beyond fitting data, including how to incorporate background
knowledge, what data to collect, how to represent the data and the resulting
representations, what learning biases are appropriate, and how the learned
knowledge can be used to affect how the agent acts.

Learning is considered in Chapters 7, 8, 10, 13, and 17.

Example 1.19 A robot has a great deal to learn, such as how slippery floors
are as a function of their shininess, where each person hangs out at different
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parts of the day, when they will ask for coffee, and which actions result in the
highest rewards.

Modern vision systems are trained to learn good features (such as lines and
textures) on millions if not billions of images and videos. These features can
be used to recognize objects and for other tasks, even if there have been few
examples of the higher-level concepts. A robot might not have seen a baby
crawling on a highway, or a particular mug, but should be able to deal with
such situations.

Example 1.20 Learning is fundamental to diagnosis. It is through learning
and science that medical professionals understand the progression of diseases
and how well treatments work or do not work. Diagnosis is a challenging do-
main for learning, because all patients are different, and each individual doc-
tor’s experience is only with a few patients with any particular set of symp-
toms. Doctors also see a biased sample of the population; those who come to
see them usually have unusual or painful symptoms. Drugs are not given to
people randomly. You cannot learn the effect of treatment by observation alone,
but need a causal model of the causes and effects; see Chapter 11 for details
on building causal models. To overcome the limitations of learning from ob-
servations alone, drug companies spend billions of dollars doing randomized
controlled trials in order to learn the efficacy of drugs.

1.5.6 Uncertainty

An agent could assume there is no uncertainty, or it could take uncertainty in
the domain into consideration. Uncertainty is divided into two dimensions:
one for uncertainty from sensing and one for uncertainty about the effects of
actions.

Sensing Uncertainty

In some cases, an agent can observe the state of the world directly. For example,
in some board games or on a factory floor, an agent may know exactly the state
of the world. In many other cases, it may have some noisy perception of the
state and the best it can do is to have a probability distribution over the set
of possible states based on what it perceives. For example, given a patient’s
symptoms, a medical doctor may not actually know which disease a patient
has and may have only a probability distribution over the diseases the patient
may have.

The sensing uncertainty dimension concerns whether the agent can deter-
mine the state from the stimuli:

• Fully observable means the agent knows the state of the world from the
stimuli.
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• Partially observable means the agent does not directly observe the state
of the world. This occurs when many possible states can result in the
same stimuli or when stimuli are misleading.

Assuming the world is fully observable is a common simplifying assumption
to keep reasoning tractable.

Example 1.21 The delivery robot does not know exactly where it is, or what
else there is, based on its limited sensors. Looking down a corridor does not
provide enough information to know where it is or who is behind the doors.
Knowing where it was a second ago will help determine where it is now, but
even robots can get lost. It may not know where the person who requested
coffee is. When it is introduced into a new environment, it may have much
more uncertainty.

Example 1.22 The tutoring agent cannot directly observe the knowledge of
the student. All it has is some sensing input, based on questions the student
asks or does not ask, facial expressions, distractedness, and test results. Even
test results are very noisy, as a mistake may be due to distraction or test anxiety
instead of lack of knowledge, and a correct answer might be due to a lucky
guess instead of real understanding. Sometimes students make mistakes in
testing situations they wouldn’t make at other times.

Example 1.23 A trading agent does not know all available options and their
availability, but must find out information that can become outdated quickly
(e.g., if a hotel becomes booked up). A travel agent does not know whether a
flight will be canceled or delayed, or whether the passenger’s luggage will be
lost. This uncertainty means that the agent must plan for the unanticipated.

Effect Uncertainty

A model of the dynamics of the world is a model of how the world changes as
a result of actions, including the case of how it changes if the action were to do
nothing. In some cases an agent knows the effects of its action. That is, given
a state and an action, the agent can accurately predict the state resulting from
carrying out that action in that state. For example, a software agent interacting
with the file system of a computer may be able to predict the effects of deleting
a file given the state of the file system. However, in many cases, it is difficult
to predict the effects of an action, and the best an agent can do is to have a
probability distribution over the effects. For example, a teacher may not know
the effects explaining a concept, even if the state of the students is known. At
the other extreme, if the teacher has no inkling of the effect of its actions, there
would be no reason to choose one action over another.

The dynamics in the effect uncertainty dimension can be

• deterministic when the state resulting from an action is determined by
an action and the prior state, or
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• stochastic when there is a probability distribution over the resulting states.

Example 1.24 For the delivery robot, there can be uncertainty about the effects
of an action, both at the low level, say due to slippage of the wheels, or at the
high level because the agent might not know whether putting the coffee on a
person’s desk succeeded in delivering coffee to the person. This may depend
on the individual preferences of users.

Example 1.25 Even a trading agent does not know the effect of putting in
a trade order, such as booking a flight or a hotel room. These can become un-
available at very short notice (consider two trading agents trying to book the
same room at the same time), or the price can vary.

The effect dimension only makes sense when the world is fully observable.
If the world is partially observable, a stochastic system can be modeled as a
deterministic system where the effect of an action depends on unobserved fea-
tures. It is a separate dimension because many of the frameworks developed
are for the fully observable, stochastic action case.

Planning with deterministic actions is considered in Chapter 6. Planning
with stochastic actions is considered in Chapter 12.

1.5.7 Preference

Agents normally act to have better outcomes. The only reason to choose one
action over another is because the preferred action leads to more desirable out-
comes.

An agent may have a simple goal, which is a proposition the agent wants
to be true in a final state. For example, the goal of getting Sam coffee means
the agent wants to reach a state where Sam has coffee. Other agents may have
more complex preferences. For example, a medical doctor may be expected to
take into account suffering, life expectancy, quality of life, monetary costs (for
the patient, the doctor, and society), and the ability to justify decisions in case
of a lawsuit. The doctor must trade these considerations off when they conflict,
as they invariably do.

The preference dimension considers whether the agent has goals or richer
preferences:

• A goal is either an achievement goal, which is a proposition to be true in
some final state, or a maintenance goal, a proposition that must be true
in all visited states. For example, the goals for a robot may be to deliver
a cup of coffee and a banana to Sam, and not to make a mess or hurt
anyone.

• Complex preferences involve trade-offs among the desirability of vari-
ous outcomes, perhaps at different times. An ordinal preference is where
only the ordering of the preferences is important. A cardinal preference
is where the magnitude of the values matters. For example, an ordinal
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preference may be that Sam prefers cappuccino over black coffee and
prefers black coffee over tea. A cardinal preference may give a trade-
off between the wait time and the type of beverage, and a mess versus
taste trade-off, where Sam is prepared to put up with more mess in the
preparation of the coffee if the taste of the coffee is exceptionally good.

Example 1.26 The delivery robot could be given goals, such as “deliver coffee
to Chris and make sure you always have power.” A more complex goal may be
to “clean up the lab, and put everything where it belongs”, which can only be
achieved to some degree. There can be complex preferences, such as “deliver
mail when it arrives and service coffee requests as soon as possible, but it is
more important to deliver messages marked as urgent, and Chris needs her
coffee quickly when she asks for it.”

Example 1.27 For the diagnostic assistant, the goal may be as simple as “fix
what is wrong,” but often there are complex trade-offs involving costs, pain,
life expectancy, and preferences related to the uncertainty that the diagnosis is
correct and uncertainty as to efficacy and side-effects of the treatment. There is
also a problem of whose preferences are to be taken into account; the patient,
the doctor, the payer, and society may all have different preferences that must
be reconciled.

Example 1.28 Although it may be possible for the tutoring agent to have
a simple goal such, as to teach some particular concept, it is more likely that
complex preferences must be taken into account. One reason is that, with un-
certainty, there may be no way to guarantee that the student knows the concept
being taught; any method that tries to maximize the probability that the stu-
dent knows a concept will be very annoying, because it will repeatedly teach
and test if there is a slight chance that the student’s errors are due to misunder-
standing as opposed to fatigue or boredom. More complex preferences would
enable a trade-off among fully teaching a concept, boring the student, the time
taken, and the amount of retesting. The student may also have a preference
for a teaching style that could be taken into account. The student, the teacher,
the parents, and future employers may have different preferences. The student
may have incompatible preferences, for example, to not work hard and to get
a good mark. If the teacher is optimizing student evaluations, it might both
allow the student to not work hard, and also give good marks. But that might
undermine the goal of the student actually learning something.

Example 1.29 For a trading agent, preferences of users are typically in terms
of functionality, not components. For example, typical computer buyers have
no idea of what hardware to buy, but they know what functionality they want
and they also want the flexibility to be able to use new software features that
might not even exist yet. Similarly, in a travel domain, what activities a user
wants may depend on the location. Users also may want the ability to partic-
ipate in a local custom at their destination, even though they may not know
what those customs are. Even a simple path-finding algorithm, such as Google
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Maps, which, at the time of writing, assumes all users’ preferences are to min-
imize travel time, could take into account each individual user’s preferences
for diverse views or avoiding going too close to where some particular relative
lives.

Goals are considered in Chapters 3 and 6. Complex preferences are consid-
ered in Chapter 12, and the following chapters.

1.5.8 Number of Agents

An agent reasoning about what it should do in an environment where it is the
only agent is difficult enough. However, reasoning about what to do when
there are other agents who are also reasoning is much more difficult. An agent
in a multiagent setting may need to reason strategically about other agents;
the other agents may act to trick or manipulate the agent or may be available
to cooperate with the agent. With multiple agents, it is often optimal to act
randomly because other agents can exploit deterministic strategies. Even when
the agents are cooperating and have a common goal, the task of coordination
and communication makes multiagent reasoning more challenging. However,
many domains contain multiple agents and ignoring other agents’ strategic
reasoning is not always the best way for an agent to reason.

Taking the point of view of a single agent, the number of agents dimension
considers whether the agent explicitly considers other agents:

• Single agent reasoning means the agent assumes that there are no other
agents in the environment or that all other agents are part of nature, and
so are non-purposive. This is a reasonable assumption if there are no
other agents or if the other agents are not going to change what they do
based on the agent’s action.

• Adversarial reasoning considers another agent, where when one agent
wins, the other loses. This is sometimes called a two-player zero-sum
game, as the payoffs for the agents (e.g., +1 for a win and −1 for a loss)
sum to zero. This is a simpler case than allowing for arbitrary agents as
there is no need to cooperate or otherwise coordinate.

• Multiple agent reasoning (or multiagent reasoning) means the agent
takes the reasoning of other agents into account. This occurs when there
are other intelligent agents whose goals or preferences depend, in part,
on what the agent does or if the agent must communicate with other
agents. Agents may need to cooperate because coordinated actions can
result in outcomes that are better for all agents than each agent consider-
ing the other agents as part of nature.

Reasoning in the presence of other agents is much more difficult if the
agents can act simultaneously or if the environment is only partially observ-
able. Multiagent systems are considered in Chapter 14. Note that the adversar-
ial case is separate as there are some methods that only work for that case.
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Example 1.30 There can be multiple delivery robots, which can coordinate to
deliver coffee and parcels more efficiently. They can compete for power outlets
or for space to move. Only one might be able to go closest to the wall when
turning a corner. There may also be children out to trick the robot, or pets that
get in the way.

When automated vehicles have to go on a highway, it may be much more
efficient and safer for them to travel in a coordinated manner, say one cen-
timeter apart in a convoy, than to travel three vehicle lengths apart. It is more
efficient because they can reduce wind drag, and many more vehicles can fit on
a highway. It is safer because the difference in speeds is small; if one vehicle
slams on its brakes or has engine problems, the car that might crash into the
back is going approximately the same speed.

Example 1.31 A trading agent has to reason about other agents. In commerce,
prices are governed by supply and demand; this means that it is important to
reason about the other competing agents. This happens particularly in a world
where many items are sold by auction. Such reasoning becomes particularly
difficult when there are items that must complement each other, such as flights
and hotel bookings, and items that can substitute for each other, such as bus
transport or taxis. You don’t want to book the flights if there is no accommoda-
tion, or book accommodation if there are no flights.

1.5.9 Interactivity

In deciding what an agent will do, there are three aspects of computation that
must be distinguished: (1) the design-time computation that goes into the de-
sign of the agent, carried out by the designer of the agent, not the agent itself;
(2) the computation that the agent can do before it observes the world and
needs to act; and (3) the computation that is done by the agent as it is acting.

The interactivity dimension considers whether the agent does

• only offline reasoning, where offline reasoning is the computation done
by the agent before it has to act, and can include compilation, learning
or finding solutions from every state the agent could find itself in; under
this assumption, the agent can carry out simple fixed-cost computation
while acting, sometimes even just looking up the action in a table

• significant online reasoning, where online computation is the computa-
tion done by the agent between observing the environment and acting.

An agent acting in the world usually does not have the luxury of having
the world wait for it to consider the best option. However, offline reasoning,
where the agent can reason about the best thing to do before having to act,
is often a simplifying assumption. Online reasoning can include long-range
strategic reasoning as well as determining how to react in a timely manner to
the environment; see Chapter 2.
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Example 1.32 A delivery robot may be able to compute a plan for its day
offline, but then it needs to be able to adapt to changes, for example, when
someone wants coffee early or something urgent needs to be delivered. It can-
not plan for who it will meet and need to avoid in the corridors. It either needs
to be able to anticipate and plan for all possible eventualities, or it needs to
reason online when it finds something unexpected.

Example 1.33 A tutoring agent can determine the general outline of what
should be taught offline. But then it needs to be able to react to unexpected
behavior online when it occurs. It is difficult to be able to anticipate all eventu-
alities, and might be easier to deal with them online when it encounters them.

1.5.10 Interaction of the Dimensions

Figure 1.8 summarizes the dimensions of complexity.
In terms of the dimensions of complexity, the simplest case for the robot is

a flat system, represented in terms of states, with no uncertainty, with achieve-
ment goals, with no other agents, with given knowledge, and with perfect ra-
tionality. In this case, with an indefinite stage planning horizon, the problem
of deciding what to do is reduced to the problem of finding a path in a graph
of states. This is explored in Chapter 3.

In going beyond the simplest cases, these dimensions cannot be considered
independently because they interact in complex ways. Consider the following
examples of the interactions.

The representation dimension interacts with the modularity dimension in
that some modules in a hierarchy may be simple enough to reason in terms of
a finite set of states, whereas other levels of abstraction may require reasoning
about individuals and relations. For example, in a delivery robot, a module

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, adversaries, multiple agents
Interactivity offline, online

Figure 1.8: Dimensions of complexity
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that maintains balance may only have a few states. A module that must pri-
oritize the delivery of multiple parcels to multiple people may have to reason
about multiple individuals (e.g., people, packages, and rooms) and the rela-
tions between them. At a higher level, a module that reasons about the activity
over the day may only require a few states to cover the different phases of the
day (e.g., there might be three states of the robot: busy, available for requests,
and recharging).

The planning horizon interacts with the modularity dimension. For exam-
ple, at a high level, a dog may be getting an immediate reward when it comes
and gets a treat. At the level of deciding where to place its paws, there may be
a long time until it gets the reward, and so at this level it may have to plan for
an indefinite stage.

Sensing uncertainty probably has the greatest impact on the complexity of
reasoning. It is much easier for an agent to reason when it knows the state of
the world than when it does not.

The uncertainty dimensions interact with the modularity dimension: at one
level in a hierarchy, an action may be deterministic, whereas at another level, it
may be stochastic. As an example, consider the result of flying to a particular
overseas destination with a companion you are trying to impress. At one level
you may know which country you are in. At a lower level, you may be quite
lost and not know where you are on a map of the airport. At an even lower
level responsible for maintaining balance, you may know where you are: you
are standing on the ground. At the highest level, you may be very unsure
whether you have impressed your companion.

Preference models interact with uncertainty because an agent needs to trade
off between satisfying a very desirable goal with low probability or a less de-
sirable goal with a higher probability. This issue is explored in Section 12.1
(page 518).

Multiple agents can also be used for modularity; one way to design a sin-
gle agent is to build multiple interacting agents that share a common goal of
making the higher-level agent act intelligently. Some researchers, such as Min-
sky [1986], argue that intelligence is an emergent feature from a “society” of
unintelligent agents.

Learning is often cast in terms of learning with features – determining which
feature values best predict the value of another feature. However, learning can
also be carried out with individuals and relations. Learning with hierarchies,
sometimes called deep learning, has enabled the learning of more complex
concepts. Much work has been done on learning in partially observable do-
mains, and learning with multiple agents. Each of these is challenging in its
own right without considering interactions with multiple dimensions.

The interactivity dimension interacts with the planning horizon dimension
in that when the agent is reasoning and acting online, it also needs to reason
about the long-term horizon. The interactivity dimension also interacts with
the computational limits; even if an agent is reasoning offline, it cannot take
hundreds of years to compute an answer. However, when it has to reason
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about what to do in, say, 1/10 of a second, it needs to be concerned about the
time taken to reason, and the trade-off between thinking and acting.

Two of these dimensions, modularity and bounded rationality, promise to
make reasoning more efficient. Although they make the formalism more com-
plicated, breaking the system into smaller components, and making the ap-
proximations needed to act in a timely fashion and within memory limitations,
should help build more complex systems.

1.6 Designing Agents

Artificial agents are designed for particular tasks. Researchers have not yet
got to the stage of designing an intelligent agent for the task of surviving and
reproducing in a complex natural environment.

1.6.1 Simplifying Environments and Simplifying Agents

It is important to distinguish between the knowledge in the mind of an agent
and the knowledge in the mind of the designer of the agent. Consider the
extreme cases:

• At one extreme is a highly specialized agent that works well in the envi-
ronment for which it was designed, but is helpless outside of this niche.
The designer may have done considerable work in building the agent,
but the agent can be extremely specialized to operate well. An example
is a traditional thermostat. It may be difficult to design a thermostat so
that it turns on and off at exactly the right temperatures, but the ther-
mostat itself does not have to do much computation. Another example
is a car-painting robot that always paints the same parts in an automo-
bile factory. There may be much design time or offline computation to
get it to work perfectly, but the painting robot can paint parts with little
online computation; it senses that there is a part in position, but then it
carries out its predefined actions. These very specialized agents do not
adapt well to different environments or to changing goals. The painting
robot would not notice if a different sort of part were present and, even
if it did, it would not know what to do with it. It would have to be re-
designed or reprogrammed to paint different parts or to change into a
sanding machine or a dog-washing machine.

• At the other extreme is a very flexible agent that can survive in arbitrary
environments and accept new tasks at run time. Simple biological agents
such as insects can adapt to complex changing environments, but they
cannot carry out arbitrary tasks. Designing an agent that can adapt to
complex environments and changing goals is a major challenge. The
agent will know much more about the particulars of a situation than the
designer. Even biology has not produced many such agents. Humans
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may be the only extant example, but even humans need time to adapt to
new environments.

Even if the flexible agent is our ultimate dream, researchers have to reach this
goal via more mundane goals. Rather than building a universal agent, which
can adapt to any environment and solve any task, researchers have been re-
stricted to particular agents for particular environmental niches. The designer
can exploit the structure of the particular niche and the agent does not have to
reason about other possibilities.

Two broad strategies have been pursued in building agents:

• The first is to simplify environments and build complex reasoning sys-
tems for these simple environments. For example, factory robots can do
sophisticated tasks in the engineered environment of a factory, but they
may be hopeless in a natural environment. Much of the complexity of
the task can be reduced by simplifying the environment. This is also im-
portant for building practical systems because many environments can
be engineered to make them simpler for agents.

• The second strategy is to build simple agents in natural environments.
This is inspired by seeing how insects can survive in complex environ-
ments even though they have very limited reasoning abilities. Modern
language systems can predict the probability of the next word in an arbi-
trary text, but this does not mean they can be used for decision making.
Researchers then make the agents have more reasoning abilities as their
tasks become more complicated.

One of the advantages of simplifying environments is that it may enable us to
prove properties of agents or to optimize agents for particular situations. Prov-
ing properties or optimization typically requires a model of the agent and its
environment. The agent may do a little or a lot of reasoning, but an observer or
designer of the agent may be able to reason about the agent and the environ-
ment. For example, the designer may be able to prove whether the agent can
achieve a goal, whether it can avoid getting into situations that may be bad for
the agent (safety), whether it can avoid getting stuck somewhere (liveness),
or whether it will eventually get around to each of the things it should do
(fairness). Of course, the proof is only as good as the model.

The advantage of building agents for complex environments is that these
are the types of environments in which humans live and where agents could
be useful.

Even natural environments can be abstracted into simpler environments.
For example, for an autonomous car driving on public roads the environment
can be conceptually simplified so that everything is either a road, another car,
or something to be avoided. Although autonomous cars have sophisticated
sensors, they only have limited actions available, namely steering, accelerating,
and braking.

Fortunately, research along both lines, and between these extremes, is being
carried out. In the first case, researchers start with simple environments and
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make the environments more complex. In the second case, researchers increase
the complexity of the behaviors that the agents can carry out.

1.6.2 Tasks

One way that AI representations differ from computer programs in traditional
languages is that an AI representation typically specifies what needs to be com-
puted, not how it is to be computed. You might specify that the agent should
find the most likely disease a patient has, or specify that a robot should get
coffee, but not give detailed instructions on how to do these things. Much AI
reasoning involves searching through the space of possibilities to determine
how to complete a task.

Typically, a task is only given informally, such as “deliver parcels promptly
when they arrive” or “fix whatever is wrong with the electrical system of the
home.”

The general framework for solving tasks by computer is given in Figure 1.9.
To solve a task, the designer of a system must:

• determine what constitutes a solution
• represent the task in a way a computer can reason about
• use the computer to compute an output; either answers presented to a

user or actions to be carried out in the environment
• interpret the output as a solution to the task.

In AI, knowledge is long-term representation of a domain whereas belief is
about the immediate environment, for example where the agent is and where
other object are. In philosophy, knowledge is usually defined as justified true
belief, but in AI the term is used more generally to be any relatively stable infor-
mation, as opposed to belief, which is more transitory information. The reason
for this terminology is that it is difficult for an agent to determine truth, and
“justified” is subjective. Knowledge in AI can be represented in terms of logic,

solutiontask

outputrepresentation

solve

compute

represent interpret informal

formal

Figure 1.9: The role of representations in solving tasks
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neural networks, or probabilistic models, but belief is typically represented as
a distribution over the states.

A representation of some piece of knowledge is the particular data struc-
tures used to encode the knowledge so it can be reasoned with.

The form of representation – what is represented – is a compromise among
many competing objectives. A representation should be:

• rich enough to express the knowledge needed to solve the task
• as close to a natural specification of the task as possible
• amenable to efficient computation
• able to be acquired from people, data, and past experiences.

Being as close to a natural specification of the task as possible means should
be compact, natural, and maintainable. It should be easy to see the relationship
between the representation and the domain being represented, so that it is easy
to determine whether the knowledge represented is correct; a small change
in the task should result in a small change in the representation of the task.
There is an active debate about how much of the internal structure of reasoning
should be explainable; the field of explainable AI is about how to make more
aspects of the decision making amenable to being explained to a person.

Efficient computation enables the agent to act quickly enough to be effec-
tive. A tractable algorithm is one with reasonable asymptotic complexity, of-
ten meaning the computation time is polynomial in the input size (page 95),
however often linear complexity is too slow. To ensure this, representations
exploit features of the task for computational gain and trade off accuracy and
computation time.

Many different representation languages have been designed. Many of
these start with some of these objectives and are then expanded to include
the other objectives. For example, some are designed for learning, perhaps
inspired by neurons, and then expanded to allow richer task-solving and in-
ference abilities. Some representation languages are designed with expressive-
ness in mind, and then inference and learning are added on. Some language
designers focus on tractability and enhance richness, naturalness, and the abil-
ity to be acquired.

1.6.3 Defining a Solution

Given an informal description of a task, before even considering a computer,
an agent designer should determine what would constitute a solution. This
question arises not only in AI but in any software design. Much of software
engineering involves refining the specification of the task.

Tasks are typically not well specified. Not only is there usually much left
unspecified, but also the unspecified parts cannot be filled in arbitrarily. For
example, if a user asks a trading agent to find out all the information about
resorts that may have unsanitary food practices, they do not want the agent to
return all the information about all resorts, even though all of the information
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requested is in the result. However, if the trading agent does not have complete
knowledge about the resorts, returning all of the information may be the only
way for it to guarantee that all of the requested information is there. Similarly,
one does not want a delivery robot, when asked to take all of the trash to the
garbage can, to take everything to the garbage can, even though this may be
the only way to guarantee that all of the trash has been taken. Much work in
AI is motivated by commonsense reasoning; the computer should be able to
reach commonsense conclusions about the unstated assumptions.

Given a well-defined task, the next issue is whether it matters if the answer
returned is incorrect or incomplete. For example, if the specification asks for
all instances, does it matter if some are missing? Does it matter if there are
some extra instances? Often a person does not want just any solution but the
best solution according to some criteria. There are four common classes of
solutions:

Optimal solution An optimal solution to a task is one that is the best solution
according to some measure of solution quality. This measure is typically
specified as an ordinal, where only the order matters. In some situations
a cardinal measure, where the relative magnitudes also matter, is used.
For example, a robot may need to take out as much trash as possible;
the more trash it can take out, the better. In a more complex example,
you may want the delivery robot to take as much of the trash as possi-
ble to the garbage can, minimizing the distance traveled, and explicitly
specify a trade-off between the effort required and the proportion of the
trash taken out. There are also costs associated with making mistakes
and throwing out items that are not trash. It may be better to miss some
trash than to waste too much time. One general measure of desirability
that interacts with probability is utility (page 518).

Satisficing solution Often an agent does not need the best solution to a task
but just needs some solution. A satisficing solution is one that is good
enough according to some description of which solutions are adequate.
For example, a person may tell a robot that it must take all of the trash
out, or tell it to take out three items of trash.

Approximately optimal solution One of the advantages of a cardinal mea-
sure of success is that it allows for approximations. An approximately
optimal solution is one whose measure of quality is close to the best that
could theoretically be obtained. Typically, agents do not need optimal
solutions to tasks; they only need to get close enough. For example, the
robot may not need to travel the optimal distance to take out the trash
but may only need to be within, say, 10% of the optimal distance. Some
approximation algorithms guarantee that a solution is within some range
of optimal, but for some algorithms no guarantees are available.

For some tasks, it is much easier computationally to get an approx-
imately optimal solution than to get an optimal solution. However, for
other tasks, it is just as difficult to find an approximately optimal solution
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that is guaranteed to be within some bounds of optimal as it is to find an
optimal solution.

Probable solution A probable solution is one that, even though it may not
actually be a solution to the task, is likely to be a solution. This is one way
to approximate, in a precise manner, a satisficing solution. For example,
in the case where the delivery robot could drop the trash or fail to pick
it up when it attempts to, you may need the robot to be 80% sure that
it has picked up three items of trash. Often you want to distinguish a
false-positive error (positive answers that are not correct) from a false-
negative error (negative answers that are correct). Some applications are
much more tolerant of one of these types of errors than the other.

These categories are not exclusive. A form of learning known as probably
approximately correct (PAC) learning considers probably learning an approx-
imately correct concept.

1.6.4 Representations

Once you have some requirements on the nature of a solution, you must repre-
sent the task so a computer can solve it.

Computers and human minds are examples of physical symbol systems.
A symbol is a meaningful pattern that can be manipulated. Examples of sym-
bols are written words, sentences, gestures, marks on paper, or sequences of
bits. A symbol system creates, copies, modifies, and destroys symbols. Essen-
tially, a symbol is one of the patterns manipulated as a unit by a symbol system.
The term “physical” is used, because symbols in a physical symbol system are
physical objects that are part of the real world, even though they may be inter-
nal to computers and brains. They may also need to physically affect action or
motor control.

The physical symbol system hypothesis of Newell and Simon [1976] is
that:

A physical symbol system has the necessary and sufficient means
for general intelligent action.

This is a strong hypothesis. It means that any intelligent agent is necessarily a
physical symbol system. It also means that a physical symbol system is all that
is needed for intelligent action; there is no magic or as-yet-to-be-discovered
quantum phenomenon required. It does not imply that a physical symbol sys-
tem does not need a body to sense and act in the world.

One aspect of this hypothesis is particularly controversial, namely whether
symbols are needed at all levels. For example, consider recognizing a “cat” in
a picture. At the top level is the symbol for a cat. At the bottom level are pixels
from a camera. There are many intermediate levels that, for example, combine
pixels to form lines and textures. These intermediate features are learned from
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data, and are not learned with the constraint that they are interpretable. Al-
though some people have tried to interpret them, it is reasonable to say that
these are not symbols. However, at a high level, they are either trained to be
symbols (e.g., by learning a mapping between pixels and symbols, such as cat)
or can be interpreted as symbols.

An agent can use a physical symbol system to model the world. A model
of a world is a representation of an agent’s beliefs about what is true in the
world or how the world changes. The world does not have to be modeled at
the most detailed level to be useful. All models are abstractions; they represent
only part of the world and leave out many of the details. An agent can have
a very simplistic model of the world, or it can have a very detailed model of
the world. The level of abstraction provides a partial ordering of abstraction.
A lower-level abstraction includes more details than a higher-level abstraction.
An agent can have multiple, even contradictory, models of the world. Models
are judged not by whether they are correct, but by whether they are useful.

Example 1.34 A delivery robot can model the environment at a high level of
abstraction in terms of rooms, corridors, doors, and obstacles, ignoring dis-
tances, its size, the steering angles needed, the slippage of the wheels, the
weight of parcels, the details of obstacles, the political situation in Canada, and
virtually everything else. The robot could model the environment at lower lev-
els of abstraction by taking some of these details into account. Some of these
details may be irrelevant for the successful implementation of the robot, but
some may be crucial for the robot to succeed. For example, in some situations
the size of the robot and the steering angles may be crucial for not getting stuck
around a particular corner. In other situations, if the robot stays close to the
center of the corridor, it may not need to model its width or the steering angles.

Choosing an appropriate level of abstraction is difficult for the following
reasons:

• A high-level description is easier for a human to specify and understand.
• A low-level description can be more accurate and more predictive. Often,

high-level descriptions abstract away details that may be important for
actually solving the task.

• The lower the level, the more difficult it is to reason with. This is because
a solution at a lower level of detail involves more steps and many more
possible courses of action exist from which to choose.

• An agent may not know the information needed for a low-level descrip-
tion. For example, the delivery robot may not know what obstacles it will
encounter or how slippery the floor will be at the time that it must decide
what to do.

It is often a good idea to model an environment at multiple levels of abstrac-
tion. This issue is discussed further in Section 2.2 (page 58).

Biological systems, and computers, can be described at multiple levels of
abstraction. At successively lower levels of animals are the neuronal level,
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the biochemical level (what chemicals and what electrical potentials are be-
ing transmitted), the chemical level (what chemical reactions are being carried
out), and the level of physics (in terms of forces on atoms and quantum phe-
nomena). What levels above the neuronal level are needed to account for intel-
ligence is still an open question. These levels of description are echoed in the
hierarchical structure of science itself, where scientists are divided into physi-
cists, chemists, biologists, psychologists, anthropologists, and so on. Although
no level of description is more important than any other, it is plausible that you
do not have to emulate every level of a human to build an AI agent but rather
you can emulate the higher levels and build them on the foundation of modern
computers. This conjecture is part of what AI studies.

The following are two levels that seem to be common to both biological and
computational entities:

• The knowledge level is the level of abstraction that considers what an
agent knows and believes and what its goals are. The knowledge level
considers what an agent knows, but not how it reasons. For example, the
delivery agent’s behavior can be described in terms of whether it knows
that a parcel has arrived or not and whether it knows where a particular
person is or not. Both human and robotic agents are describable at the
knowledge level. At this level, you do not specify how the solution will
be computed or even which of the many possible strategies available to
the agent will be used.

• The symbol level is a level of description of an agent in terms of the rea-
soning it does. To implement the knowledge level, an agent manipulates
symbols to produce answers. Many cognitive science experiments are
designed to determine what symbol manipulation occurs during reason-
ing. Whereas the knowledge level is about what the agent believes about
the external world and what its goals are in terms of the outside world,
the symbol level is about what goes on inside an agent to reason about
the external world.

1.7 Social Impact

AI systems are now widely deployed in society. Individuals, corporations,
governments, and other organizations are using AI for applications as var-
ied as voice dictation, text synthesis, text-to-video generation, movie recom-
mendations, personal finance, chatbots, credit scoring, screening employment
applications, social media propagation and monitoring, face recognition, semi-
autonomous cars, and warehouse automation. Many of these systems can be
broadly beneficial. However, there are often adverse impacts on people in
racialized populations and underserved communities, and on election results
and vaccination campaigns.

There are significant ethical and social impacts of AI systems, leading to
demands for human-centered AI that is explainable, transparent, and trust-
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worthy. The inputs to an AI agent include the goals and preferences of the
agent, but it is not clear whose preferences they are or should be.

Each chapter concludes with a social impact section discussing issues di-
rectly relevant to that chapter’s topics. The social impact sections are of two
types, sometimes containing both:

• broader impacts of AI, which includes intended or unintended down-
stream consequences of upstream decisions on the design of the AI sys-
tem or on the choice of data

• use cases about user-facing applications of AI that have had an impact on
society or science, either positive or negative.

Chapter 18 on the social impact of AI considers the effects of AI on the
digital economy, work and automation, transportation and sustainability. It
highlights the roles of human-centered AI, values, bias, ethics, certification,
and regulation.

1.8 Overview of the Book

The rest of the book explores the design space defined by the dimensions of
complexity. It considers each dimension separately, where this can be done
sensibly.

Part I considers the big view of agents as a coherent vision of AI.
Chapter 2 analyzes what is inside the black box of Figure 1.4 (page 15) and

discusses the modular and hierarchical decomposition of intelligent agents.
Part II considers the case of no uncertainty, which is a useful abstraction of

many domains.
Chapter 3 considers the simplest case of determining what to do in the case

of a single agent that reasons with explicit states, no uncertainty, and has goals
to be achieved, but with an indefinite horizon. In this case, the task of solving
the goal can be abstracted to searching for a path in a graph. It is shown how
extra knowledge of the domain can help the search.

Chapters 4 and 5 show how to exploit features. In particular, Chapter 4
considers how to find possible states given constraints on the assignments of
values to features represented as variables. Chapter 5 presents reasoning with
propositions in various forms.

Chapter 6 considers the task of planning, in particular determining se-
quences of actions to solve a goal in deterministic domains.

Part III considers learning and reasoning with uncertainty. In particular, it
considers sensing uncertainty and effect uncertainty.

Chapter 7 shows how an agent can learn from past experiences and data.
It covers the most common case of learning, namely supervised learning with
features, where a function from input features into target features is learned
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from observational data. Chapter 8 studies neural networks and deep learning
and how features themselves can be learned from sensory observation.

Chapter 9 shows how to reason with uncertainty, in particular with proba-
bility and graphical models of independence. Chapter 10 introduces learning
with uncertainty. Chapter 11 shows how to model causality and learn the ef-
fects of interventions (which cannot be learned from observation alone).

Part IV considers planning and acting with uncertainty.
Chapter 12 considers the task of planning with uncertainty. Chapter 13

deals with reinforcement learning, where agents learn what to do. Chapter 14
expands planning to deal with issues arising from multiple agents.

Part V extends the state and feature-based representations to deal with re-
lational representations, in terms of relations and individuals.

Chapter 15 shows how to reason in terms of individuals and relations.
Chapter 16 discusses how to enable semantic interoperability using knowledge
graphs and ontologies. Chapter 17 shows how reasoning about individuals
and relations can be combined with learning and probabilistic reasoning.

Part VI steps back from the details and gives the big picture.
In Chapter 18 on the social impact of AI, further ethical and social concerns

are addressed, by considering various questions, such as: What are the effects,
benefits, costs, and risks of deployed AI systems for society? What are the
ethical, equity, and regulatory considerations involved in building intelligent
agents? How can you ensure that AI systems are fair, transparent, explainable,
and trustworthy? How can AI systems be human-centered? What is the impact
on sustainability?

Chapter 19 reviews the design space of AI and shows how the material pre-
sented can fit into that design space. It also considers some likely and possible
future scenarios for the development of AI science and technology.

1.9 Review

The following are the main points you should have learned from this chapter:

• Artificial intelligence is the study of computational agents that act intel-
ligently.

• An agent acts in an environment and only has access to its abilities, its
prior knowledge, its history of stimuli, and its goals and preferences.

• A physical symbol system manipulates symbols to determine what to do.
• A designer of an intelligent agent should be concerned about modularity,

how to describe the world, how far ahead to plan, uncertainty in both
perception and the effects of actions, the structure of goals or preferences,
other agents, how to learn from experience, how the agent can reason
while interacting with the environment, and the fact that all real agents
have limited computational resources.

• To solve a task by computer, the computer must have an effective repre-
sentation with which to reason.

https://doi.org/10.1017/9781009258227.003


1.10. References and Further Reading 47

• To know when it has solved a task, an agent must have a definition of
what constitutes an adequate solution, such as whether it has to be op-
timal, approximately optimal, or almost always optimal, or whether a
satisficing solution is adequate.

• In choosing a representation, an agent designer should find a representa-
tion that is as close as possible to the task, so that it is easy to determine
what is represented and so it can be checked for correctness and be able
to be maintained. Often, users want an explanation of why they should
believe the answer.

• The social impacts, both beneficial and harmful, of pervasive AI applica-
tions are significant, leading to calls for ethical and human-centered AI,
certification and regulation.

1.10 References and Further Reading

The ideas in this chapter have been derived from many sources. Here, we try to
acknowledge those that are explicitly attributable to particular authors. Most
of the other ideas are part of AI folklore; trying to attribute them to anyone
would be impossible.

Levesque [2012] provides an accessible account of how thinking can be
seen in terms of computation. Haugeland [1997] contains a good collection
of articles on the philosophy behind artificial intelligence, including that clas-
sic paper of Turing [1950] that proposes the Turing test. Grosz [2012] and Co-
hen [2005] discuss the Turing test from a more recent perspective. Winograd
schemas are described by Levesque [2014]. Srivastava et al. [2022] provide a
Beyond the Imitation Game benchmark (BIG-bench) consisting of 204 tasks de-
signed to challenge modern learning systems. Grosz [2018] discusses research
on what it takes to implement dialog, not just answering one-off questions.
Zador et al. [2023] discuss an embodied Turing test, and the role of neuro-
science in AI.

Nilsson [2010] and Buchanan [2005] provide accessible histories of AI. Chris-
ley and Begeer [2000] present many classic papers on AI. Jordan [2019] and the
associated commentaries discuss intelligence augmentation.

For discussions on the foundations of AI and the breadth of research in
AI, see Kirsh [1991a], Bobrow [1993], and the papers in the corresponding vol-
umes, as well as Schank [1990] and Simon [1995]. The importance of knowl-
edge in AI is discussed in Lenat and Feigenbaum [1991], Sowa [2000], Dar-
wiche [2018], and Brachman and Levesque [2022b].

The physical symbol system hypothesis was posited by Newell and Simon
[1976]. Simon [1996] discusses the role of symbol systems in a multidisciplinary
context. The distinctions between real, synthetic, and artificial intelligence are
discussed by Haugeland [1985], who also provides useful introductory mate-
rial on interpreted, automatic formal symbol systems and the Church–Turing
thesis. Brooks [1990] and Winograd [1990] critique the symbol system hy-
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pothesis. Nilsson [2007] evaluates the hypothesis in terms of such criticisms.
Shoham [2016] and Marcus and Davis [2019] argue for the importance of sym-
bolic knowledge representation in modern applications.

The use of anytime algorithms is due to Horvitz [1989] and Boddy and
Dean [1994]. See Dean and Wellman [1991], Zilberstein [1996], and Russell
[1997] for introductions to bounded rationality.

For overviews of cognitive science and the role that AI and other disciplines
play in that field, see Gardner [1985], Posner [1989], and Stillings et al. [1987].

Conati et al. [2002] describe a tutoring agent for elementary physics. du
Boulay et al. [2023] overview modern tutoring agents. Wellman [2011] overviews
research in trading agents. Sandholm [2007] describes how AI can be used for
procurement of multiple goods with complex preferences.

A number of AI texts are valuable as reference books complementary to this
book, providing a different perspective on AI. In particular, Russell and Norvig
[2020] give a more encyclopedic overview of AI. They provide an excellent
complementary source for many of the topics covered in this book and also an
outstanding review of the scientific literature, which we do not try to duplicate.

The Association for the Advancement of Artificial Intelligence (AAAI) pro-
vides introductory material and news at their AI Topics website (https://aitopics.
org/). AI Magazine, published by AAAI, often has excellent overview articles
and descriptions of particular applications. IEEE Intelligent Systems also pro-
vides accessible articles on AI research.

There are many journals that provide in-depth research contributions and
conferences where the most up-to-date research is found. These include the
journals Artificial Intelligence, the Journal of Artificial Intelligence Research, IEEE
Transactions on Pattern Analysis and Machine Intelligence, and Computational In-
telligence, as well as more specialized journals. Much of the cutting-edge re-
search is published first in conferences. Those of most interest to a general
audience are the International Joint Conference on Artificial Intelligence (IJ-
CAI), the AAAI Annual Conference, the European Conference on AI (ECAI),
the Pacific Rim International Conference on AI (PRICAI), various national con-
ferences, and many specialized conferences, which are referred to in the rele-
vant chapters.

1.11 Exercises

Exercise 1.1 For each of the following, give five reasons why:

(a) A dog is more intelligent than a worm.
(b) A human is more intelligent than a dog.
(c) An organization is more intelligent than an individual human.

Based on these, give a definition of what “more intelligent” may mean.

Exercise 1.2 Give as many disciplines as you can whose aim is to study intelligent
behavior of some sort. For each discipline, find out what aspect of behavior is
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investigated and what tools are used to study it. Be as liberal as you can regarding
what defines intelligent behavior.

Exercise 1.3 Find out about two applications of AI (not classes of applications,
but specific programs). For each application, write at most one typed page de-
scribing it. You should try to cover the following questions:

(a) What does the application actually do (e.g., control a spacecraft, diagnose a
photocopier, provide intelligent help for computer users)?

(b) What AI technologies does it use (e.g., model-based diagnosis, belief net-
works, semantic networks, heuristic search, constraint satisfaction)?

(c) How well does it perform? (According to the authors or to an independent
review? How does it compare to humans? How do the authors know how
well it works?)

(d) Is it an experimental system or a fielded system? (How many users does it
have? What expertise do these users require?)

(e) Why is it intelligent? What aspects of it make it an intelligent system?
(f) [optional] What programming language and environment was it written in?

What sort of user interface does it have?
(g) References: Where did you get the information about the application? To

what books, articles, or webpages should others who want to know about
the application refer?

Exercise 1.4 For each of the Winograd schemas in Example 1.2 (page 6), what
knowledge is required to correctly answer the questions? Try to find a “cheap”
method to find the answer, such as by comparing the number of results in a Google
search for different cases. Try this for six other Winograd schemas of Davis [2015].
Try to construct an example of your own.

Exercise 1.5 Choose four pairs of dimensions that were not compared in Sec-
tion 1.5.10 (page 35). For each pair, give one commonsense example of where the
dimensions interact.
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Chapter 2

Agent Architectures and
Hierarchical Control

By a hierarchic system, or hierarchy, I mean a system that is composed
of interrelated subsystems, each of the latter being in turn hierarchic in
structure until we reach some lowest level of elementary subsystem. In
most systems of nature it is somewhat arbitrary as to where we leave off the
partitioning and what subsystems we take as elementary. Physics makes
much use of the concept of “elementary particle,” although the particles
have a disconcerting tendency not to remain elementary very long . . .

Empirically a large proportion of the complex systems we observe in
nature exhibit hierarchic structure. On theoretical grounds we would ex-
pect complex systems to be hierarchies in a world in which complexity had
to evolve from simplicity.

– Herbert A. Simon [1996]

This chapter shows how an intelligent agent can perceive, reason, and act over
time in an environment. In particular, it considers the internal structure of an
agent. As Simon points out in the quote above, hierarchical decomposition is
an important part of the design of complex systems such as intelligent agents.
This chapter presents ways to design agents in terms of hierarchical decompo-
sitions and ways that agents can be built, taking into account the knowledge
that an agent needs to act intelligently.

2.1 Agents and Environments

An agent (page 14) is something that acts in an environment. An agent can, for
example, be a person, a robot, a dog, a worm, a lamp, a computer program that
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buys and sells, or a corporation.
Agents receive stimuli from their environment (Figure 1.4 (page 15)). Stim-

uli include light, sound, words typed on a keyboard, mouse movements, and
physical bumps. The stimuli can also include information obtained from a
webpage or from a database. Agents carry out actions that can affect the envi-
ronment. Actions include steering, accelerating wheels, moving links of arms,
speaking, displaying information, or sending a post command to a website.

An agent is made up of a body and a controller. Agents interact with the
environment with a body. The controller receives percepts from the body and
sends commands to the body. See Figure 2.1.

A body includes:

• sensors that convert stimuli into percepts
• actuators, also called effectors, that convert commands into the actions

in the environment.

A body can also carry out actions that don’t go through the controller, such as
a stop button for a robot and reflexes of humans.

An embodied agent has a physical body. A robot is an artificial purposive
(page 15) embodied agent. Sometimes agents that act only in an information
space are called robots or bots.

Common sensors for robots include touch sensors, cameras, infrared sen-
sors, sonar, microphones, keyboards, mice, and XML readers used to extract
information from webpages. As a prototypical sensor, a camera senses light
coming into its lens and converts it into a two-dimensional array of intensity
values called pixels. Sometimes multiple pixel arrays represent different colors
or multiple cameras. Such pixel arrays could be the percepts for our controller.

commands

Agent

percepts

Controller

Body

Environment

actionsstimuli

Figure 2.1: An agent system and its components
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More often, percepts consist of higher-level features such as lines, edges, and
depth information. Often the percepts are more specialized – for example, the
positions of bright orange dots, the part of the display a student is looking at,
or the hand signals given by a human. Sensors can be noisy, unreliable, or
broken. Even when sensors are reliable there still may be ambiguity about the
world given the sensor readings.

Commands include low-level commands such as to set the voltage of a mo-
tor to some particular value, and high-level specifications of the desired motion
of a robot such as “stop” or “travel at 1 meter per second due east” or “go to
room 103.” Actuators, like sensors, are typically noisy and often slow and un-
reliable. For example, stopping takes time; a robot, governed by the laws of
physics, has momentum, and messages take time to travel. The robot may end
up going only approximately 1 meter per second, approximately east, and both
speed and direction may fluctuate. Traveling to a particular room may fail for
a number of reasons.

2.1.1 Controllers

Agents are situated in time; they receive sensory data in time and do actions in
time.

Let T be the set of time points. Assume that T is totally ordered. T is
discrete time if there are only a finite number of time points between any two
time points; for example, there is a time point every hundredth of a second,
or every day, or there may be time points whenever interesting events occur.
Discrete time has the property that, for all times, except perhaps a last time,
there is always a next time. Initially, assume that time is discrete and goes on
forever. Assume t+ 1 as the next time after time t. The time points do not need
to be equally spaced. Assume that T has a starting point, which is defined to
be 0.

Suppose P is the set of all possible percepts. A percept trace, or percept
stream, is a function from T into P. It specifies which percept is received at
each time.

Suppose C is the set of all commands. A command trace is a function from
T into C. It specifies the command for each time point.

Example 2.1 Consider a household trading agent that monitors the price of
some commodity, such as toilet paper, by checking for deals online, as well as
how much the household has in stock. It must decide whether to order more
and how much to order. Assume the percepts are the price and the amount in
stock. The command is the number of units the agent decides to order (which
is zero if the agent does not order any). A percept trace specifies for each time
point (e.g., each day) the price at that time and the amount in stock at that time.
A percept trace is given in Figure 2.2 (page 54); at each time there is both a price
and an amount in stock, here given as two graphs. A command trace specifies
how much the agent decides to order at each time point. An example command
trace is given in Figure 2.3 (page 54).
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Figure 2.2: Percept traces for Example 2.1
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Figure 2.3: Command trace for Example 2.1 (page 53)
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The action of actually buying depends on the command but may be differ-
ent. For example, the agent could issue a command to buy 12 rolls of paper at
$2.10. This does not mean that the agent actually buys 12 rolls because there
could be communication problems, the store could have run out of paper, or
the price could change between deciding to buy and actually buying.

A percept trace for an agent is thus the sequence of all past, present, and
future percepts received by the controller. A command trace is the sequence of
all past, present, and future commands issued by the controller.

Because all agents are situated in time, an agent cannot actually observe full
percept traces; at any time it has only experienced the part of the trace up to
now. At time t ∈ T, an agent can only observe the value of the command and
percept traces up to time t, and its commands cannot depend on percepts after
time t.

The history of an agent at time t is the agent’s percept trace for all times
before or at time t and its command trace before time t.

A transduction is a function from the history of an agent at time t to the
command at time t.

Thus a transduction is a function from percept traces to command traces
that is causal in that the command at time t depends only on percepts up to
and including time t.

A controller is an implementation of a transduction.
Note that this allows for the case where the agent can observe and act at

the same time. This is useful when the time granularity is long enough. When
time is measured finely enough, an agent may take time to react to percepts, in
which case the action can be just a function of time before t.

Example 2.2 Continuing Example 2.1 (page 53), a transduction specifies, for
each time, how much of the commodity the agent should buy depending on the
price history, the history of how much of the commodity is in stock (including
the current price and amount in stock), and the past history of buying.

An example of a transduction is as follows: buy four dozen rolls if there
are fewer than five dozen in stock and the price is less than 90% of the average
price over the last 20 days; buy a dozen rolls if there are fewer than a dozen in
stock; otherwise, do not buy any.

2.1.2 Belief States

Although a transduction is a function of an agent’s history, it cannot be directly
implemented because an agent does not have direct access to its entire history.
It has access only to its current percepts and what it has remembered.

The memory or belief state of an agent at time t is all the information the
agent has remembered from the previous times. An agent has access only to
the part of the history that it has encoded in its belief state. Thus, the belief
state encapsulates all of the information about its history that the agent can use
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for current and future commands. At any time, an agent has access to its belief
state and its current percepts.

The belief state can contain any information, subject to the agent’s memory
and processing limitations. This is a very general notion of belief.

Some instances of belief state include the following:

• The belief state for an agent that is following a fixed sequence of instruc-
tions may be a program counter that records its current position in the
sequence, or a list of actions still to carry out.

• The belief state can contain specific facts that are useful – for example,
where the delivery robot left a parcel when it went to find a key, or where
it has already checked for the key. It may be useful for the agent to re-
member any information that it might need for the future that is reason-
ably stable and that cannot be immediately observed.

• The belief state could encode a model or a partial model of the state of
the world. An agent could maintain its best guess about the current state
of the world or could have a probability distribution over possible world
states; see Section 9.6.2 (page 420).

• The belief state could contain an estimate of how good each action is for
each world state. This belief state, called the Q-function, is used exten-
sively in decison-theoretic planning (page 559) and reinforcement learn-
ing (page 583).

• The belief state could be a representation of the dynamics of the world
– how the world changes – and some of its recent percepts. Given its
percepts, the agent could reason about what is true in the world.

• The belief state could encode what the agent desires, the goals it still has
to achieve, its beliefs about the state of the world, and its intentions, or
the steps it intends to take to achieve its goals. These can be maintained
as the agent acts and observes the world, for example, removing achieved
goals and replacing intentions when more appropriate steps are found.

2.1.3 Agent Functions

A controller maintains the agent’s belief state and determines what command
to issue at each time. The information it has available when it must do this
are its belief state and its current percepts. Figure 2.4 (page 57) shows how the
agent function acts in time; the memories output at one time are the memories
input at the next time.

A belief state transition function for discrete time is a function

remember : S× P → S

where S is the set of belief states and P is the set of possible percepts; st+1 =
remember(st, pt) means that st+1 is the belief state following belief state st when
pt is observed.
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A command function is a function

command : S× P → C

where S is the set of belief states, P is the set of possible percepts, and C is the
set of possible commands; ct = command(st, pt) means that the controller issues
command ct when the belief state is st and when pt is observed.

The belief-state transition function and the command function together spec-
ify a controller for the agent. Note that a transduction is a function of the
agent’s history, which the agent does not necessarily have access to, but a com-
mand function is a function of the agent’s belief state and percepts, which it
does have access to.

Example 2.3 To implement the transduction of Example 2.2 (page 55), a con-
troller can keep track of the rolling history of the prices for the previous 20 days
and the average, using the variable average, updated using

average := average +
new− old

20

where new is the new price and old is the oldest price remembered. It can then
discard old. It must do something special for the first 20 days. See Section A.1
(page 797) for an analysis of rolling averages.

A simpler controller could, instead of remembering a rolling history in or-
der to maintain the average, remember just a rolling estimate of the average
and use that value as a surrogate for the oldest item. The belief state can then
contain one real number (ave), with the state transition function

ave := ave +
new− ave

20
.

This controller is much easier to implement and is not as sensitive to what hap-
pened exactly 20 time units ago. It does not actually compute the average, as it

Body and Environment

memories

percepts commands

t=1 t=2 t=3 t=4

(a) (b)

memories

Figure 2.4: An agent function in time. In (a) the dashed line is the belief state
transition function and the solid line is the command function (b) shows the con-
troller in time. The controller treats the body and the environment together. The
memory output of one time is the input for the next time
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is biased towards recent data. This way of maintaining estimates of averages is
the basis for temporal differences in reinforcement learning (page 588).

If there are a finite number of possible belief states, the controller is called
a finite state controller or a finite state machine. A factored representation
is one in which the belief states, percepts, or commands are defined by fea-
tures (page 24). If there are a finite number of features, and each feature can
only have a finite number of possible values, then the controller is a factored
finite state machine. Richer controllers can be built using an unbounded num-
ber of values or an unbounded number of features. A controller that has an
unbounded but countable number of states can compute anything that is com-
putable by a Turing machine.

2.2 Hierarchical Control

One way that you could imagine building an agent depicted in Figure 2.1
(page 52) is to split the body into the sensors and actuators, with a complex
perception system that feeds a description of the world into a reasoning engine
implementing a controller that, in turn, outputs commands to the actuators.
This turns out to be a bad architecture for intelligent systems. It is too slow and
it is difficult to reconcile the slow reasoning about complex, high-level goals
with the fast reaction that an agent needs for lower-level tasks such as avoid-
ing obstacles. It also is not clear that there is a description of a world that is
independent of what you do with it (see Exercise 2.1 (page 73)).

An alternative architecture is a hierarchy of controllers as depicted in Figure
2.5 (page 59). Each layer sees the layers below it as a virtual body from which
it gets percepts and to which it sends commands.

The lower-level layers run much faster, react to those aspects of the world
that need to be reacted to quickly, and deliver a simpler view of the world
to the higher layers, hiding details that are not essential for the higher layers.
The planning horizon (page 23) at lower levels is typically much shorter than
the planning horizon at upper levels. People have to react to the world, at
the lowest level, in fractions of a second, but plan at the highest level even
for decades into the future. For example, the reason for doing some particular
university course may be for the long-term career, but reading and answering
a question in a university exam has to happen in minutes, if not seconds.

There is much evidence that people have multiple qualitatively different
levels. Kahneman [2011] presents evidence for two distinct levels: System 1,
the lower level, is fast, automatic, parallel, intuitive, instinctive, emotional, and
not open to introspection; System 2, the higher level, is slow, deliberate, serial,
open to introspection, and based on reasoning.

In a hierarchical controller there can be multiple channels – each represent-
ing a feature – between layers and between layers at different times.

There are three types of inputs to each layer at each time:
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• features that come from the belief state, which are referred to as the re-
membered or previous values of these features

• features representing the percepts from the layer below in the hierarchy
• features representing the commands from the layer above in the hierar-

chy.

There are three types of outputs from each layer at each time:

• the higher-level percepts for the layer above
• the lower-level commands for the layer below
• the next values for the belief-state features.

An implementation of a layer specifies how the outputs of a layer are a
function of its inputs. The definition of the belief state transition function
(page 56), remember, and the command function (page 57), command, can be
extended to include higher-level commands as inputs, and each layer also re-
quires a percept function, represented as tell below. Thus a layer implements:

remember : S× Pl × Ch → S

......

Agent

Environment

previous
memories

high-level 
percepts

low-level
percepts

high-level
commands

low-level
commands

next
memories

Figure 2.5: An idealized hierarchical agent system architecture. The unlabeled
rectangles represent layers and the double lines represent information flow. The
dashed lines show how the output at one time is the input for the next time
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command : S× Pl × Ch → Cl

tell : S× Pl × Ch → Ph

where S is the belief state, Ch is the set of commands from the higher layer, Pl is
the set of percepts from the lower layer, Cl is the set of commands for the lower
layer, and Ph is the set of percepts for the higher layer.

Computing these functions can involve arbitrary computation, but the goal
is to keep each layer as simple as possible.

To implement a controller, each input to a layer must get its value from
somewhere. Each percept or command input should be connected to an output
of some other layer. Other inputs come from the remembered beliefs. The
outputs of a layer do not have to be connected to anything, or they could be
connected to multiple inputs.

Example 2.4 Consider a delivery robot (page 17) able to carry out high-level

plan

rob_pos
rob_dir
whisker
crashed

go to target and
avoid obstacles

Environment

Delivery Robot

steer

target_pos
timeoutarrived

target_pos

to_dofollow plan

steer  robot, report 
obstacles and position

Figure 2.6: A hierarchical decomposition of the delivery robot
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navigation tasks while avoiding obstacles. The delivery robot is required to
visit a sequence of named locations in the environment of Figure 1.5 (page 17),
avoiding obstacles it may encounter.

Assume the delivery robot has wheels, like a car, and at each time can either
go straight, turn right, or turn left. It cannot stop. The velocity is constant and
the only command is to set the steering angle to left, right, or straight. Assume
turning the wheels is instantaneous, but turning to a certain direction takes
time. Thus, the robot can only travel straight ahead or go around in circular
arcs with a fixed radius.

The robot has a position sensor that gives its current coordinates and orien-
tation. It has a single whisker sensor that sticks out in front and slightly to the
right and detects when it has hit an obstacle. In the example below, the whisker
points 30◦ to the right of the direction the robot is facing. The robot does not
have a map, and the environment can change with obstacles moving.

A layered controller for the delivery robot is shown in Figure 2.6 (page 60).
The robot is given a high-level plan consisting of a list of named locations to
visit in sequence. The robot needs to sense the world and to move in the world
in order to carry out the plan. The details of the lowest layer of the controller
are not shown in this figure.

The top layer, called follow plan, is described in Example 2.6 (page 63). That
layer takes in a plan to execute. The locations in the plan are selected in order.
Each selected location becomes the current target. This layer determines the
x–y coordinates of the target. These coordinates are the target position for the
middle layer. The top layer knows about the names of locations, but the lower
layers only know about coordinates.

The top layer maintains a belief state consisting of a list of names of loca-
tions that the robot still needs to visit. It issues commands to the middle layer
to go to the current target position but not to spend more than timeout steps.
The percepts for the top layer indicate whether the robot has arrived at the tar-
get position or not. So the top layer abstracts the details of the robot and the
environment.

The middle layer, which could be called go to target and avoid obstacles,
tries to keep traveling towards the current target position, avoiding obstacles.
The middle layer is described in Example 2.5 (page 62). The target position,
target pos, is received from the top layer. The middle layer needs to remember
the current target position it is heading towards. When the middle layer has ar-
rived at the target position or has reached the timeout, it signals to the top layer
whether the robot has arrived at the target. When arrived becomes true, the top
layer can change the target position to the coordinates of the next location on
the plan.

The middle layer can access the robot’s position, the robot’s direction, and
whether the robot’s whisker sensor is on or off. It can use a simple strategy of
trying to head towards the target unless it is blocked, in which case it turns left.

The middle layer is built on a lower layer that provides a simple view of the
robot. This lower layer could be called steer robot and report obstacles and position.
It takes in steering commands and reports the robot’s position, orientation, and
whether the whisker sensor is on or off.
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Inside a layer are features that can be functions of other features and of the
inputs to the layers. In the graphical representation of a controller, there is an
arc into a feature from the features or inputs on which it is dependent. The
features that make up the belief state can be written to and read from memory.

In the controller code in the following two examples, lower.do(C) means
that C is the do command for the lower level to do.

Example 2.5 The middle go to location and avoid obstacles layer steers the robot
towards a target position while avoiding obstacles. The inputs and outputs of
this layer are given in Figure 2.7.

The layer receives two high-level commands: a target position to head to-
wards and a timeout, which is the number of steps it should take before giv-
ing up. It signals the higher layer when it has arrived or when the timeout is
reached.

The robot has a single whisker sensor that detects obstacles touching the
whisker. The one bit value that specifies whether the whisker sensor has hit an
obstacle is provided by the lower layer. The lower layer also provides the robot
position and orientation. All the robot can do is steer left by a fixed angle, steer
right, or go straight. The aim of this layer is to make the robot head towards its
current target position, avoiding obstacles in the process, and to report when it
has arrived.

rob_pos

target_pos

steer

timeout

rob_dir whisker

steer

arrived

arrived

crashed

target_pos target_pos

remaining
remaining

Figure 2.7: The middle layer of the delivery robot
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This layer of the controller needs to remember the target position and the
number of steps remaining. The command function specifies the robot’s steer-
ing direction as a function of its inputs and whether the robot has arrived.

The robot has arrived if its current position is close to the target position.
Thus, arrived is a function of the robot position and previous target position,
and a threshold constant:

arrived() ≡ distance(target pos, rob pos) < threshold

where distance is the Euclidean distance and threshold is a distance in the appro-
priate units.

The robot steers left if the whisker sensor is on; otherwise it heads towards
the target position. This can be achieved by assigning the appropriate value to
the steer variable, given an integer timeout and target pos:

remaining := timeout
while not arrived() and remaining �= 0

if whisker sensor = on
then steer := left

else if straight ahead(rob pos, robot dir, target pos)
then steer := straight

else if left of (rob pos, robot dir, target pos)
then steer := left

else steer := right
lower.do(steer)
remaining := remaining− 1

tell upper layer arrived()

where straight ahead(rob pos, robot dir, target pos) is true when the robot is at po-
sition rob pos, facing the direction robot dir, and when the current target po-
sition, target pos, is straight ahead of the robot with some threshold (for later
examples, this threshold is 11◦ of straight ahead). The function left of tests if
the target is to the left of the robot.

Example 2.6 The top layer, follow plan, is given a plan – a list of named loca-
tions to visit in order. These are the kinds of targets that could be produced by
a planner, such as those that are developed in Chapter 3. The top layer must
output target coordinates to the middle layer and remember what it needs to
carry out the plan. The layer is shown in Figure 2.8 (page 64).

This layer remembers the locations it still has to visit. The to do feature has
as its value a list of all pending locations to visit.

Once the middle layer has signaled that the robot has arrived at its previous
target or it has reached the timeout, the top layer gets the next target position
from the head of the to do list. The plan given is in terms of named locations,
so these must be translated into coordinates for the middle layer to use. The
following code shows the top layer as a function of the plan:

to do := plan
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timeout := 200
while not empty(to do)

target pos := coordinates(first(to do))
middle.do(timeout, target pos)
to do := rest(to do)

where first(to do) is the first location in the to do list and rest(to do) is the rest of
the to do list. The function coordinates(loc) returns the coordinates of a named
location loc. The controller tells the lower layer to go to the target coordinates,
with a timeout here of 200 (which, of course, should be set appropriately).
empty(to do) is true when the to do list is empty.

This layer determines the coordinates of the named locations. This could be
done by simply having a database that specifies the coordinates of the locations.
Using such a database is sensible if the locations do not move and are known a
priori. If the locations can move, the lower layer must be able to tell the upper
layer the current position of a location. See Exercise 2.7 (page 75).

A simulation of the plan [goto(o109), goto(storage), goto(o109), goto(o103)]
with two obstacles is given in Figure 2.9 (page 65). The robot starts at position
(0, 0) facing North, and the obstacles are shown with lines. The agent does not
know about the obstacles before it starts.

Each layer is simple, and none model the full complexity of the problem.
But, together they exhibit complex behavior. An implementation of the agent
and environment is provided in AIPython (aipython.org).

follow planprevious
to_do

arrived

plan

to_do

target_postimeout

Figure 2.8: The top layer of the delivery robot controller. Notice how the lower
level corresponds to the upper level of Figure 2.7 (page 62)
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2.3 Designing Agents

2.3.1 Discrete, Continuous, and Hybrid

For discrete time (page 53) there are only a finite number of time steps be-
tween any two times; for example, there is a time point every hundredth of a
second, or every day, or there may be time points whenever interesting events
occur. An alternative is to assume continuous time that is measured by the real
numbers.

Similarly, a feature can be discrete, with a finite or countable number of
possible values, or the value can be any real number, in which case the feature
is continuous. An example of a continuous value might be latitude, longitude,
the distance to a wall, or the amount of fuel left. An example of a discrete value
might be the room the robot is in, or whether it is carrying a particular item.

High-level reasoning, as carried out in the higher layers, is often discrete
and qualitative, whereas low-level reasoning, as carried out in the lower lay-
ers, is often continuous and quantitative (see box on page 66). A controller
that reasons in terms of both discrete and continuous values is called a hybrid
system.

Discrete time means that there is a next time from any time, except perhaps
a last time. For continuous time, there is no next time. Continuous time can be
modeled by adding time and time intervals, for example adding 4:21 pm and

−20 0 20 40 60 80 100 120
−10
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o109

storage

mail o103

Figure 2.9: A simulation of the robot carrying out the plan of Example 2.6
(page 63). The black lines are obstacles. The robot starts at position (0, 0)
and follows the trajectory of the overlapping circles; the filled circles are when the
whisker sensor is on. The robot goes to o109, storage, o109, and o103 in turn
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Qualitative versus Quantitative Representations

Much of science and engineering considers quantitative reasoning with nu-
merical quantities, using differential and integral calculus as the main tools.
Qualitative reasoning is reasoning, often using logic, about qualitative dis-
tinctions rather than numerical values for given parameters.

Qualitative reasoning is important for a number of reasons.

• An agent may not know what the exact values are. For example, for the
delivery robot to pour coffee, it may not be able to compute the optimal
angle that the coffee pot needs to be tilted, but a simple control rule may
suffice to fill the cup to a suitable level.

• The reasoning may be applicable regardless of the quantitative values.
For example, you may want a strategy for a robot that works regardless
of what loads are placed on the robot, how slippery the floors are, or
what the actual charge is of the batteries, as long as they are within
some normal operating ranges.

• An agent needs to do qualitative reasoning to determine which quanti-
tative laws are applicable. For example, if the delivery robot is filling a
coffee cup, different quantitative formulas are appropriate to determine
where the coffee goes when the coffee pot is not tilted enough for coffee
to come out, when coffee comes out into a non-full cup, and when the
coffee cup is full and the coffee is soaking into the carpet.

Qualitative reasoning uses discrete values, which can take a number of forms:

• Landmarks are values that make qualitative distinctions in the individ-
ual being modeled. In the coffee example, some important qualitative
distinctions include whether the coffee cup is empty, partially full, or
full. These landmark values are all that is needed to predict what hap-
pens if the cup is tipped upside down or if coffee is poured into the cup.

• Orders-of-magnitude reasoning involves approximate reasoning that
ignores minor distinctions. For example, a partially full coffee cup may
be full enough to deliver, half empty, or nearly empty. These fuzzy
terms have ill-defined borders.

• Qualitative derivatives indicate whether some value is increasing, de-
creasing, or staying the same.

A flexible agent needs to do qualitative reasoning before it does quantitative
reasoning. For simple agents, the qualitative reasoning is often done at design
time, so the agent needs to only do quantitative reasoning online. Sometimes
qualitative reasoning is all that is needed. An intelligent agent does not al-
ways need to do quantitative reasoning, but sometimes it needs to do both
qualitative and quantitative reasoning.

https://doi.org/10.1017/9781009258227.004


2.3. Designing Agents 67

0.003 seconds gives a new time.
Discrete features with continuous time provide an implicit discretization of

time; there can be a next time whenever the state changes. A controller might
model what is the next state and when it might occur.

When there is continuous state and continuous time, a controller needs to
model how they vary together, which requires differential and integral calculus
and is beyond the scope of this book.

2.3.2 Choosing Agent Functions

The definition of an agent function gives a great deal of latitude in the design
of agents.

One extreme is for a purely reactive system that bases its actions only on
the percepts; in this case, the agent function can have an empty or trivial be-
lief state. The command function in this case is a function from percepts into
actions. If sensors are very accurate, one might think that they can be relied
on with no memory of the history. For example, a global positioning system
(GPS) can locate a phone or robot within about 10 meters. However, it is much
easier for a robot to locate itself if the GPS signal is combined with historical
information about where it was a second ago, and even better if there is an
estimate of the direction and speed of travel. A signal that suggests the robot
jumped over a river might then be reconciled with the previous signals, and
knowledge of how the robot moves.

At the other extreme, an agent could ignore the percepts and rely on a
model of the environment and its memory. The agent can then determine what
to do just by reasoning. This approach requires a model of the dynamics of
the world and of the initial state. Given the state at one time and the dynam-
ics, the state at the next time can be predicted. This process of maintaining
the state by forward prediction is known as dead reckoning. For example,
a robot could use a model to maintain its estimate of its position and update
the estimate based on its actions. This may be appropriate when the world is
fully observable (page 29) and deterministic (page 30). When there are unpre-
dictable changes in the world or when there are noisy actuators (e.g., a wheel
slips, the wheel is not of exactly the diameter specified in the model, or accel-
eration is not instantaneous), the noise accumulates, so that the estimates of
position soon become very inaccurate. However, if the model is accurate at
some level of detail, it may still be useful. For example, finding a route on a
map, which can be seen as a high-level plan, is useful for an agent even if it
doesn’t specify all of the details and even if it is sometimes wrong.

A more promising approach is to combine the agent’s prediction of the
world state with sensing information. This can take a number of forms:

• If both the noise of forward prediction and sensor noise are modeled, the
next belief state can be estimated using Bayes’ rule (page 381). This is
known as filtering (page 422).
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• With more complicated sensors such as vision, a model can be used to
predict where visual features can be found, and then vision can be used
to look for these features close to the predicted location. This makes the
vision task much simpler than the case where the agent has no idea where
it is, and vision can greatly reduce the errors in position arising from
forward prediction alone.

A control problem is separable if the best action can be obtained by first
finding the best prediction of the state of the world and then using that predic-
tion to determine the best action. Unfortunately, most control problems are not
separable. This means that when the world is partially observable (page 30),
the agent should consider multiple possible states to determine what to do. An
agent could represent a probability distribution over the possible states (see
Section 9.6, page 418), but this is often difficult to represent for complex do-
mains, and often just a few representative hypotheses are chosen (see Section
9.7.6, page 445). Usually, there is no “best model” of the world that is indepen-
dent of what the agent will do with the model.

2.3.3 Offline and Online Computation

Figure 2.10 shows a refinement of Figure 1.4 (page 15) showing the online and
offline tasks. Offline, a learner creates a model that can be used online. The no-
tion here of a learner is very general, and can include anything that takes data
and background knowledge to make the online reasoner more accurate, have
more ability, or carry out faster reasoning. The notion of a reasoner is also very
general and can range from a simple function to decide actions, to an online
learner, to a sophisticated reasoner that deals with all levels of complexity.

Learner Reasoner

offline online

Prior Knowledge

Past Experiences/
Data

ObservationsGoals/Preference

Actions

Abilities

Model

Figure 2.10: Offline and online decomposition of an agent
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The goals and abilities are given offline, online, or both, depending on the
agent. For example, a delivery robot could have general goals of keeping the
lab clean and not damaging itself or other objects, but it could be given delivery
goals at runtime. The online computation can be made simpler and so more
efficient if the model is tuned for the particular goals and abilities. This is often
not possible when the goals and abilities are only available at runtime.

Offline, before the agent has to act, the agent uses prior knowledge and
past experiences (either its own past experiences or data it has been given) to
learn (parts of) a model that is useful for acting online. Researchers have tra-
ditionally considered the case involving lots of data and very general, or even
uninformative, prior knowledge in the field of statistics. The case of rich prior
knowledge and little or no data from which to learn has been studied under
the umbrella of expert systems. For most non-trivial domains, the agent needs
whatever information is available, and so it requires both rich prior knowledge
and observations from which to learn.

Online (page 34), when the agent is acting, the agent uses its model, its
observations of the world, and its goals and abilities to choose what to do and
update its belief state. Online, the information about the particular situation
becomes available, and the agent has to act. The information includes the ob-
servations of the domain and often the preferences or goals. The agent can
get observations from sensors, users, and other information sources, such as
websites, although it typically does not have access to the domain experts or
designers of the system.

An agent typically has much more time for offline computation than for
online computation. During online computation it can take advantage of par-
ticular goals and particular observations.

For example, a medical diagnosis system offline can acquire knowledge
about how diseases and symptoms interact and do some compilation to make
inference faster. Online, it deals with a particular patient and needs to act in
a timely manner. It can concentrate on the patient’s symptoms and possible
related symptoms, ignoring other symptoms, which helps it reason faster.

Online the following roles are involved:

• Users are people who have a need for expertise or have information
about individual situations. For example, in a diagnostic system the users
might include a patient or a receptionist in a doctor’s office who enters
the information. For a travel agent, the user might be a person looking for
a holiday or someone providing accommodation or events. Users typi-
cally are not experts in the domain of the knowledge base. They often do
not know what information is needed by the system. Thus, it is unreason-
able to expect them to volunteer everything that is true about a particular
situation. A simple and natural interface must be provided because users
do not typically understand the internal structure of the system. Human
users also only provide observations that are unusual; for example, a pa-
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tient may specify that they have a bad cough, but not that they didn’t get
their arm damaged in an accident.

When users are using the output of the system, they must make in-
formed decisions based on the recommendation of the system; thus, they
require an explanation of why any recommendation is appropriate.

• Sensors provide information about the environment. For example, a
thermometer is a sensor that can provide the current temperature at the
location of the thermometer. Sensors may be more sophisticated, such as
a vision sensor. At the lowest level, a vision sensor may simply provide
an array of 1920 × 1080 pixels at 50 frames per second for each of red,
green, and blue. At a higher level, a vision system may be able to pro-
vide information such as the location of particular features, where shop-
pers are in a store, or whether some particular individual is in the scene.
A microphone can be used at a low level of abstraction to detect whether
this is a sound and provide a trace of frequencies. At a higher level it may
provide a sequence of spoken words.

Sensors come in two main varieties. A passive sensor continuously
feeds information to the agent. Passive sensors include thermometers,
cameras, and microphones. The designer can typically choose where the
sensors are or where they are pointing, but they just feed the agent in-
formation. In contrast, an active sensor is controlled or queried for in-
formation. Examples of an active sensor include a medical probe able to
answer specific questions about a patient or a test given to a student in a
tutoring agent. Often, sensors that are passive sensors at lower levels of
abstraction can be seen as active sensors at higher levels of abstraction.
For example, a camera could be asked whether a particular person is in
the room. To do this, it may need to zoom in on the faces in the room,
looking for distinguishing features of the person.

• An external knowledge source, such as a website or a database, might
be asked questions and can provide the answer for a limited domain. An
agent can ask a weather website for the temperature at a particular loca-
tion or an airline website for the arrival time of a particular flight. The
knowledge sources have various protocols and efficiency trade-offs. The
interface between an agent and an external knowledge source is called
a wrapper. A wrapper translates between the representation the agent
uses and the queries the external knowledge source is prepared to han-
dle. Often, wrappers are designed so that the agent is able to ask the
same query of multiple knowledge sources. For example, an agent may
want to know about airplane arrivals, but different airlines or airports
may require very different protocols to access that information. When
websites and databases adhere to a common vocabulary, as defined by
an ontology (page 716), they can be used together because the same sym-
bols have the same meaning. Having the same symbols mean the same
thing is called semantic interoperability. When they use different on-
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tologies, there must be mappings between the ontologies to allow them
to interoperate.

2.4 Social Impact

. . . self-driving cars . . . The technology is essentially here. We have ma-
chines that can make a bunch of quick decisions that could drastically re-
duce traffic fatalities, drastically improve the efficiency of our transporta-
tion grid, and help solve things like carbon emissions that are causing the
warming of the planet. But . . . what are the values that we’re going to
embed in the cars? There are gonna be a bunch of choices that you have
to make, the classic problem being: If the car is driving, you can swerve to
avoid hitting a pedestrian, but then you might hit a wall and kill yourself.
It’s a moral decision, and who’s setting up those rules?

– Barack Obama, 2016 [Dadich, 2016]

Sometimes agents face decisions where there are no good choices. They just
have to choose which of the bad choices to carry out. A designer has to ei-
ther explicitly or implicitly decide what the agents should do in such circum-
stances. Trolley problems consider hypothetical scenarios where a trolley-car
(tram, streetcar) has brake failure and has to decide which of two tracks to go
down. Both tracks have bad outcomes; for example, one may kill three people
who are not supposed to be there, and the other may kill a worker doing their
job. As the scenarios vary, people are asked which they prefer. A number of
philosophers, following Foot [1967], have used such problems to probe peo-
ple’s thinking about what to do when the interests of human beings conflict,
including the difference between someone’s responsibility for harms that they
cause (more or less directly) and for harms that they merely allow to happen.

In a modern variant of the trolley problem, the moral machines experiment
asked millions of people from 233 countries about what autonomous vehicles
(self-driving cars) should do in various circumstances.

Example 2.7 Suppose there is a self-driving car with sudden brake failure,
and it has to choose:

• It can go straight ahead, which will result in the death of a man and a baby
who are flouting the law by crossing on a red signal.

• It can swerve, which will result in the death of a pregnant woman who
was abiding by the law.

What should it do?

The scenarios differed in the number of deaths, people versus animals, men
versus women, young versus old, lawful versus unlawful, fit versus unfit. The
global tendencies were to prefer sparing humans to animals, preference for
sparing more lives, and preference for sparing young lives over old lives. Some
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preferences, such as the preference between genders and between social status
(such as homeless person versus doctor), varied considerably between coun-
tries.

We can embrace the challenges of machine ethics as a unique opportunity
to decide, as a community, what we believe to be right or wrong; and to
make sure that machines, unlike humans, unerringly follow these moral
preferences.

– Awad et al. [2018, p. 63]

This work showed that there are some principles that seem universal. There
are some that are culturally specific. It also oversimplified in that it did not
include any uncertainty; all of the outcomes were definitive. One interesting
aspect is that, on average, people thought it was more important to save pedes-
trians than to save people in the vehicle; this means that it should not be up to
the owners and drivers of the vehicles to choose their own policies, as people
generally prefer to save their family than strangers.

2.5 Review

The main points you should have learned from this chapter are as follows:

• An agent system is composed of an agent and an environment.
• Agents have sensors and actuators to interact with the environment.
• An agent is composed of a body and interacting controllers.
• Agents are situated in time and must make decisions on what to do based

on their history of interaction with the environment.
• An agent has direct access to what it has remembered (its belief state)

and what it has just observed. At each point in time, an agent decides
what to do and what to remember based on its belief state and its current
observations.

• Complex agents are built modularly in terms of interacting hierarchical
layers.

• An intelligent agent requires knowledge that is acquired at design time,
offline or online.

• An agent’s decisions implicitly convey the preferences of the agent. It is
debatable whether it should be up to the owners or designers of agents
(such as autonomous vehicles) to set the preferences, as they have differ-
ent preferences than the rest of the population.

2.6 References and Further Reading

The model of agent systems is based on the constraint nets of Zhang and Mack-
worth [1995] and Rosenschein and Kaelbling [1995]. Walter [1950] presents a
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simple tortoise agent that has interesting behavior, and Walter [1951] describes
a version that learns. Luenberger [1979] is a readable introduction to the classi-
cal theory of agents interacting with environments. Turtle Geometry, by Abelson
and DiSessa [1981], investigates mathematics from the viewpoint of modeling
simple reactive agents.

The hierarchical control is based on Albus [1981] and the subsumption ar-
chitecture of Brooks [1986]. Simon [1996] argues for the importance of hierar-
chical control.

Kahneman [2011] provides compelling evidence for distinguishing two modes
of human thought: fast, instinctive and, emotional versus slow, deliberate, and
rational, which he calls Systems 1 and 2 to avoid oversimplification.

For more detail on agent control, see Dean and Wellman [1991], Latombe
[1991], and Agre [1995]. The methodology for building intelligent agents is
discussed by Haugeland [1985], Brooks [1991], Kirsh [1991b], and Mackworth
[1993].

Qualitative reasoning is described by Forbus and Hinrich [2017] and Forbus
[2019].

The moral machines experiment is described by Awad et al. [2018, 2020]
and Bonnefon [2021].

2.7 Exercises

Exercise 2.1 The start of Section 2.2 (page 58) argued that it was impossible to
build a representation of a world independently of what the agent will do with it.
This exercise lets you evaluate this argument.

Choose a particular world, for example, the things on top of your desk right
now.

(i) Get someone to list all of the individuals (things) that exist in this world (or
try it yourself as a thought experiment).

(ii) Try to think of twenty individuals that they missed. Make these as different
from each other as possible. For example, the ball at the tip of the rightmost
ballpoint pen on the desk, the part of the stapler that makes the staples bend,
or the third word on page 73 of a particular book on the desk.

(iii) Try to find an individual that cannot be described using your natural lan-
guage (such as a particular component of the texture of the desk).

(iv) Choose a particular task, such as making the desk tidy, and try to write down
all of the individuals in the world at a level of description relevant to this
task.

Based on this exercise, discuss the following statements:

(a) What exists in a world is a property of the observer.
(b) We need ways to refer to individuals in ways other than expecting each in-

dividual to have a separate name.
(c) Which individuals exist is a property of the task as well as of the world.
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(d) To describe the individuals in a domain, you need what is essentially a dic-
tionary of a huge number of words and ways to combine them, and this
should be able to be done independently of any particular domain.

Exercise 2.2 Consider the top-level controller of Example 2.6 (page 63).

(a) If the lower level reached the timeout without getting to the target position,
what does the agent do?

(b) The definition of the target position means that, when the plan ends, the top
level stops. This is not reasonable for the robot that can only change direction
and cannot stop. Change the definition so that the robot keeps going.

Exercise 2.3 The obstacle avoidance implemented in Example 2.5 (page 62) can
easily get stuck.

(a) Show an obstacle and a target for which the robot using the controller of
Example 2.5 (page 62) would not be able to get around (and will crash or
loop).

(b) Even without obstacles, the robot may never reach its destination. For ex-
ample, if the robot is close to its target position, but not close enough to have
arrived, it may keep circling forever without reaching its target. Design a
controller that can detect this situation and find its way to the target.

Exercise 2.4 Consider the “robot trap” in Figure 2.11.

(a) This question is to explore why it is so tricky for a robot to get to location g.
Explain what the current robot does. Suppose one was to implement a robot
that follows the wall using the “right-hand rule”: the robot turns left when
it hits an obstacle and keeps following a wall, with the wall always on its
right. Is there a simple characterization of the situations in which the robot
should keep following this rule or head towards the target?

g

Figure 2.11: A robot trap
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(b) An intuition of how to escape such a trap is that, when the robot hits a wall,
it follows the wall until the number of right turns equals the number of left
turns. Show how this can be implemented, explaining the belief state and
the functions of the layer.

Exercise 2.5 If the current target location were to be moved, the middle layer of
Example 2.5 (page 62) travels to the original position of that target and does not
try to go to the new position. Change the controller so that the robot can adapt to
targets moving.

Exercise 2.6 The current controller visits the locations in the to do list sequen-
tially.

(a) Change the controller so that it is opportunistic; when it selects the next
location to visit, it selects the location that is closest to its current position. It
should still visit all the locations.

(b) Give one example of an environment in which the new controller visits all
the locations in fewer time steps than the original controller.

(c) Give one example of an environment in which the original controller visits
all the locations in fewer time steps than the modified controller.

(d) Change the controller so that, at every step, the agent heads towards whichever
target location is closest to its current position.

(e) Can the controller from part (d) get stuck and never reach a target in an
example where the original controller will work? Either give an example in
which it gets stuck and explain why it cannot find a solution, or explain why
it gets to a goal whenever the original can.

Exercise 2.7 Change the controller so that the robot senses the environment to
determine the coordinates of a location. Assume that the body can provide the
coordinates of a named location.

Exercise 2.8 Suppose the robot has a battery that must be charged at a particular
wall socket before it runs out. How should the robot controller be modified to
allow for battery recharging?

Exercise 2.9 Suppose you have a new job and must build a controller for an in-
telligent robot. You tell your bosses that you just have to implement a command
function and a state transition function. They are very skeptical. Why these func-
tions? Why only these? Explain why a controller requires a command function
and a state transition function, but not other functions. Use proper English. Be
concise.

Exercise 2.10 Should the owners of autonomous cars be able to select the pref-
erences for their vehicles? Give three reasons why, and three reasons why not.
Which argument do you think is more persuasive? How should the preferences of
autonomous cars be determined?

Exercise 2.11 Consider the quote in Section 2.4 (page 71) from 2016: “self-driving
cars . . . The technology is essentially here.” Looking back, was that an accurate
assessment? Consider the subsequent development of self-driving cars and deter-
mine if that was accurate or overly optimistic. What is the current state of self-
driving technology?
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Part II

Reasoning and Planning
with Certainty

How can an agent represent its knowledge, reason, and plan, under
the assumption that it knows both what is true in the world and the
effects of its actions?
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Chapter 3

Searching for Solutions

Have you ever watched a crab on the shore crawling backward in search
of the Atlantic Ocean, and missing? That’s the way the mind of man
operates.

– H. L. Mencken (1880–1956)

The previous chapter discussed how an agent perceives and acts, but not how
its goals affect its actions. An agent could be programmed to act in the world
to achieve a fixed goal or set of goals, but then it would not adapt to changing
goals, and so would not be intelligent. An intelligent agent needs to reason
about its abilities and goals to determine what to do. This chapter abstracts the
problem of an agent deciding how to achieve a goal as the problem of searching
for a path in a graph.

3.1 Problem Solving as Search

In the simplest case of an agent deciding what it should do, the agent has a
perfect model of the world, with no uncertainty, and a goal to achieve. This
is either a flat (non-hierarchical) representation or a single level of a hierarchy
(page 58).

This problem can be abstracted to the mathematical problem of finding a
path from the start node to a goal node in a directed graph. Many other prob-
lems can also be mapped to this abstraction, so it is worthwhile considering
this level of abstraction. Most of this chapter explores various algorithms for
finding such paths.

Example 3.1 Computer maps provide path finding: showing how to go (drive,
ride, walk, or take transit) from one location to another. Finding the best route
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from a current location to a destination is a search problem. The state includes
mode of transportation (e.g., on foot or on a bus), the location of the traveler,
and the direction of travel. A legal route will include the roads (going the cor-
rect way down one-way streets) and intersections the traveler will traverse.

The best route could mean

• the shortest (least distance) route
• the quickest route
• the route that uses the least energy
• the lowest-cost route, where the cost takes into account time, money (e.g.,

fuel and tolls), and the route’s attractiveness.

Finding the shortest route is usually easiest to implement, because maps
contain distances and they can be assumed to not change, ignoring detours
due to roadworks or accidents. Estimating the time or the energy used is more
difficult. The route planner might need to take into account regular traffic vol-
umes, as well as local conditions, such as the weather or accidents. To estimate
the time, machine learning algorithms can be used.

This example is discussed more in Section 3.9 (page 120) on social issues.

This notion of search is computation solely inside the agent. It is different
from searching in the world, when an agent may have to act in the world; for
example, a robot searching for keys, lifting up cushions, and so on. It is also
different from searching the Web, which involves searching for information by
indexing huge amounts of data and trying to find the best response for each
search query. Searching in this chapter means finding a path to a goal node in
a graph.

Search underlies much of AI. When an agent is given a problem, it is usu-
ally given only a description that lets it recognize a solution, not an algorithm to
solve it. It has to search for a solution. The existence of NP-complete problems
(page 89), with efficient means to recognize solutions but no efficient methods
for finding them, indicates that searching is a necessary part of problem solv-
ing.

It is often believed that humans are able to use intuition to jump to solu-
tions to difficult problems. However, humans cannot find optimal solutions
to computationally difficult problems. Humans do not tend to solve general
problems; instead, they solve specific instances about which they may know
much more than the underlying search space. They often do not find optimal
solutions, but find satisficing, or good enough, solutions. Problems with lit-
tle structure, or ones in which the structure cannot be related to the physical
world, are very difficult for humans to solve. The existence of public key en-
cryption codes, where the search space is clear and the test for a solution is
given – which humans nevertheless have no hope of solving and computers
cannot solve in a realistic time frame – demonstrates the difficulty of search.

The difficulty of search and the fact that humans are able to solve some
search problems efficiently suggests that computer agents should exploit knowl-
edge about special cases to guide them to a solution. This extra knowledge
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beyond the search space is called heuristic knowledge. This chapter considers
one kind of heuristic knowledge in the form of an estimate of the cost from a
node to a goal.

3.2 State Spaces

One general formulation of intelligent action is in terms of a state space. A state
contains all of the information necessary to predict the effects of an action and
to determine whether a state satisfies the goal. State-space searching assumes:

• The agent has perfect knowledge of the state space.
• At any time, it knows what state it is in; the world is thus fully observable

(page 29).
• The agent has a set of actions with known deterministic effects (page 30).
• The agent has a goal to achieve and can determine whether a state satis-

fies the goal.

A solution to a search problem is a sequence of actions that will get the agent
from its current state to a state that satisfies the goal.

Example 3.2 Consider the robot delivery domain of Figure 3.1, where there
are offices around a central lab. The only way a robot can get through a door-
way is to push the door open in the direction shown. The task is to find a path
from one location to another. Assuming that the agent can use a lower-level
controller to get from one location to a neighboring location, the actions for
the search are traveling between neighboring locations. This can be modeled
as a state-space search problem, where the states are locations. Some of the
locations in Figure 3.1 are named and used as exemplars.

Consider an example problem where the robot starts at location A, and the
goal is to get to location G. Thus, G is the only state that satisfies the goal. A
solution is a sequence of actions that moves the robot from A to G.

AC D

B F

E
H

G
J

Figure 3.1: A delivery robot domain with interesting locations labeled
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Example 3.3 Consider a video game played on a grid, where an agent can
move up, down, left, or right one step as long as the move is not blocked by a
wall. The agent has to collect four coins, C1, . . . , C4, where each coin starts at a
known position. The agent uses one unit of fuel at each step, and cannot move
if it has no fuel. It can get filled up (to 20 units of fuel) at the fuel station. In this
case the state needs to take into account the position of the agent, the amount
of fuel, and for each coin whether it has collected that coin. The state could be
represented as the tuple

(x, y, fuel, c1, c2, c3, c4)

where (x, y) is the position of the agent, fuel is the amount of fuel the agent has,
and ci is true when the agent has collected coin Ci. True is written as t and false
as f here. The goal might be for the agent to have collected all coins and be at
position (1, 1), which is the state

(1, 1, ?, t, t, t, t)

where ? means what the fuel is at the end does not matter. All states where the
agent is at (1, 1) and all ci are true are goal states.

Part of the environment is shown in Figure 3.2(a), where the agent cannot
move into a blacked-out square. It could get filled up at position (4, 9) and
collect coin C3 at position (5, 7). The state where the agent, Rob, is at position
(5, 8) with 6 units of fuel, and has only collected coin C2, is

(5, 8, 6, f , t, f , f ).

Figure 3.2(b) shows part of the state space for this problem.

(5,8,6,f,t,f,f )

(5,9,5,f,t,f,f ) (5,7,5,f,t,t,f )

(4,9,20,f,t,f,f )

(5,8,4,f,t,f,f )

(5,8,4,f,t,t,f )

(6,8,5,f,t,f,f )

up down right

left
up

right

up

Fuel

Rob

C3

54

9

8

7

(a) (b)

(5,9,19,f,t,f,f )

…

…

…

Figure 3.2: Part of the video game and state space of Example 3.3
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Example 3.4 The delivery robot may have a number of parcels to deliver to
various locations, where each parcel has its own delivery destination. In this
case, the state may consist of the location of the robot, which parcels the robot
is carrying, and the locations of the other parcels. The possible actions may be
for the robot to move, to pick up parcels that are at the same location as the
robot, or to put down some or all of the parcels it is carrying. A goal state may
be one in which some specified parcels are at their delivery destination. There
may be many goal states because where the robot is or where some of the other
parcels are in a goal state does not matter.

Notice that this representation has ignored many details, for example, how
the robot is carrying the parcels (which may affect whether it can carry other
parcels), the battery level of the robot, whether the parcels are fragile or dam-
aged, and the color of the floor. Not having these details as part of the state
space implies that they are not relevant to the problem at hand.

Example 3.5 In a simplified tutoring agent, a state may consist of the set of
topics that the student knows, and the topics they have been introduced to, but
do not know yet. The action may be teaching a lesson on a particular topic, with
preconditions that the student knows any prerequisite topic, and the result that
the student knows the topic of the lesson. The aim is for a student to know a
particular set of topics.

If the effect of teaching also depends on the aptitude of the student, this
detail must be part of the state space as well. The state does not need to include
the items the student is carrying if what they are carrying does not affect the
result of actions or whether the goal is achieved.

A state-space search problem consists of:

• a set of states
• a distinguished state called the start state
• for each state, a set of actions available to the agent in that state
• an action function that, given a state and an action, returns a new state
• a goal specified as a Boolean function, goal(s), that is true when state s

satisfies the goal, in which case s is a goal state
• a criterion that specifies the quality of an acceptable solution; for exam-

ple, any sequence of actions that gets the agent to the goal state may be
acceptable, or there may be costs associated with actions and the agent
may be required to find a sequence that has minimal total cost.

A solution that is best according to some criterion is called an optimal solution.
An agent may be satisfied with any solution that is within, say, 10% of optimal.

This framework is extended in subsequent chapters to include cases where
the states have structure that can be exploited, where the state is not fully
observable (e.g., the robot does not know where the parcels are initially, or
the teacher does not know the aptitude of the student), where the actions are
stochastic (e.g., the robot may overshoot, or a student perhaps does not learn
a topic that is taught), and with complex preferences in terms of rewards and
punishments, not just a set of goal states.
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3.3 Graph Searching

In this chapter, the problem of finding a sequence of actions to achieve a goal
is abstracted as searching for paths in directed graphs. Searching in graphs
provides an appropriate abstract model of problem solving independent of a
particular domain.

A directed graph consists of a set of nodes and a set of directed arcs between
nodes. The idea is to find a path along these arcs from the start node to a goal
node.

The abstraction is necessary because there may be more than one way to
represent a problem as a graph. The examples in this chapter are in terms of
state-space searching, where nodes represent states and arcs represent actions.
Future chapters consider other ways to use graphs for problem solving.

3.3.1 Formalizing Graph Searching

A directed graph consists of:

• a set N of nodes
• a set A of arcs, where an arc is an ordered pair of nodes.

In this definition, a node could be anything. There may be infinitely many
nodes and arcs. A graph need not be represented explicitly; only a procedure
to generate nodes and arcs as needed is required.

The arc 〈n1, n2〉 is an outgoing arc from n1 and an incoming arc to n2.
A node n2 is a neighbor of n1 if there is an arc from n1 to n2; that is, if

〈n1, n2〉 ∈ A. Note that being a neighbor does not imply symmetry; just because
n2 is a neighbor of n1 does not imply that n1 is a neighbor of n2. Arcs may be
labeled, for example, with the action that will take the agent from a node to its
neighbor or with the cost of an action or both.

A path from node s to node g is a sequence of nodes 〈n0, n1, . . . , nk〉 such
that s = n0, g = nk, and 〈ni−1, ni〉 ∈ A; that is, there is an arc from ni−1 to ni for
each i. Sometimes it is useful to view a path as the sequence of arcs, 〈n0, n1〉 ,
〈n1, n2〉 , . . . , 〈nk−1, nk〉, or a sequence of labels of these arcs. Path 〈n0, n1, . . . , ni〉
is an initial part of 〈n0, n1, . . . , nk〉, when i ≤ k.

A goal is a Boolean function on nodes. Node n is a goal node if goal(n) is
true.

To encode problems as graphs, one node is identified as the start node. A
solution is a path from the start node to a goal node.

Sometimes there is a cost – a non-negative number – associated with arcs.
The cost of arc

〈
ni, nj

〉
is written as cost(

〈
ni, nj

〉
).

The costs of arcs induce a cost of paths. Given a path p = 〈n0, n1, . . . , nk〉,
the cost of path p is the sum of the costs of the arcs in the path:

cost(p) =
k

∑
i=1

cost(〈ni−1, ni〉) = cost(〈n0, n1〉) + · · ·+ cost(〈nk−1, nk〉).
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An optimal solution is one of the solutions that has the lowest cost. That
is, an optimal solution is a path p from the start node to a goal node such that
there is no path p′ from the start node to a goal node where cost(p′) < cost(p).

A state-space graph is a special type of graph where the nodes are the
states, and there is an arc

〈
ni, nj

〉
if there is an action that is possible to be

carried out in ni and the effect of the action is to be in state nj. Future chapters
consider other ways to represent problems as graphs.

Example 3.6 Consider the problem of the delivery robot finding a path from
location A to location G in the domain shown in Figure 3.1 (page 81). The nodes
are the labelled locations. Assume that the robot is only able to travel in one
direction between the locations. Figure 3.3 shows the resulting graph where the
nodes represent locations and the arcs represent possible single steps between
locations. Each arc is shown with its associated cost, an estimate of the travel
time of getting from one location to the next.

In this graph, the set of nodes is {A, B, C, D, E, F, G, H, J} and the set of arcs
is {〈A, B〉 , 〈A, C〉 , 〈A, D〉 , 〈B, E〉 , . . .}. Node E has no neighbors. Node B has
two neighbors, namely E and F. A is not a neighbor of B as there is no arc from
B to A.

There are three paths from A to G:

〈A, B, F, D, H, G〉
〈A, D, H, G〉
〈A, C, J, G〉

If A were the start node and G were the unique goal node, all three paths would
be a solution to the graph-searching problem. The second, with cost 4+ 4+ 3 =
11, is an optimal solution.

A cycle is a non-empty path where the end node is the same as the start
node – that is, 〈n0, n1, . . . , nk〉 such that n0 = nk. A directed graph without
any cycles is called a directed acyclic graph (DAG). Note that this should be
called an acyclic directed graph, because it is a directed graph that happens to

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3
J

7

4

Figure 3.3: A graph with arc costs for the delivery domain of Figure 3.1
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be acyclic, not an acyclic graph that happens to be directed, but DAG sounds
better than ADG! The graph of Figure 3.3 (page 85) is a DAG.

A tree is a DAG where there is one node with no incoming arcs and every
other node has exactly one incoming arc. The node with no incoming arcs is
called the root of the tree. A node with no outgoing arcs is called a leaf. In
a tree, an arc goes from a parent to a child; the family-tree metaphor, with
grandparents, siblings, and so on, is often used.

In many problems the search graph is not given explicitly, but is dynami-
cally constructed as needed. For the search algorithms, all that is required is a
way to generate the neighbors of a node and to determine if a node is a goal
node.

The forward branching factor of a node is the number of outgoing arcs
from the node. The backward branching factor of a node is the number of in-
coming arcs to the node. These factors provide measures for the complexity of
graph algorithms. In the time and space complexity discussed below, assume
that the branching factors are bounded, meaning they are all less than some
positive integer.

Example 3.7 In the graph of Figure 3.3 (page 85), the forward branching
factor of node A is three because there are three outgoing arcs from node A. The
backward branching factor of node A is zero; there are no incoming arcs to node
A. The forward branching factor of E is zero and the backward branching factor
of E is one. The forward branching factor of node B is two and the backward
branching factor of B is one.

The branching factor is an important key component in the size of the graph.
If the forward branching factor for each node is b, and the graph is a tree, there
are bn nodes that are n arcs away from any node. (This is only possible if the
tree is infinite.)

3.4 A Generic Searching Algorithm

This section describes a generic algorithm to search for a solution path in a
graph. The algorithm calls procedures that can be coded to implement various
search strategies.

The intuitive idea behind the generic search algorithm, given a graph, a
start node, and a goal predicate, is to explore paths incrementally from the start
node. This is done by maintaining a frontier (or fringe) of paths from the start
node. The frontier contains all of the paths that could form initial segments
of paths from the start node to a goal node. (See Figure 3.4 (page 87), where
the frontier is the set of paths to the gray-shaded nodes.) Initially, the frontier
contains the trivial path containing just the start node, and no arcs. As the
search proceeds, the frontier expands into the unexplored nodes until a goal
node is encountered. Different search strategies are obtained by providing an
appropriate implementation of the frontier.
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The generic search algorithm is shown in Figure 3.5 (page 88). The frontier
is a set of paths. Initially, the frontier contains the path of zero cost consisting
of just the start node. At each step, the algorithm removes a path 〈n0, . . . , nk〉
from the frontier. If goal(nk) is true (i.e., nk is a goal node), it has found a
solution and returns the path 〈n0, . . . , nk〉. Otherwise, the path is extended by
one more arc by finding the neighbors of nk. For every neighbor n of nk, the
path 〈n0, . . . , nk, n〉 is added to the frontier. This step is known as expanding
the path 〈n0, . . . , nk〉.

This algorithm has a few features that should be noted:

• Which path is selected at line 13 defines the search strategy. The selection
of a path can affect the efficiency; see the box on page 89 for more details
on the use of “select”.

• It is useful to think of the return at line 15 as a temporary return, where a
caller can retry the search to get another answer by continuing the while
loop. In languages that support object-oriented programming, such as
Python, retry can be implemented by having a class that keeps the state
of the search and a search() method that returns the next solution.

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

Figure 3.4: Problem solving by graph searching
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• If the procedure returns ⊥ (“bottom”), there are no solutions, or no re-
maining solutions if the search has been retried.

• The algorithm only tests if a path ends in a goal node after the path has
been selected from the frontier, not when it is added to the frontier. There
are two important reasons for this. There could be a costly arc from a
node on the frontier to a goal node. The search should not always return
the path with this arc, because a lower-cost solution may exist. This is
crucial when the lowest-cost path is required. A second reason is that it
may be expensive to determine whether a node is a goal node, and so this
should be delayed in case the computation is not necessary.

3.5 Uninformed Search Strategies

A problem determines the graph, the start node, and the goal but not which
path to select from the frontier. This is the job of a search strategy. A search
strategy defines the order in which paths are selected from the frontier. It spec-
ifies which path is selected at line 13 of Figure 3.5. Different strategies are ob-
tained by modifying how the selection of paths in the frontier is implemented.

This section presents four uninformed search strategies that do not take
into account the location of the goal. Intuitively, these algorithms ignore where
they are going until they find a goal and report success.

1: procedure Search(G, S, goal)
2: Inputs
3: G: graph with nodes N and arcs A
4: s: start node
5: goal: Boolean function of nodes
6: Output
7: path from s to a node for which goal is true
8: or ⊥ if there are no solution paths
9: Local

10: frontier: set of paths
11: frontier := {〈s〉}
12: while frontier �= {} do
13: select and remove 〈n0, . . . , nk〉 from frontier
14: if goal(nk) then
15: return 〈n0, . . . , nk〉
16: frontier := frontier∪ {〈n0, . . . , nk, n〉 : 〈nk, n〉 ∈ A}
17: return ⊥

Figure 3.5: Search: generic graph-searching algorithm
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Non-deterministic Choice

In many AI programs, we want to separate the definition of a solution from
how it is computed. Usually, the algorithms are non-deterministic, which
means that there are choices in the program that are left unspecified. There
are two forms of non-determinism:

• In don’t-care non-determinism, if one selection does not lead to a solu-
tion, neither will other selections. Don’t-care non-determinism is used
in resource allocation, where a number of requests occur for a limited
number of resources, and a scheduling algorithm has to select who gets
which resource at each time. Correctness should not be affected by the
selection, but efficiency and termination may be. When there is an in-
finite sequence of selections, a selection mechanism is fair if a request
that is repeatedly available to be selected will eventually be selected.
The problem of an element being repeatedly not selected is called star-
vation. In this context, a heuristic is a rule-of-thumb that can be used to
select a value.

• In don’t-know non-determinism, just because one choice did not lead
to a solution does not mean that other choices will not. It is useful to
think of an oracle that could specify, at each point, which choice will
lead to a solution.

Don’t-know non-determinism plays a large role in computational
complexity theory. A decision problem is a problem with a yes or no
answer. The class P consists of decision problems solvable in time com-
plexity polynomial in the size of the problem. The class NP, of non-
deterministic polynomial time problems, contains decision problems
that could be solved in polynomial time with an oracle that chooses
the correct value at each choice in constant time or, equivalently, if a
solution is verifiable in polynomial time. It is widely conjectured that
P �= NP, which would mean that no such oracle can exist. One pivotal
result of complexity theory is that the hardest problems in the NP class
are all equally complex; if one can be solved in polynomial time, they
all can. These problems are NP-complete. A problem is NP-hard if it is
at least as hard as an NP-complete problem.

In a non-deterministic procedure, pretend that an oracle makes an
appropriate choice at each time. A choose statement will result in a
choice that will lead to success, or will fail if there are no such choices.
A non-deterministic procedure may have multiple answers, where there
are multiple choices that succeed, and will fail if there are no applicable
choices. An explicit fail in the code indicates a choice that should not
succeed. Because our agent does not have an oracle, it has to search
through the space of alternate choices.

This book consistently uses the term select for don’t-care non-determinism
and choose for don’t-know non-determinism.
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3.5.1 Breadth-First Search

In breadth-first search the frontier is implemented as a FIFO (first-in, first-out)
queue. Thus, the path that is selected from the frontier is the one that was
added earliest. The paths from the start node are generated in order of the
number of arcs in the path. One of the paths with the fewest arcs is selected at
each iteration.

Example 3.8 Consider the tree-shaped graph in Figure 3.6. Suppose the start
node is the node at the top, and the children of a node are added in a left-to-
right order. In breadth-first search, the order in which the paths are expanded
does not depend on the location of the goal. The nodes at the end of the first 16
paths expanded are numbered in order of expansion in the figure. The shaded
nodes are the nodes at the ends of the paths on the frontier after the first 16
iterations.

Example 3.9 Consider breadth-first search from A in the graph given in Figure
3.3 (page 85). The costs are ignored in breadth-first search, so it is searching in
the space without weights, as shown in Figure 3.7 (page 91).

Initially, the frontier is [〈A〉]. This is extended by A’s neighbors, making the
frontier [〈A, B〉, 〈A, C〉, 〈A, D〉]. These are the paths of length one starting at A.
The next three paths expanded are 〈A, B〉, 〈A, C〉, and 〈A, D〉, after which the
frontier is

[〈A, B, E〉 , 〈A, B, F〉 , 〈A, C, J〉 , 〈A, D, H〉].
These are the paths of length two starting at A. These are the next paths ex-
panded, at which stage the frontier contains the paths of length three from A,

1
2

4 5

8 9 10 11 12 13

3

6 7

1615

14

Figure 3.6: The order in which paths are expanded in breadth-first search
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namely

[〈A, B, F, D〉 , 〈A, C, J, G〉 , 〈A, D, H, G〉].
When 〈A, C, J, G〉 is selected, it is returned as a solution.

In breadth-first search, each path on the frontier has either the same number
of arcs as, or one more arc than, the next path on the frontier that is expanded.

Suppose the branching factor of the search is b. If the next path to be se-
lected on the frontier contains n arcs, there are at least bn−1 elements of the
frontier. All of these paths contain n or n + 1 arcs. Thus, both space and time
complexities to find a solution are exponential in the number of arcs of the path
to a goal with the fewest arcs. This method is guaranteed to find a solution if
one exists and will find a solution with the fewest arcs.

Breadth-first search is useful when

• the problem is small enough so that space is not a problem, such as when
the graph is already stored, and

• a solution containing the fewest arcs is required.

It is a poor method when all solutions have many arcs or there is some heuristic
knowledge available. It is not used very often for large problems where the
graph is dynamically generated because of its exponential space complexity.

3.5.2 Depth-First Search

In depth-first search, the frontier acts like a LIFO (last-in, first-out) stack of
paths. In a stack, elements are added and removed from the top of the stack.
Using a stack means that the path selected and removed from the frontier at
any time is the last path that was added.

Example 3.10 Consider the tree-shaped graph in Figure 3.8 (page 92). Sup-
pose the start node is the root of the tree (the node at the top). As depth-first
search does not define the order of the neighbors, suppose for this graph that
the children of each node are ordered from left to right, and are added to the
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Figure 3.7: Delivery graph without arc costs
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92 3. Searching for Solutions

stack in reverse order so that the path to the leftmost neighbor is added to the
stack last (and so removed first).

In depth-first search, like breadth-first search, the order in which the paths
are expanded does not depend on the goal. The nodes at the end of the first 16
paths expanded are numbered in order of expansion in Figure 3.8. The shaded
nodes are the nodes at the ends of the paths on the frontier after the first 16
steps, assuming none of the expanded paths end at a goal node.

The first six paths expanded, 〈1〉, 〈1, 2〉, 〈1, 2, 3〉, 〈1, 2, 3, 4〉, 〈1, 2, 3, 4, 5〉, and
〈1, 2, 3, 4, 5, 6〉, are all initial parts of a single path. The node at the end of this
path (node 6) has no neighbors. The seventh path expanded is 〈1, 2, 3, 4, 7〉.
The next path expanded after path p always contains an initial segment of path
p with one extra node.

Implementing the frontier as a stack results in paths being pursued in a
depth-first manner – searching one path to its completion before trying an al-
ternative path. This method is said to involve backtracking: the algorithm
selects a first alternative at each node, and it backtracks to the next alternative
when it has pursued all of the paths from the first selection. Some paths may
be infinite when the graph has cycles or infinitely many nodes, in which case a
depth-first search may never stop.

This algorithm does not specify the order in which the paths to the neigh-
bors are added to the frontier. The efficiency of the algorithm can be sensitive
to the order in which the neighbors are expanded.

Figure 3.9 (page 93) shows an alternative implementation of depth-first
search that uses recursion to implement the stack. The call DF search(G, 〈s〉 , goal),
if it halts, returns a path from node s to a goal node, or ⊥ if there is no path.

1
2

3 13

4 12 14
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8 10

9 11

5

6

15 16

Figure 3.8: The order paths are expanded in depth-first search

https://doi.org/10.1017/9781009258227.006


3.5. Uninformed Search Strategies 93

Backtracking is achieved by the recursive call returning ⊥ and the next neigh-
bor being explored.

Example 3.11 Consider depth-first search from A to G in the graph of Figure
3.3 (page 85). In this example, the frontier is shown as a list of paths with the top
of the stack at the left of the list. The ordering of the neighbors matters; assume
that the neighbors are ordered so they are expanded in alphabetic ordering.

Initially, the frontier is 〈A〉.
At the next stage, the frontier contains the paths

[〈A, B〉 , 〈A, C〉 , 〈A, D〉].
Next, the path 〈A, B〉 is selected because it is at the top of the stack. It is ex-
panded, giving the frontier

[〈A, B, E〉 , 〈A, B, F〉 , 〈A, C〉 , 〈A, D〉].
Next, the path 〈A, B, E〉 is removed. E has no neighbors, and so no paths are
added. The resulting frontier is

[〈A, B, F〉 , 〈A, C〉 , 〈A, D〉].
At this stage, the path 〈A, B, F〉 is expanded, resulting in the frontier

[〈A, B, F, D〉 , 〈A, C〉 , 〈A, D〉].
The next frontiers are

[〈A, B, F, D, H〉 , 〈A, C〉 , 〈A, D〉],
[〈A, B, F, D, H, G〉 , 〈A, C〉 , 〈A, D〉].

1: procedure DF search(G, 〈n0, . . . , nk〉 , goal)
2: Inputs
3: G: graph with nodes N and arcs A
4: 〈n0, . . . , nk〉: path from node n0 to node nk
5: goal: Boolean function on nodes
6: Output
7: path that extends 〈n0, . . . , nk〉 to a goal node
8: or ⊥ if there is no such path
9: if goal(nk) then

10: return 〈n0, . . . , nk〉
11: else
12: for each arc 〈nk, n〉 ∈ A do
13: res := DF search(G, 〈n0, . . . , nk, n〉 , goal)
14: if res �= ⊥ then
15: return res
16: return ⊥

Figure 3.9: Depth-first search using recursion
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The path 〈A, B, F, D, H, G〉 is selected from the frontier and returned as the so-
lution found.

Suppose 〈n0, . . . , nk〉 is the path selected on line 13 of Figure 3.5 (page 88). In
depth-first search, every other path on the frontier is of the form 〈n0, . . . , ni, m〉,
for some index i < k and some node m that is a neighbor of ni; that is, it follows
the selected path for a number of arcs and then has exactly one extra node.
Thus, the frontier contains only the current path and paths to neighbors of the
nodes on this path. If the branching factor is b and the selected path, p, on the
frontier has k arcs, there can be at most k ∗ (b− 1) other paths on the frontier.
These paths all follow an initial segment of path p, and have one extra node, a
neighbor of a node in path p, and there are at most (b− 1) neighbors from each
node. Therefore, for depth-first search, the space used at any stage is linear in
the number of arcs from the start to the current node.

If there is a solution on the first branch searched, the time complexity is
linear in the number of arcs in the path. In the worst case, depth-first search
can get trapped on infinite branches and never find a solution, even if one
exists, for infinite graphs or for graphs with cycles. If the graph is a finite tree,
with the forward branching factor less than or equal to b and with all paths
from the start having k or fewer arcs, the worst-case time complexity is O(bk).

Example 3.12 Consider the delivery graph presented in Figure 3.10 (page 96),
in which the agent has more freedom in moving between locations, but can get
into cycles. An infinite path leads from A to B to F and back to B. Depth-first
search may follow this path forever, never considering alternative paths. If
the neighbors are selected in alphabetic ordering, the frontiers for the first few
iterations of depth-first search from A are

[〈A〉]
[〈A, B〉 , 〈A, C〉 , 〈A, D〉]
[〈A, B, E〉 , 〈A, B, F〉 , 〈A, C〉 , 〈A, D〉]
[〈A, B, F〉 , 〈A, C〉 , 〈A, D〉]
[〈A, B, F, B〉 , 〈A, B, F, D〉 , 〈A, C〉 , 〈A, D〉]
[〈A, B, F, B, E〉 , 〈A, B, F, B, F〉 , 〈A, B, F, D〉 , 〈A, C〉 , 〈A, D〉]
[〈A, B, F, B, F〉 , 〈A, B, F, D〉 , 〈A, C〉 , 〈A, D〉].

Depth-first search will never halt for this example. The last three paths are
never explored.

Because depth-first search is sensitive to the order in which the neighbors
are added to the frontier, care must be taken to do it sensibly. This ordering may
be done statically (so that the order of the neighbors is fixed) or dynamically
(where the ordering of the neighbors depends on the goal).

Depth-first search is appropriate when

• space is restricted
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Comparing Algorithms

Algorithms (including search algorithms) can be compared on

• the time taken
• the space used
• the quality or accuracy of the results.

The time taken, space used, and accuracy of an algorithm are a function of
the inputs to the algorithm. Computer scientists talk about the asymptotic
complexity of algorithms, which specifies how the time or space grows with
the input size of the algorithm. An algorithm has time (or space) complexity
O(f (n)) – read “big-oh of f (n)” – for input size n, where f (n) is some function
of n, if there exist constants n0 and k such that the time, or space, of the algo-
rithm is less than k ∗ f (n) for all n > n0. The most common types of functions
are exponential functions such as 2n, 3n, or 1.015n; polynomial functions such
as n5, n2, n, or n1/2; and logarithmic functions, log n. In general, exponen-
tial algorithms get worse more quickly than polynomial algorithms which, in
turn, are worse than logarithmic algorithms.

An algorithm has time or space complexity Ω(f (n)) for input size n if
there exist constants n0 and k such that the time or space of the algorithm is
greater than k ∗ f (n) for all n > n0. An algorithm has time or space complexity
Θ(f (n)) if it has complexity O(f (n)) and Ω(f (n)). Typically, you cannot give
a Θ(f (n)) complexity on an algorithm, because most algorithms take differ-
ent times for different inputs. Thus, when comparing algorithms, one has to
specify the class of problems that will be considered.

Saying algorithm A is better than B, using a measure of either time, space,
or accuracy, could mean any one of:

• the worst case of A is better than the worst case of B
• A works better in practice, or the average case of A is better than the

average case of B, where you average over typical problems
• there is a subclass of problems for which A is better than B, so which

algorithm is better depends on the problem
• for every problem, A is better than B.

The worst-case asymptotic complexity is often the easiest to show, but it is
usually the least useful. Characterizing the subclass of problems for which
one algorithm is better than another is usually the most useful, if it is easy to
determine which subclass a given problem is in. Unfortunately, this charac-
terization is usually very difficult to obtain.

Characterizing when one algorithm is better than the other can be done
either theoretically using mathematics or empirically by building implemen-
tations. Theorems are only as valid as the assumptions on which they are
based. Similarly, empirical investigations are only as good as the suite of test
cases and the actual implementations of the algorithms. It is easy to disprove
a conjecture that one algorithm is better than another for some class of prob-
lems by showing a counterexample, but it is usually much more difficult to
prove such a conjecture.
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• many solutions exist, perhaps with long paths, particularly for the case
where nearly all paths lead to a solution, or

• the order in which the neighbors of a node are added to the stack can be
tuned so that solutions are found on the first try.

It is a poor method when

• it is possible to get caught in infinite paths, which occurs when the graph
is infinite or when there are cycles in the graph

• solutions exist at shallow depth, because in this case the search may ex-
plore many long paths before finding the short solutions, or

• there are multiple paths to a node, for example, on an n× n grid, where
all arcs go right or down, there are exponentially many paths from the
top-left node, but only n2 nodes.

Depth-first search is the basis for a number of other algorithms, including iter-
ative deepening, described next.

3.5.3 Iterative Deepening

Neither of the preceding methods is ideal. Breadth-first search, which guaran-
tees that a path will be found, requires exponential space. Depth-first search
may not halt on infinite graphs or graphs with cycles. One way to combine the
space efficiency of depth-first search with the optimality of breadth-first search
is to use iterative deepening. The idea is to recompute the elements of the
breadth-first frontier rather than storing them. Each recomputation can be a
depth-first search, which thus uses less space.

Iterative deepening repeatedly calls a depth-bounded searcher, a depth-
first searcher that takes in an integer depth bound and never explores paths
with more arcs than this depth bound. Iterative deepening first does a depth-
first search to depth 1 by building paths of length 1 in a depth-first manner. If
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Figure 3.10: A graph, with cycles, for the delivery robot domain. Edges of the
form X ←→ Y mean there is an arc from X to Y and an arc from Y to X. That
is, 〈X, Y〉 ∈ A and 〈Y, X〉 ∈ A
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that does not find a solution, it can build paths to depth 2, then depth 3, and
so on until a solution is found. When a search with depth bound n fails to find
a solution, it can throw away all of the previous computation and start again
with a bound of n + 1. Eventually, it will find a solution if one exists, and, as
it is enumerating paths in order of the number of arcs, a path with the fewest
arcs will always be found first.

To ensure it halts for finite graphs, iterative deepening search needs to dis-
tinguish between

• failure because the depth bound was reached
• failure due to exhausting the search space.

In the first case, the search must be retried with a larger depth bound. In the
second case, it is a waste of time to try again with a larger depth bound, because
no path exists no matter what the depth, and so the whole search should fail.

Pseudocode for iterative deepening search, ID search, is presented in Figure
3.11 (page 98). The local procedure Depth bounded search implements a depth-
bounded depth-first search, using recursion to keep the stack, similar to Figure
3.9 (page 93), but with a limit on the length of the paths for which it is searching.
It finds paths of length k + b, where k is the path length of the given path from
the start and b is a non-negative integer.

The iterative deepening searcher calls Depth bounded search for increasing
depth bounds. Depth bounded search only needs to check for a goal when b =
0, because it is only called when there are no solutions for lower bounds.
ID search explores the paths to goal nodes in the same order as breadth-first
search, but regenerates the paths.

To ensure that iterative deepening search fails whenever breadth-first search
would fail, it needs to keep track of when increasing the bound could help find
an answer. A depth-bounded search fails naturally – it fails by exhausting the
search space – if the search did not prune any paths due to the depth bound. In
this case, the program can stop and report no paths. This is handled through
the variable hit depth bound, which is false when Depth bounded search is called
initially, and becomes true if the search is pruned due to the depth bound. If
it is true at the end of a depth-bounded search, the search failed due to hit-
ting the depth bound, and so the depth bound can be increased, and another
depth-bounded search is carried out.

The obvious problem with iterative deepening is the wasted computation
that occurs at each step. This, however, may not be as bad as one might think,
particularly if the branching factor is high. Consider the running time of the
algorithm. Assume a constant branching factor of b > 1. Consider the search
where the bound is k. At depth k, there are bk nodes; each of these has been
generated once. The nodes at depth k− 1 have been generated twice, those at
depth k− 2 have been generated three times, and so on, and the nodes at depth
1 have been generated k times. Thus, the total number of paths expanded is

bk + 2bk−1 + 3bk−2 + · · ·+ kb = bk(1 + 2b−1 + 3b−2 + · · ·+ kb1−k)
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1: procedure ID search(G, s, goal)
2: Inputs
3: G: graph with nodes N and arcs A
4: s: start node
5: goal: Boolean function on nodes
6: Output
7: path from s to a node for which goal is true
8: or ⊥ if there is no such path
9: Local

10: hit depth bound: Boolean
11: bound: integer
12: procedure Depth bounded search(〈n0, . . . , nk〉 , b)
13: Inputs
14: 〈n0, . . . , nk〉: path
15: b: integer, b ≥ 0
16: Output
17: path to goal of length k + b if one exists
18: if b > 0 then
19: for each arc 〈nk, n〉 ∈ A do
20: res := Depth bounded search(〈n0, . . . , nk, n〉 , b− 1)
21: if res �= ⊥ then
22: return res
23: else if goal(nk) then
24: return 〈n0, . . . , nk〉
25: else if nk has any neighbors then
26: hit depth bound := true
27: return ⊥
28: bound := 0
29: repeat
30: hit depth bound := false
31: res := Depth bounded search(〈s〉 , bound)
32: if res �= ⊥ then
33: return res
34: bound := bound + 1
35: until not hit depth bound
36: return ⊥

Figure 3.11: ID search: iterative deepening search
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b−1 nodes. Thus,

iterative deepening has an asymptotic overhead of b
(b−1) times the cost of ex-

panding the paths at depth k using breadth-first search. Thus, when b = 2 there
is an overhead factor of 2, and when b = 3 there is an overhead of 1.5. This algo-
rithm is O(bk) and there cannot be an asymptotically better uninformed search
strategy. Note that, if the branching factor is close to one, this analysis does not
work because then the denominator would be close to zero; see Exercise 3.9
(page 125).

3.5.4 Lowest-Cost-First Search

For many domains, arcs have non-unit costs, and the aim is to find an optimal
solution, a solution such that no other solution has a lower cost. For example,
for a delivery robot, the cost of an arc may be resources (e.g., time, energy)
required by the robot to carry out the action represented by the arc, and the
aim is for the robot to solve a given goal using fewest resources. The cost for a
tutoring agent (Example 3.5 (page 83)) may be the time and effort required by
a student. In each of these cases, the searcher should try to minimize the cost
of the path found to a goal.

The search algorithms considered thus far are not guaranteed to find the
minimum-cost paths; they have not used the arc cost information at all. Breadth-
first search finds a solution with the fewest arcs first, but the distribution of arc
costs may be such that a path with the fewest arcs is not one of minimal cost.

The simplest search method that is guaranteed to find a minimum-cost
path is lowest-cost-first search (also called least-cost search or uniform-cost
search), which is similar to breadth-first search, but instead of expanding a
path with the fewest number of arcs, it selects a path with the lowest cost. This
is implemented by treating the frontier as a priority queue ordered by the cost
function (page 84).

Example 3.13 Consider lowest-cost-first search from A to F in the running
example of the delivery graph given in Figure 3.3 (page 85). In this example,
paths are shown with a subscript showing the cost of the path. The frontier is
shown as a list of paths in order of cost.

Initially, the frontier is [〈A〉0]. At the next stage it is [〈A, B〉2 , 〈A, C〉3 , 〈A, D〉4].
The path 〈A, B〉 is expanded, with the resulting frontier

[〈A, C〉3 , 〈A, B, E〉4 , 〈A, D〉4 〈A, B, F〉5].
The path 〈A, C〉 is then expanded, resulting in the frontier

[〈A, B, E〉4 , 〈A, D〉4 〈A, B, F〉5 , 〈A, C, J〉10].
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Next, the path 〈A, B, E〉 is expanded. E has no neighbors, so the path is re-
moved. Next, the path 〈A, D〉 is expanded, resulting in the frontier

[〈A, B, F〉5 , 〈A, D, H〉8 , 〈A, C, J〉10].

Then the path to 〈A, B, F〉 is expanded, resulting in the frontier

[〈A, B, F, D〉7 , 〈A, D, H〉8 , 〈A, C, J〉10].

Then the path 〈A, B, F, D〉 is expanded, and the resulting frontier is

[〈A, D, H〉8 , 〈A, C, J〉10 , 〈A, B, F, D, H〉11].

The path 〈A, D, H〉 is expanded, giving

[〈A, C, J〉10 , 〈A, D, H, G〉11 , 〈A, C, F, D, H〉11].

The path 〈A, C, J〉10 is expanded, and then, depending on the order that ties
are broken, the path 〈A, D, H, G〉 is selected and returned as the solution, either
next or the step after.

If the costs of the arcs are all greater than a positive constant, known as bounded
arc costs, and the branching factor is finite, the lowest-cost-first search is guar-
anteed to find an optimal solution – a solution with lowest path cost – if a so-
lution exists. Moreover, the first path to a goal that is expanded is a path with
lowest cost. Such a solution is optimal, because the algorithm expands paths
from the start node in order of path cost, and the path costs never decrease as
arc costs are positive. If a better path to a goal existed than the first solution
found, it would have been expanded from the frontier earlier.

The bounded arc cost is used to guarantee the lowest-cost search will find
a solution, when one exists, in graphs with finite branching factor. Without
such a bound there can be infinite paths with a finite cost. For example, there
could be nodes n0, n1, n2, . . . with an arc 〈ni−1, ni〉 for each i > 0 with cost 1/2i.
Infinitely many paths of the form 〈n0, n1, n2, . . . , nk〉 all have a cost of less than
1. If there is an arc from n0 to a goal node with a cost equal to 1, it will never
be selected. This is the basis of Zeno’s paradox that Aristotle wrote about more
than 2300 years ago.

Suppose that all arc costs are greater than or equal to ε > 0. Let b be the
maximum branching factor, c the cost of a lowest-cost path to a goal, and k =
c/ε. k is the maximum number of steps in a path that need to be considered
in the search before finding a goal. In the worst case, the complexity for both
space and time is O(kbk), as there may need to be bk paths explored where each
path is of length k. It generates all paths from the start that have a cost less than
the cost of a solution, and some of the paths that are of the cost of a solution,
until it finds a path that is a solution.
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3.6 Informed (Heuristic) Search

The search methods in the preceding section are uninformed in that they do
not take the goal into account until they expand a path that leads to a goal
node. Heuristic information about which nodes are most promising can guide
the search by changing which node is selected in line 13 of the generic search
algorithm in Figure 3.5 (page 88).

A heuristic function h(n) takes a node n and returns a non-negative real
number that is an estimate of the cost of the least-cost path from node n to a
goal node. The function h(n) is an admissible heuristic if h(n) is always less
than or equal to the actual cost of a lowest-cost path from node n to a goal.

There is nothing magical about a heuristic function. It must use only infor-
mation that can be readily obtained about a node. Typically there is a trade-off
between the amount of work it takes to compute a heuristic value for a node
and the accuracy of the heuristic value.

A standard way to derive a heuristic function is to solve a simpler problem
and to use the cost to the goal in the simplified problem as the heuristic function
of the original problem (see Section 3.6.3, page 108).

Example 3.14 For the graph of Figure 3.3 (page 85), if the cost is the distance,
the straight-line distance between the node and its closest goal can be used as
the heuristic function.

The examples that follow assume the following heuristic function for the
goal G:

h(A) = 7 h(B) = 5 h(C) = 9
h(D) = 6 h(E) = 3 h(F) = 5
h(G) = 0 h(H) = 3 h(J) = 4.

This h function is an admissible heuristic because the h value is less than or
equal to the exact cost of a lowest-cost path from the node to a goal. It is the
exact cost for node H. It is very much an underestimate of the cost to the goal
for node B, which seems to be close, but there is only a long route to the goal. It
is very misleading for E, which also seems close to the goal, but it has no path
to the goal.

The h function can be extended to be applicable to paths by making the
heuristic value of a path equal to the heuristic value of the node at the end of
the path. That is:

h(〈no, . . . , nk〉) = h(nk).

A simple use of a heuristic function in depth-first search is to order the
neighbors that are added to the stack representing the frontier. The neighbors
can be added to the frontier so that the best neighbor is selected first. This is
known as heuristic depth-first search. This search selects the locally best path,
but it explores all paths from the selected path before it selects another path.
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Although it is often used, it suffers from the problems of depth-first search, is
not guaranteed to find a solution, and may not find an optimal solution.

Another way to use a heuristic function is to always select a path on the
frontier with the lowest heuristic value. This is called greedy best-first search.
This method is not guaranteed to find a solution when there is one.

Example 3.15 Consider the graph shown in Figure 3.12, where the heuristic
value to G is shown for each node. The arc costs are ignored and so are not
shown. The aim is to find the shortest path from A to G. A heuristic depth-first
search and greedy best-first search will cycle forever in the nodes B, E, F and
will never terminate. Even if one could detect the cycles, it is possible to have a
similar graph with infinitely many nodes connected, all with a heuristic value
less that 6, which would still be problematic for heuristic depth-first search and
greedy best-first search.

3.6.1 A∗ Search

A∗ search finds a least-cost path and can exploit heuristic information to im-
prove the search. It uses both path cost, as in lowest-cost-first, and a heuristic
function, as in greedy best-first search, in its selection of which path to expand.
For each path p on the frontier, A∗ uses an estimate of the total path cost from
the start node to a goal node that follows p then goes to a goal. It uses cost(p),
the cost of the path found, as well as the heuristic function h(p), the estimated
path cost from the end of p to the goal.

For any path p on the frontier, define f (p) = cost(p) + h(p). This is an
estimate of the total path cost to follow path p then go to a goal node. If n is the
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Figure 3.12: A graph with heuristic values that is bad for greedy best-first search

https://doi.org/10.1017/9781009258227.006


3.6. Informed (Heuristic) Search 103

node at the end of path p, this can be depicted as

start actual−→ n︸ ︷︷ ︸
cost(p)

estimate−→ goal.︸ ︷︷ ︸
h(n)︸ ︷︷ ︸

f (p)

If h(n) is an admissible heuristic (page 101) and so never overestimates the
cost from node n to a goal node, then f (p) does not overestimate the path cost
of going from the start node to a goal node via p.

A∗ is implemented using the generic search algorithm (page 88), treating
the frontier as a priority queue ordered by f (p).

Example 3.16 Consider using A∗ search for the graph of Figure 3.3 (page 85)
using the heuristic function of Example 3.14 (page 101), shown in Figure 3.13.

In this example, the paths on the frontier are shown using the final node
of the path, subscripted with the f -value of the path. The frontier is initially
[〈A〉7], because h(A) = 7 and the cost of the path is zero. It is replaced by its
neighbors, forming the frontier

[〈A, B〉7 , 〈A, D〉10 , 〈A, C〉12].

The first element of the frontier has f (〈A, B〉) = cost(〈A, B〉) + h(B) = 2+ 5 = 7.
Because it has the lowest f -value, 〈A, B〉 is expanded, forming the frontier

[〈A, B, E〉7 , 〈A, B, F〉10 , 〈A, D〉10 , 〈A, C〉12].

The path to E is selected, but E has no neighbors, so the path is removed. Then
there are two paths with the same f -value of 10. The algorithm does not specify
which is selected. Suppose it expands the path to the node with the smallest
heuristic value (see Exercise 3.6 (page 124)), which is the path to F. The resulting
frontier is

[〈A, D〉10 , 〈A, C〉12 , 〈A, B, F, D〉13].
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Figure 3.13: Delivery graph with arc costs and heuristic value of nodes
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Then the path to D is expanded, forming

[〈A, D, H〉11 , 〈A, C〉12 , 〈A, B, F, D〉13].

Next the path to H is expanded, forming the frontier

[〈A, D, H, G〉11 , 〈A, C〉12 , 〈A, B, F, D〉13].

The path 〈A, D, H, G〉 is returned, as the shortest path to a goal with a cost of
11.

Notice how the path to C was never selected. There could have been a
huge network leading from C which would never have been explored, as A∗
recognized that any such path could not be optimal.

Example 3.17 Consider Figure 3.12 (page 102) with cycles. This was problem-
atic for greedy best-first search that ignores path costs. Although A∗ initially
searches through E, B, and F, eventually the cost of the path becomes so large
that it selects the optimal path via D and H.

A search algorithm is admissible if, whenever a solution exists, it returns
an optimal solution. To guarantee admissibility, some conditions on the graph
and the heuristic must hold. The following theorem gives sufficient conditions
for A∗ to be admissible.

Proposition 3.1. (A∗ admissibility) If there is a solution, A∗ using heuristic function
h always returns an optimal solution if:

• the branching factor is bounded above by some number b (each node has b or
fewer neighbors)
• all arc costs are greater than some ε > 0
• h is an admissible heuristic (page 101), which means that h(n) is less than
or equal to the actual cost of the lowest-cost path from node n to a goal node.

Proof. Part A: A solution will be found. If the arc costs are all greater than some
ε > 0, the costs are bounded above zero. If this holds and with a finite branch-
ing factor, eventually, for all paths p in the frontier, cost(p) will exceed any finite
number and, thus, will exceed a solution cost if one exists (with each path hav-
ing no greater than c/ε arcs, where c is the cost of an optimal solution). Because
the branching factor is finite, only a finite number of paths must be expanded
before the search could get to this point, but the A∗ search would have found
a solution by then. Bounding the arc costs above zero is a sufficient condi-
tion for A∗ to avoid suffering from Zeno’s paradox (page 100), as described for
lowest-cost-first search.

Part B: The first path to a goal selected is an optimal path. h is admissible implies
the f -value of a node on an optimal solution path is less than or equal to the
cost of an optimal solution, which, by the definition of optimal, is less than
the cost for any non-optimal solution. The f -value of a solution is equal to
the cost of the solution if the heuristic is admissible. Because an element with
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minimum f -value is selected at each step, a non-optimal solution can never be
selected while there is a path on the frontier that leads to an optimal solution.
So, before it can select a non-optimal solution, A∗ will have to pick all of the
nodes on an optimal path, including an optimal solution.

It should be noted that the admissibility of A∗ does not ensure that every in-
termediate node selected from the frontier is on an optimal path from the start
node to a goal node. Admissibility ensures that the first solution found will be
optimal even in graphs with cycles. It does not ensure that the algorithm will
not change its mind about which partial path is the best while it is searching.

To see how the heuristic function improves the efficiency of A∗, suppose c
is the cost of a least-cost path from the start node to a goal node. A∗, with an
admissible heuristic, expands all paths from the start node in the set

{p : cost(p) + h(p) < c}

and some of the paths in the set

{p : cost(p) + h(p) = c}.

Increasing h while keeping it admissible can help reduce the size of the first of
these sets. Admissibility means that if a path p is in the first set, then so are all
of the initial parts of p, which means they will all be expanded. If the second
set is large, there can be a great variability in the space and time of A∗. The
space and time can be sensitive to the tie-breaking mechanism for selecting a
path from those with the same f -value. It could, for example, select a path with
minimal h-value or use a first-in, last-out protocol (the same as a depth-first
search) for these paths; see Exercise 3.6 (page 124).

3.6.2 Branch and Bound

Depth-first branch-and-bound search is a way to combine the space saving
of depth-first search with heuristic information for finding optimal paths. It is
particularly applicable when there are many paths to a goal. As in A∗ search,
the heuristic function h(n) is non-negative and less than or equal to the cost of
a lowest-cost path from n to a goal node.

The idea of a branch-and-bound search is to maintain the lowest-cost path
to a goal found so far, and its cost. Suppose this cost is bound. If the search
encounters a path p such that cost(p) + h(p) ≥ bound, path p can be pruned. If
a non-pruned path to a goal is found, it must be better than the previous best
path. This new solution is remembered and bound is reduced to the cost of this
new solution. The searcher then proceeds to search for a better solution.

Once it has found one solution, branch-and-bound search generates a se-
quence of ever-improving solutions. The final solution found is the optimal
solution.
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Branch-and-bound search is typically used with depth-first search, where
the space saving of the depth-first search can be achieved. It can be imple-
mented similarly to depth-bounded search, but where the bound is in terms of
path cost and reduces as shorter paths are found. The algorithm remembers
the lowest-cost path found and returns this path when the search finishes.

The algorithm is shown in Figure 3.14. The internal procedure cbsearch, for
cost-bounded search, uses the global variables to provide information to the
main procedure.

Initially, bound can be set to infinity, but it is often useful to set it to an
overestimate, bound0, of the path cost of an optimal solution. This algorithm
will return an optimal solution – a lowest-cost path from the start node to a
goal node – if there is a solution with cost less than the initial bound bound0.

If the initial bound is slightly above the cost of a lowest-cost path, this algo-
rithm can find an optimal path expanding no more arcs than A∗ search. How-

1: procedure DF branch and bound(G, s, goal, h, bound0)
2: Inputs
3: G: graph with nodes N and arcs A
4: s: start node
5: goal: Boolean function on nodes
6: h: heuristic function on nodes
7: bound0: initial depth bound (can be ∞ if not specified)
8: Output
9: a lowest-cost path from s to a goal node if there is a solution with

cost less than bound0
10: or ⊥ if there is no solution with cost less than bound0

11: Local
12: best path: path or ⊥
13: bound: non-negative real
14: procedure cbsearch(〈n0, . . . , nk〉)
15: if cost(〈n0, . . . , nk〉) + h(nk) < bound then
16: if goal(nk) then
17: best path := 〈n0, . . . , nk〉
18: bound := cost(〈n0, . . . , nk〉)
19: else
20: for each arc 〈nk, n〉 ∈ A do
21: cbsearch(〈n0, . . . , nk, n〉)
22: best path := ⊥
23: bound := bound0
24: cbsearch(〈s〉)
25: return best path

Figure 3.14: Depth-first branch-and-bound search
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ever, it is rare to know the cost of a lowest-cost path. In general, once it has
found an optimal path to the goal, it only explores paths whose f -value is lower
than the optimal path. These are exactly the paths that A∗ explores to find one
solution.

If it returns ⊥ when bound0 = ∞, there are no solutions. If it returns ⊥
when bound0 is some finite value, it means no solution exists with cost less than
bound0. This algorithm can be combined with iterative deepening to increase
the bound until either a solution is found or it can show there is no solution,
using a method similar to the use of hit depth bound in Figure 3.11 (page 98).
See Exercise 3.11 (page 125).

Example 3.18 Consider the tree-shaped graph in Figure 3.15. The goal nodes
are shaded. Suppose that each arc has cost 1, and there is no heuristic informa-
tion (i.e., h(n) = 0 for each node n). In the algorithm, suppose bound0 = ∞ and
the depth-first search always selects the leftmost child first. This figure shows
the order in which the nodes are checked to determine if they are a goal node.
The nodes that are not numbered are not checked for being a goal node.

The subtree under the node numbered “5” does not have a goal and is ex-
plored fully (or up to depth bound0 if it had a finite value). The ninth node
checked is a goal node. It has a path cost of 5, and so the bound is set to 5.
From then on, only paths with a cost of less than 5 are checked for being a solu-
tion. The fifteenth node checked is also a goal. It has a path cost of 3, and so the
bound is reduced to 3. There are no other goal nodes found, and so the path to
the node labeled 15 is returned. It is an optimal path. Another optimal path is
pruned; the algorithm never checks the children of the node labeled 18.
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Figure 3.15: The paths expanded in depth-first branch-and-bound search. The
shaded nodes are goal nodes
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If there were heuristic information, it could also be used to prune parts of
the search space, as in A∗ search.

3.6.3 Designing a Heuristic Function

An admissible heuristic (page 101) is a non-negative function h of nodes, where
h(n) is never greater than the actual cost of the shortest path from node n to a
goal. The standard way to construct a heuristic function is to find a solution
to a simpler problem, one with fewer states or fewer constraints. A problem
with fewer constraints is often easier to solve (and sometimes trivial to solve).
An optimal solution to the simpler problem cannot have a higher cost than an
optimal solution to the full problem because any solution to the full problem is
a solution to the simpler problem.

In many spatial problems where the cost is distance and the solution is
constrained to go via predefined arcs (e.g., road segments), the straight-line
Euclidean distance between two nodes is an admissible heuristic because it is
the solution to the simpler problem where the agent is not constrained to go
via the arcs.

For many problems one can design a better heuristic function, as in the
following examples.

Example 3.19 Consider the delivery robot of Example 3.4 (page 83), where
the state space includes the parcels to be delivered. Suppose the cost function
is the total distance traveled by the robot to deliver all the parcels. If the robot
could carry multiple parcels, one possible heuristic function is the maximum of
(a) and (b):

(a) the maximum delivery distance for any of the parcels that are not at their
destination and not being carried, where the delivery distance of a parcel
is the distance to that parcel’s location plus the distance from that parcel’s
location to its destination

(b) the distance to the furthest destination for the parcels being carried.

This is not an overestimate because it is a solution to the simpler problem which
is to ignore that it cannot travel though walls, and to ignore all but the most
difficult parcel. Note that a maximum is appropriate here because the agent has
to both deliver the parcels it is carrying and go to the parcels it is not carrying
and deliver them to their destinations.

If the robot could only carry one parcel, one possible heuristic function is
the sum of the distances that the parcels must be carried plus the distance to the
closest parcel. Note that the reference to the closest parcel does not imply that
the robot will deliver the closest parcel first, but is needed to guarantee that the
heuristic is admissible.

Example 3.20 In the route planning of Example 3.1 (page 79), when mini-
mizing time, a heuristic could use the straight-line distance from the current
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location to the goal divided by the maximum speed – assuming the user could
drive straight to the destination at top speed.

A more sophisticated heuristic may take into account the different max-
imum speeds on highways and local roads. One admissible heuristic is the
minimum of (a) and (b):

(a) the estimated minimum time required to drive straight to the destination
on slower local roads

(b) the minimum time required to drive to a highway on slow roads, then
drive on highways to a location close to the destination, then drive on
local roads to the destination.

The minimum is appropriate here because the agent can go via highways or
local roads, whichever is quicker.

In the above examples, determining the heuristic did not involve search.
Once the problem is simplified, it could be solved using search, which should
be simpler than the original problem. The simpler search problem typically
needs to be solved multiple times, even perhaps for all nodes. It is often useful
to cache these results into a pattern database that maps the nodes of the simpler
problem into the heuristic value. In the simpler abstract problem, there are
often fewer nodes, with multiple original nodes mapped into a single node in
the simplified graph, which can make storing the heuristic value for each of
these nodes feasible.

3.7 Pruning the Search Space

The preceding algorithms can be improved by taking into account multiple
paths to a node. The following presents two pruning strategies. The simplest
strategy is to prune cycles; if the goal is to find a least-cost path, it is useless to
consider paths with cycles. The other strategy is only ever to consider one path
to a node and to prune other paths to that node.

3.7.1 Cycle Pruning

A graph representing a search space may include cycles. For example, in the
robot delivery domain of Figure 3.10 (page 96), the robot can go back and forth
between nodes B and F. Some of the search methods presented so far can get
trapped in cycles, continuously repeating the cycle and never finding an an-
swer even in finite graphs. The other methods can loop through cycles, wasting
time, but eventually still find a solution.

A simple method of pruning the search, while guaranteeing that a solution
will be found in a finite graph, is to ensure that the algorithm does not consider
neighbors that are already on the path from the start. Cycle pruning, or loop
pruning, checks whether the last node on the path already appears earlier on
the path from the start node to that node. A path 〈n0, . . . , nk, n〉, where n ∈
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{n0, . . . , nk}, is not added to the frontier at line 16 of Figure 3.5 (page 88) or is
discarded when removed from the frontier.

The computational complexity of cycle pruning depends on which search
method is used. For depth-first methods, the overhead can be as low as a con-
stant factor, by storing the elements of the current path as a set (e.g., by main-
taining a bit that is set when the node is in the path, or using a hash function).
For the search strategies that maintain multiple paths – namely, all of those
with exponential space in Figure 3.18 (page 114) – cycle pruning takes time lin-
ear in the length of the path being searched. These algorithms cannot do better
than searching up the partial path being considered, checking to ensure they
do not add a node that already appears in the path.

3.7.2 Multiple-Path Pruning

There is often more than one path to a node. If only one path is required, a
search algorithm can prune from the frontier any path that leads to a node to
which it has already found a path.

Multiple-path pruning is implemented by maintaining an explored set
(traditionally called the closed list) of nodes that are at the end of paths that
have been expanded. The explored set is initially empty. When a path 〈n0, . . . , nk〉
is selected, if nk is already in the explored set, the path can be discarded. Oth-
erwise, nk is added to the explored set, and the algorithm proceeds as before.
See Figure 3.16 (page 111).

This approach does not necessarily guarantee that the least-cost path is not
discarded. Something more sophisticated may have to be done to guarantee
that an optimal solution is found. To ensure that the search algorithm can still
find a lowest-cost path to a goal, one of the following can be done:

• Make sure that the first path found to any node is a lowest-cost path to
that node, then prune all subsequent paths found to that node.

• If the search algorithm finds a lower-cost path to a node than one already
found, it could remove all paths that used the higher-cost path to the
node (because these cannot be on an optimal solution). That is, if there is
a path p on the frontier 〈s, . . . , n, . . . , m〉, and a path p′ to n is found that
has a lower cost than the portion of the path from s to n in p, then p can
be removed from the frontier.

• Whenever the search finds a lower-cost path to a node than a path to
that node already found, it could incorporate a new initial section on
the paths that have extended the initial path. Thus, if there is a path
p = 〈s, . . . , n, . . . , m〉 on the frontier, and a path p′ to n is found with a cost
lower than the portion of p from s to n, then p′ can replace the initial part
of p to n.

The first of these alternatives allows the use of the explored set without los-
ing the ability to find an optimal path. The others require more sophisticated
algorithms.
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In lowest-cost-first search, the first path found to a node (i.e., when the node
is selected from the frontier) is the lowest-cost path to the node. Pruning sub-
sequent paths to that node cannot remove a lower-cost path to that node, and
thus pruning subsequent paths to each node still enables an optimal solution
to be found.

A∗ (page 102) does not guarantee that when a path to a node is selected for
the first time it is the lowest-cost path to that node. Note that the admissibility
theorem guarantees this for every path to a goal node but not for every path to
any node. Whether it holds for all nodes depends on properties of the heuristic
function.

A consistent heuristic is a non-negative function h(n) on nodes, such that
h(n) ≤ cost(n, n′) + h(n′) for any two nodes n′ and n, where cost(n, n′) is the
cost of the least-cost path from n to n′. As h(g) = 0 for any goal g, a consistent
heuristic is never an overestimate of the cost of going from a node n to a goal.

Consistency can be guaranteed if the heuristic function satisfies the mono-
tone restriction: h(n) ≤ cost(n, n′)+ h(n′) for any arc 〈n, n′〉. It is easier to check
the monotone restriction as it only depends on the arcs, whereas consistency
depends on all pairs of nodes.

1: procedure SearchMPP(G, S, goal)
2: Inputs
3: G: graph with nodes N and arcs A
4: s: start node
5: goal: Boolean function of nodes
6: Output
7: path from s to a node for which goal is true
8: or ⊥ if there are no solution paths
9: Local

10: frontier: set of paths
11: explored: set of explored nodes
12: frontier := {〈s〉}
13: explored := {}
14: while frontier �= {} do
15: select and remove 〈n0, . . . , nk〉 from frontier
16: if nk �∈ explored then
17: explored := explored∪ {nk}
18: if goal(nk) then
19: return 〈n0, . . . , nk〉
20: frontier := frontier∪ {〈n0, . . . , nk, n〉 : 〈nk, n〉 ∈ A}
21: return ⊥

Figure 3.16: SearchMPP: graph searching with multiple-path pruning
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Consistency and the monotone restriction can be understood in terms of
the triangle inequality, which specifies that the length of any side of a triangle
cannot be greater than the sum of lengths of the other two sides. In consis-
tency, the estimated cost of going from n to a goal should not be more than the
estimated cost of first going to n′ then to a goal (see Figure 3.17).

Euclidean distance – the straight-line distance in a multidimensional space
– satisfies the triangle inequality. Therefore, when the cost function is the Eu-
clidean distance, the heuristic function h(n) that is the shortest distance be-
tween node n and a goal satisfies the monotone restriction and so is consistent.
A heuristic function that is a solution to a simplified problem that has shorter
solutions also typically satisfies the monotone restriction and so is consistent.

With the monotone restriction, the f -values of the paths selected from the
frontier are monotonically non-decreasing. That is, when the frontier is ex-
panded, the f -values do not get smaller.

Proposition 3.2. With a consistent heuristic, multiple-path pruning can never pre-
vent A∗ search from finding an optimal solution.

That is, under the conditions of Proposition 3.1 (page 104), which guarantee
A∗ finds an optimal solution, if the heuristic function is consistent, A∗ with
multiple-path pruning will always find an optimal solution.

Proof. The gist of the proof is to show that if the heuristic is consistent, when
A∗ expands a path p′ to a node n′, no other path to n′ can have a lower cost
than p′. Thus, the algorithm can prune subsequent paths to any node and will
still find an optimal solution.

Let’s use a proof by contradiction. Suppose the algorithm has selected a
path p′ to node n′ for expansion, but there exists a lower-cost path to node n′,
which it has not found yet. Then there must be a path p on the frontier that is
the initial part of the lower-cost path to n′. Suppose path p ends at node n. It
must be that f (p′) ≤ f (p), because p′ was selected before p. This means that

cost(p′) + h(p′) ≤ cost(p) + h(p).

If the path to n′ via p has a lower cost than the path p′, then

cost(p) + cost(n, n′) < cost(p′)

n

n’

g
h(n)

h(n’)cost(n,n’)

Figure 3.17: Triangle inequality: h(n) ≤ cost(n, n′) + h(n′)
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where cost(n, n′) is the actual cost of a lowest-cost path from node n to n′. From
these two equations, it follows that

cost(n, n′) < cost(p′)− cost(p) ≤ h(p)− h(p′) = h(n)− h(n′)

where the last inequality follows because h(p) is defined to be h(n). This cannot
happen if h(n)− h(n′) ≤ cost(n, n′), which is the consistency condition.

A∗ search in practice includes multiple-path pruning; if A∗ is used without
multiple-path pruning, the lack of pruning should be made explicit. It is up
to the designer of a heuristic function to ensure that the heuristic is consistent,
and so an optimal path will be found.

Multiple-path pruning subsumes cycle pruning, because a cycle is another
path to a node and is therefore pruned. Multiple-path pruning can be done in
constant time, by setting a bit on each node to which a path has been found if
the graph is explicitly stored, or using a hash function. Multiple-path pruning
is preferred over cycle pruning for breadth-first methods where virtually all of
the nodes considered have to be stored anyway.

Depth-first search does not have to store all of the nodes at the end of paths
already expanded; storing them in order to implement multiple-path prun-
ing makes depth-first search exponential in space. For this reason, cycle prun-
ing is preferred over multiple-path pruning for algorithms based on depth-
first search, including depth-first branch and bound. It is possible to have a
bounded size explored set, for example, by only keeping the newest elements,
which enables some pruning without the space explosion.

3.7.3 Summary of Search Strategies

Figure 3.18 (page 114) summarizes the search strategies presented so far.
Lowest-cost-first, A∗, and depth-first branch-and-bound searches are guar-

anteed to find a lowest-cost solution, as long as the conditions of Proposition
3.1 (page 104) hold, even if the graph is infinite. Breadth-first search and it-
erative deepening will find a path with the fewest arcs as long as each node
has a finite branching factor. Depth-first search and greedy best-first searches,
when the graph is infinite or when there is no cycle pruning or multiple path
pruning, sometimes do not halt, even if a solution exists.

A search algorithm is complete if it is guaranteed to find a solution if there
is one. Those search strategies that are guaranteed to find a path with fewest
arcs or the least cost are complete. They have worst-case time complexity
which increases exponentially with the number of arcs on the paths explored.
There can only be algorithms that are complete but better than exponential
time complexity if P = NP (page 89), which is not expected to be true. The
algorithms that are not guaranteed to halt (depth-first and greedy best-first)
have an infinite worst-case time complexity.

Depth-first search uses linear space with respect to the length of the longest
path explored, but is not guaranteed to find a solution even if one exists. Breadth-
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first, lowest-cost-first, and A∗ may be exponential in both space and time, but
are guaranteed to find a solution if one exists, even if the graph is infinite as
long as there are finite branching factors and arc costs are bounded above zero.
Iterative deepening reduces the space complexity at the cost of recomputing
the elements on the frontier. Depth-first branch and bound (DF B&B) reduces
the space complexity, but can search more of the space or fail to find a solution,
depending on the initial bound.

3.8 Search Refinements

A number of refinements can be made to the preceding strategies. The direc-
tion of search – searching from the start to a goal or from a goal to the start –
can make a difference in efficiency. Backward search can be used to find poli-
cies that give an optimal path from any position, and can be used to improve a
heuristic function.

Strategy Selection from frontier Path found Space
Breadth-first First node added Fewest arcs O(bd)
Depth-first Last node added � O(bd)
Iterative deepening N/A Fewest arcs O(bd)
Greedy best-first Minimal h(p) � O(bd)
Lowest-cost-first Minimal cost(p) Least cost O(bd)
A∗ Minimal cost(p) + h(p) Least cost O(bd)
DF B&B N/A Least cost O(bd)

“Selection from frontier” refers to which element is selected in line 13 of the
generic graph-searching algorithm of Figure 3.5 (page 88). Iterative deepening
and depth-first branch and bound (DF B&B) are not instances of the generic
search algorithm, and so the selection from the frontier is not applicable.

“Path found” refers to guarantees about the path found (for graphs with
finite branching factor and arc costs bounded above zero). “�” means the strat-
egy is not guaranteed to find a path. Depth-first branch and bound (DF B&B)
requires an initial finite bound that is greater than the cost of a least-cost solu-
tion.

“Space” refers to the worst-case space complexity; d, the depth, is the max-
imum number of arcs in a path expanded before a solution is found, and b is a
bound on the branching factor.

Figure 3.18: Summary of search strategies
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3.8.1 Direction of Search

The size of the search space of the generic search algorithm, for a given pruning
strategy, depends on the path length and the branching factor. Anything that
can be done to reduce these can potentially give great savings. Sometimes it
is possible to search backwards from a goal, which can be useful, particularly
when it reduces the branching factor.

If the following conditions hold:

• the set of goal nodes, {n : goal(n)}, is finite and can be generated

• for any node n the neighbors of n in the inverse graph, namely {n′ :
〈n′, n〉 ∈ A}, can be generated

then the graph-search algorithm can either begin with the start node and search
forward for a goal node, or begin with a goal node and search backward for the
start node. In many applications, the set of goal nodes, or the inverse graph,
cannot easily be generated so backwards search may not be feasible; sometimes
the purpose of the search is to just find a goal node and not the path to it.

In backward search, what was the start becomes the goal, and what was
the goal becomes the start. If there is a single goal node, it can be used as the
start node for backward search. If there can be multiple goal nodes, a new
node, goal, is created, which becomes the start node of the backward search.
The neighbors of goal in the backward graph are nodes {n : goal(n)}. The
neighbors of the nodes, apart from goal, are given in the inverse graph. The
goal of the backward search is the start node of the forward search.

Forward search searches from the start node to the goal nodes in the origi-
nal graph.

For those cases where the goal nodes and the inverse graph can be gener-
ated, it may be more efficient to search in one direction than in the other. The
size of the search space is typically exponential in the branching factor. It is
often the case that forward and backward searches have different branching
factors. A general principle is to search in the direction that has the smaller
branching factor.

Bidirectional Search

The idea of bidirectional search is to search forwards from the start and back-
wards from the goal simultaneously. When the two search frontiers intersect,
the algorithm needs to construct a single path that extends from the start node
through the frontier intersection to a goal node. It is a challenge to guarantee
that the path found is optimal.

A new problem arises during a bidirectional search, namely ensuring that
the two search frontiers actually meet. For example, a depth-first search in both
directions is not likely to work at all unless one is extremely lucky because its
small search frontiers are likely to pass each other by. Breadth-first search in
both directions would be guaranteed to meet.
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A combination of depth-first search in one direction and breadth-first search
in the other would guarantee the required intersection of the search frontiers,
but the choice of which to apply in which direction may be difficult. The deci-
sion depends on the cost of saving the breadth-first frontier and searching it to
check when the depth-first method will intersect one of its elements.

There are situations where a bidirectional search results in substantial sav-
ings. For example, if the forward and backward branching factors of the search
space are both b, and the goal is at depth k, then breadth-first search will take
time proportional to bk, whereas a symmetric bidirectional search will take time
proportional to 2bk/2, assuming the time overhead of determining intersection
is negligible. This is an exponential saving in time, even though the time com-
plexity is still exponential.

Island-Driven Search

One of the ways that search may be made more efficient is to identify a limited
number of places where the forward search and backward search could meet.
For example, in searching for a path from two rooms on different floors, it may
be appropriate to constrain the search to first go to the elevator on one level,
go to the appropriate level, and then go from the elevator to the goal room.
Intuitively, these designated positions are islands in the search graph, which
are constrained to be on a solution path from the start node to a goal node.

When islands are specified, an agent can decompose the search problem
into several search problems; for example, one from the initial room to the
elevator, one from the elevator on one level to the elevator on the other level,
and one from the elevator to the destination room. This reduces the search
space by having three simpler problems to solve. Having smaller problems
helps to reduce the combinatorial explosion of large searches and is an example
of how extra knowledge about a problem is used to improve the efficiency of
search.

To find a path between s and g using islands:

• identify a set of islands i0, . . . , ik
• find paths from s to i0, from ij−1 to ij for each j, and from ik to g.

Each of these search problems should be correspondingly simpler than the gen-
eral problem and, therefore, easier to solve.

The identification of islands can be done by finding small cut-sets of arcs
that, when removed, split the graph in two, or by using extra knowledge which
may be beyond that which is in the graph. The use of inappropriate islands
may make the problem more difficult (or even impossible to solve). It may also
be possible to identify an alternate decomposition of the problem by choosing
a different set of islands and searching through the space of possible islands.
Whether this works in practice depends on the details of the problem. Island
search sacrifices optimality unless one is able to guarantee that the islands are
on an optimal path.
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Searching in a Hierarchy of Abstractions

The notion of islands can be used to define problem-solving strategies that
work at multiple levels of detail or multiple levels of abstraction.

The idea of searching in a hierarchy of abstractions first involves abstracting
the problem, leaving out as many details as possible. A solution to the abstract
problem can be seen as a partial solution to the original problem. For example,
the problem of getting from one room to another requires the use of many
instances of turning, but an agent would like to reason about the problem at a
level of abstraction where the steering details are omitted. It is expected that
an appropriate abstraction solves the problem in broad strokes, leaving only
minor problems to be solved.

One way this can be implemented is to generalize island-driven search to
search over possible islands. Once a solution is found at the island level, this
information provides a heuristic function for lower levels. Information that is
found at a lower level can inform higher levels by changing the arc lengths. For
example, the higher level may assume a particular distance between exit doors,
but a lower-level search could find a better estimate of the actual distance.

The effectiveness of searching in a hierarchy of abstractions depends on
how one decomposes and abstracts the problem to be solved. Once the prob-
lems are abstracted and decomposed, any of the search methods could be used
to solve them. It is not easy, however, to recognize useful abstractions and
problem decompositions.

3.8.2 Dynamic Programming

Dynamic programming is a general method for optimization that involves
computing and storing partial solutions to problems. Solutions that have al-
ready been found can be retrieved rather than being recomputed. Dynamic
programming algorithms are used throughout AI and computer science.

Dynamic programming can be used for finding paths in finite graphs by
constructing a cost to goal function for nodes that gives the exact cost of a minimal-
cost path from the node to a goal.

Let cost to goal(n) be the actual cost of a lowest-cost path from node n to a
goal; cost to goal(n) can be defined as

cost to goal(n) =
{

0 if goal(n)
min〈n,m〉∈A(cost(〈n, m〉) + cost to goal(m)) otherwise

where A is the set of arcs in the graph. The general idea is to build a table
offline of the cost to goal(n) value for each node. This is done by carrying out
a lowest-cost-first search (page 99), with multiple-path pruning, from the goal
nodes in the inverse graph (page 115), which is the graph with all arcs reversed.
Rather than having a goal to search for, the dynamic programming algorithm
records the cost to goal values for each node found. It uses the inverse graph to
compute the costs from each node to the goal and not the costs from the goal to
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each node. In essence, dynamic programming works backwards from the goal,
building the lowest-cost paths to the goal from each node in the graph.

Example 3.21 For the graph given in Figure 3.3 (page 85), G is a goal, so

cost to goal(G) = 0.

The next three steps of a lowest-cost-first search from G in the inverse graph
give

cost to goal(H) = 3
cost to goal(J) = 4
cost to goal(D) = 7.

All of the cost to goal values are shown in Figure 3.19, where the numbers on
the nodes are the cost to goal. E has no path to G, so there is no value for
cost to goal(E).

A policy is a specification of which arc to take from each node. An optimal
policy is a policy such that the cost of following that policy is not worse than
the cost of following any other policy. Given a cost to goal function, which is
computed offline, a policy can be computed as follows: From node n it should
go to a neighbor m that minimizes cost(〈n, m〉) + cost to goal(m). This policy
will take the agent from any node to a goal along a lowest-cost path.

Either this neighbor can be recorded for all nodes offline, and the mapping
from node to node is provided to the agent for online action, or the cost to goal
function is given to the agent and each neighbor can be computed online.

Dynamic programming takes time and space linear in the size of the graph
to build the cost to goal table. Once the cost to goal function has been built, even
if the policy has not been recorded, the time to determine which arc is optimal
depends only on the number of neighbors for the node.
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Figure 3.19: Cyclic delivery graph with node values computed by dynamic pro-
gramming. Each node n is shown with cost to goal(n)
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Example 3.22 Given the cost to goal of Figure 3.19 (page 118) for the goal of
getting to G, if the agent is at A, it compares 2 + 12 = 14 (the cost of going
via B), 11 + 3 = 14 (the cost of going via C), and 4 + 7 = 11 (the cost of going
straight to D). So it is shortest to go next to D.

Partial Dynamic Programming as a Source of Heuristics

Dynamic programming does not have to be run to completion to be useful.
Suppose cost to goal(n) has a value for every node n that has a path to a goal
with cost less than c. Any node that does not have a cost to goal must have a
cost of at least c. Suppose h is an admissible heuristic function that satisfies the
monotone restriction. Then the heuristic function

h′(n) =
{

cost to goal(n) if cost to goal(n) is defined
max(c, h(n)) otherwise

is an admissible heuristic function that satisfies the monotone restriction and,
unless h is already perfect for nodes within cost c of a goal, improves h. It
is perfect for all values less than c, but uses h for values greater than c. This
refined heuristic function can be dramatically more efficient than h.

Another way to build a heuristic function is to simplify the problem by
leaving out some details. Dynamic programming can be used to find the cost
of an optimal path to a goal in the simplified problem. This information forms
a pattern database that can then be used as a heuristic for the original problem.

Dynamic programming is useful when

• the goal nodes are explicit (the methods based on the generic search al-
gorithm only assumed a function that recognizes goal nodes)

• a lowest-cost path is needed

• the graph is finite and small enough to be able to store the cost to goal
value for each node

• the goal does not change very often

• the policy is used a number of times for each goal, so that the cost of
generating the cost to goal values can be amortized over many instances
of the problem.

The main problems with dynamic programming are that

• it only works when the graph is finite and the table can be made small
enough to fit into memory

• an agent must recompute a policy for each different goal

• the time and space required is linear in the size of the graph, where the
graph size for finite graphs can be exponential in the path length.
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3.9 Social Impact

The definition of a search problem assumes that you know what the goal and
cost function are. Sometimes the goal or the cost provided by an application
may not be what a user wants or there can be unintended side-effects. For
example, consider route planning on maps, as in Example 3.1 (page 79). It is
typical for the applications to ask for the start point and one or more destina-
tions, and sometimes whether one wants to avoid highways or tolls (providing
some modification of the graph), however they do not usually ask what cost a
user might want to optimize. For example, a user may want to take a scenic
route, one that avoids side streets as much as possible, or one that stays away
from a relative’s home. It is difficult to acquire these preferences and people
may not even be able to articulate these preferences and trade-offs. But given
the preferences, the problem reduces to one of searching, albeit with a complex
cost function.

If a user wants to force a particular route in current apps, they can put them
as intermediate destinations. However, it is difficult to determine what the user
wants. If a user clicks on a town in a map, the system needs to decide whether
they just want to go along the road that goes by the town, or they want to be
directed to the exact location of the click. Misinterpreting the user’s intentions
can mean the user is not directed to where they want to go.

Route planning may have unintended side-effects. If the route planner is
advising many people, and advises them all to take the same route, that route
may become more congested because of the advice. It may be better for users
to then deliberately avoid the advice. The system could avoid this by telling
different users different routes. This may make users suspicious of this advice.
It would be good for the system to guarantee that the user will not do better
by ignoring the advice, which means that the system needs to do some load
balancing so that all suggested routes have the same cost. What seemed like a
simple search problem then becomes much more complicated.

It is impossible in general to avoid side streets, because the start or desti-
nation might be on a side street. If a main road or highway has congestion,
it might be quicker for a driver to go via side streets. A system that advises
drivers to go the quickest way will then send drivers on side streets until all
side streets are also congested. In order to save a few drivers a few minutes,
many more people become impacted. It might be better overall for the system
to not optimize for the drivers. Instead, perhaps the system should optimize
for some global preferences, but that is difficult to define clearly. Different peo-
ple will have different preferences.

A challenge in path planning is that a driver might not actually take the
route suggested, by design, perhaps visiting a place off the suggested route, by
accident, such as taking a wrong turn, or where a road is closed. A challenge
for the driver is over-relying on the directions, which has led to numerous in-
cidents of what is colloquially known as death by GPS [Lin et al., 2017].

Collecting real-time location information for the purposes of congestion
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avoidance, also has privacy concerns if this information is used for other pur-
poses or passed to third parties, such as advertisers or governments.

3.10 Review

The following are the main points you should have learned from this chapter:

• Many problems can be abstracted to the problem of searching to find
paths in graphs.

• Breadth-first and depth-first searches can find paths in graphs without
any extra knowledge beyond the graph.

• A∗ search can use a heuristic function that estimates the cost from a node
to a goal. If a graph satisfies some reasonable condition (see Proposition
3.2 (page 112)) and the heuristic is admissible, A∗ is guaranteed to find a
lowest-cost path to a goal if one exists.

• Multiple-path pruning and cycle pruning can be used to make search
more efficient.

• Iterative deepening and depth-first branch-and-bound searches can be
used to find lowest-cost paths with less memory than methods, such as
A∗, which store multiple paths.

• When graphs are small enough to store all the nodes, dynamic program-
ming records the actual cost of a lowest-cost path from each node to the
goal, which can be used to find the next arc in an optimal path.

• When designing a search problem for the real world, you should ensure
that there are no unintended social consequences, such as the ones of
Section 3.9 (page 120).

3.11 References and Further Reading

There is a vast literature on search techniques in operations research, computer
science, and AI. Search was seen early on as one of the foundations of AI. The
AI literature emphasizes the use of heuristics in search.

Breadth-first search was invented by Moore [1959]. Lowest-cost-first search
with multiple path pruning is one of the variants of Dijkstra’s algorithm [Di-
jkstra, 1959], and is also equivalent to A∗ with a heuristic of zero. The A∗ algo-
rithm was developed by Hart et al. [1968]. The optimality of A∗ is investigated
by Dechter and Pearl [1985]. For a detailed analysis of heuristic search, see
Pearl [1984].

Depth-first iterative deepening is described in Korf [1985]. Branch-and-
bound search, developed in the operations research community, is described
in Lawler and Wood [1966].

Dynamic programming is a general algorithm that will be used as a dual to
search algorithms in other parts of this book. See Cormen et al. [2022] for more
details on the general class of dynamic programming algorithms.
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Bidirectional search was pioneered by Pohl [1971]. Chen et al. [2017] pro-
vide a bidirectional search algorithm with provable optimality.

The idea of using pattern databases as a source of heuristics for A∗ search
was proposed by Culberson and Schaeffer [1998] and further developed by
Felner et al. [2004]. Minsky [1961] discussed islands and problem reduction.

Dolgov et al. [2010] and Delling et al. [2015] describe real-world route plan-
ning for autonomous vehicles and Bing maps, respectively.

3.12 Exercises

Exercise 3.1 Consider the graph of Figure 3.20, where the problem is to find
a path from start A to goal G. For each of the following algorithms, show the
sequence of frontiers and give the path found.

(a) Depth-first search, where the neighbors are expanded in alphabetic ordering
(b) Breadth-first search
(c) Lowest-cost-first search (A∗ with h(n) = 0 for all nodes n)
(d) A∗ with h(n) = |x(n)− x(G)|+ |y(n)− y(G)| (the x-distance plus y-distance

from n to G), where x(A) = 0, x(B) = 1, x(C) = 0, x(D) = 1, x(G) = 2,
y(A) = 2, y(B) = 1, y(C) = 1, y(D) = 0, and y(G) = 0.

Exercise 3.2 Consider the problem of finding a path in the grid shown in Figure
3.21 (page 123) from the position s to the position g. A piece can move on the grid
horizontally or vertically, one square at a time. Each step has cost 1. No step may
be made into a forbidden shaded area or outside the grid.

(a) For the grid shown in Figure 3.21 (page 123), number the nodes expanded
(in order) for a depth-first search from s to g, given that the order of the
operators is up, down, left, right. Assume there is cycle pruning. What is
the first path found?

(b) For the same grid, number the nodes expanded, in order, for a least-cost-first
search with multiple-path pruning search from s to g (Dijkstra’s algorithm).
What is the first path found?
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Figure 3.20: Graph for Exercise 3.1
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(c) Number the nodes in order for an A∗ search, with multiple-path pruning,
for the same grid, where the heuristic value for node n is Manhattan dis-
tance from n to the goal. The Manhattan distance between two points is the
distance in the x-direction plus the distance in the y-direction. It corresponds
to the distance traveled along city streets arranged in a grid. What is the path
found?

(d) Show how to solve the same problem using dynamic programming. Give
the cost to goal value for each node, and show which path is found.

(e) Based on this experience, discuss which algorithms are best suited for this
problem.

(f) Suppose that the grid extended infinitely in all directions. That is, there is no
boundary, but s, g, and the blocks are in the same positions relative to each
other. Which methods would no longer find a path? Which would be the
best method, and why?

Exercise 3.3 This question investigates using graph searching to design video
presentations. Consider a database of video segments, together with their length
in seconds and the topics covered:

Segment Length Topics Covered
seg0 10 [welcome]
seg1 30 [skiing, views]
seg2 50 [welcome, artificial intelligence, robots]
seg3 40 [graphics, dragons]
seg4 50 [skiing, robots]

In the search graph, a node is a pair

〈To Cover, Segs〉
where Segs is a list of segments that must be in the presentation, and To Cover is a
list of topics that also must be covered.

The neighbors of a node are obtained by first selecting a topic from To Cover.
There is a neighbor for each segment that covers the selected topic. The remaining

s

g

Figure 3.21: A grid-searching problem

https://doi.org/10.1017/9781009258227.006


124 3. Searching for Solutions

topics are the topics not covered by the segment added. [Part of this exercise is to
think about the exact structure of these neighbors.] Assume that the leftmost topic
is selected at each step.

Given the above database, the neighbors of the node 〈[welcome, robots], []〉, when
welcome is selected, are 〈[], [seg2]〉 and 〈[robots], [seg0]〉.

Thus, each arc adds exactly one segment but can cover (and so remove) one or
more topics. Suppose that the cost of the arc is equal to the time of the segment
added.

The goal is to design a presentation that covers all of the topics in the list
MustCover. The starting node is 〈MustCover, []〉. The goal nodes are of the form
〈[], Presentation〉. The cost of the path from a start node to a goal node is the time
of the presentation. Thus, an optimal presentation is a shortest presentation that
covers all of the topics in MustCover.

(a) Suppose that the goal is to cover the topics [welcome, skiing, robots] and the
algorithm always selects the leftmost topic to find the neighbors for each
node. Draw the search space expanded for a lowest-cost-first search until
the first solution is found. This should show all nodes expanded, which
node is a goal node, and the frontier when the goal was found.

(b) Give a non-trivial heuristic function h that is admissible. [Note that h(n) =
0 for all n is the trivial heuristic function.] Does it satisfy the monotone
restriction for a heuristic function?

(c) Does the topic selected affect the result found? Why or why not?

Exercise 3.4 Give two different admissible non-trivial heuristics for the video
game of Example 3.3 (page 82) (depicted in Figure 3.2 (page 82)). Is one always
less than or equal to the other? Explain why or why not.

Exercise 3.5 Draw two different graphs, indicating start and goal nodes, for
which forward search is better in one and backward search is better in the other.

Exercise 3.6 The A∗ algorithm does not define what happens when multiple el-
ements on the frontier have the same f -value. Compare the following tie-breaking
conventions by first conjecturing which will work better, and then testing it on
some examples. Try it on some examples where there are multiple optimal paths
to a goal (such as finding a path from the bottom left of a rectangular grid to the
top right of the grid, where the actions are step-up and step-right). Of the paths
on the frontier with the same minimum f -value, select one:

(i) uniformly at random
(ii) that has been on the frontier the longest

(iii) that was most recently added to the frontier
(iv) with the smallest h-value
(v) with the least cost.

The last two may require other tie-breaking conventions when the cost and h val-
ues are equal.

Exercise 3.7 Consider what happens if the heuristic function is not admissible,
but is still non-negative. What guarantees can be made when the path found by
A∗ when the heuristic function:
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(a) is less than 1 + ε times the least-cost path (e.g., is less than 10% greater than
the cost of the least-cost path)

(b) is less than δ more than the least-cost path (e.g., is always no more than 10
units greater than the cost of the optimal path)?

Develop a hypothesis about what would happen and show it empirically or prove
your hypothesis. Does it change if multiple-path pruning is in effect or not?

Does loosening the heuristic in either of these ways improve efficiency? Try A∗
search where the heuristic is multiplied by a factor 1+ ε, or where a cost δ is added
to the heuristic, for a number of graphs. Compare these on the time taken (or the
number of nodes expanded) and the cost of the solution found for a number of
values of ε or δ.

Exercise 3.8 How can depth-first branch and bound be modified to find a path
with a cost that is not more than, say, 10% greater than the least-cost path. How
does this algorithm compare to A∗ from the previous question?

Exercise 3.9 The overhead for iterative deepening with b− 1 on the denominator
(page 99) is not a good approximation when b ≈ 1. Give a better estimate of the
complexity of iterative deepening when b ≈ 1. [Hint: Think about the case when
b = 1.] How does this compare with A∗ for such graphs? Suggest a way that
iterative deepening can have a lower overhead when the branching factor is close
to 1.

Exercise 3.10 Bidirectional search must be able to determine when the frontiers
intersect. For each of the following pairs of searches, specify how to determine
when the frontiers intersect:

(a) breadth-first search and depth-bounded depth-first search
(b) iterative deepening search and depth-bounded depth-first search
(c) A∗ and depth-bounded depth-first search
(d) A∗ and A∗.

Exercise 3.11 The depth-first branch and bound of Figure 3.14 (page 106) is like
a depth-bounded search in that it only finds a solution if there is a solution with
cost less than bound. Show how this can be combined with an iterative deepening
search to increase the depth bound if there is no solution for a particular depth
bound. This algorithm must return ⊥ in a finite graph if there is no solution. The
algorithm should allow the bound to be incremented by an arbitrary amount and
still return an optimal (least-cost) solution when there is a solution.
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Chapter 4

Reasoning with Constraints

Every task involves constraint,
Solve the thing without complaint;
There are magic links and chains
Forged to loose our rigid brains.
Structures, strictures, though they bind,
Strangely liberate the mind.

– James Falen

Instead of reasoning explicitly in terms of states, it is typically better to describe
states in terms of features and to reason in terms of these features, where a
feature is a function on states. Features are described using variables. Often
features are not independent and there are hard constraints that specify legal
combinations of assignments of values to variables. As Falen’s elegant poem
emphasizes, the mind discovers and exploits constraints to solve tasks. Prefer-
ences over assignments are specified in terms of soft constraints. This chapter
shows how to generate assignments that satisfy hard constraints and optimize
soft constraints.

4.1 Variables and Constraints

4.1.1 Variables and Assignments

An algebraic variable, or variable, is used to name a feature. The domain of
variable X, written domain(X), is the set of values the variable can take.

A discrete variable is one whose domain is finite or countably infinite. A
binary variable is a discrete variable with two values in its domain. One par-
ticular case of a binary variable is a Boolean variable, which is a variable with

127
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Symbols and Semantics

Algebraic variables are symbols.
Internal to a computer, a symbol is just a sequence of bits that is distin-

guished from other symbols. In a program we use constants to denote sym-
bols. Some symbols have a fixed interpretation; for example, symbols that
represent numbers and symbols that represent characters are predefined in
most computer languages. Symbols with a user-defined meaning, but with-
out a predefined meaning in the language, can be defined in many program-
ming languages. Lisp refers to them as atoms. Python 3.4 introduced a sym-
bol type called enum, but Python’s strings are often used as symbols. Usually,
symbols are implemented as indexes into a symbol table that gives the name
to print out. The only operation performed on these symbols is equality, to
determine whether two symbols are the same. This can be implemented by
comparing the indexes in the symbol table.

To users of a computer, symbols can have meanings. A person who in-
puts constraints or interprets the output of a program associates meanings
with the symbols making up the constraints or the outputs. They associate a
symbol with some concept or object in the world. For example, the variable
SamsHeight, to the computer, is just a sequence of bits. It has no relationship
to SamsWeight or AlsHeight. To a person, this variable may mean the height,
in particular units, of a particular person at a particular time.

The meaning associated with a variable–value pair must obey the clarity
principle: an omniscient agent – a fictitious agent who knows the truth and
the meanings associated with all of the symbols – should be able to determine
the value of each variable. For example, the height of Hagrid only satisfies the
clarity principle if the particular person being referred to and the particular
time are specified as well as the units. For example, one may want to reason
about the height, in centimeters, of Hagrid in a particular scene at the start of
the second Harry Potter movie. This is different from the height, in inches, of
Hagrid at the end of the third movie (although they are, of course, related).
To refer to Hagrid’s height at two different times, you need two variables.

You should have a consistent meaning for any symbols you use. When
stating constraints, you must have the same meaning for the same variable
and the same values, and you can use this meaning to interpret the output.

The bottom line is that symbols have meanings because you give them
meanings. For this chapter, assume that the computer does not know what the
symbols mean. A computer may know what a symbol means if it perceives
and manipulates the environment.
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domain {false, true}. We can also have variables that are not discrete; for exam-
ple, a variable whose domain is the real numbers or a range of the real numbers
is a continuous variable.

Given a set of variables, an assignment on the set of variables is a function
from the variables into the domains of the variables. We write an assignment
on {X1, X2, . . . , Xk} as {X1 = v1, X2 = v2, . . . , Xk = vk}, where vi is in domain(Xi).
This assignment specifies that, for each i, variable Xi is assigned value vi. A
variable can only be assigned one value in an assignment.

A total assignment assigns a value to every variable.

Example 4.1 The variable Class time may denote the starting time for a par-
ticular class. The domain of Class time may be the following set of possible
times:

domain(Class time) = {8, 9, 10, 11, 12, 1, 2, 3, 4, 5}.

The variable Height joe may refer to the height of a particular person, Joe, at a
particular time and have as its domain the set of real numbers, in some range,
that represent Joe’s height in centimeters. Raining may be a random variable
with domain {true, false}, which has value true if it is raining at a particular
time.

The assignment {Class time= 11, Height joe= 165, Raining= false} means
the class starts at 11, Joe is 165 cm tall, and it is not raining.

Example 4.2 In the electrical environment of Figure 1.6 (page 18), there may
be a variable for the position of each switch that specifies whether the switch is
up or down. There may be a variable for each light that specifies whether it is
lit or not. There may be a variable for each component specifying whether it is
working properly or if it is broken. Some variables that the following examples
use include:

• S1 pos is a binary variable denoting the position of switch s1 with domain
{up, down}, where S1 pos= up means switch s1 is up and S1 pos= down
means switch s1 is down.

• S1 st is a discrete variable denoting the status of switch s1 with domain
{ok, upside down, short, intermittent, broken}, where S1 st= ok means switch
s1 is working normally, S1 st= upside down means it is installed upside
down, S1 st= short means it is shorted and it allows electricity to flow
whether it is up or down, S1 st= intermittent means it is working intermit-
tently, and S1 st= broken means it is broken and does not allow electricity
to flow.

• Number of broken switches is an integer-valued variable denoting the num-
ber of switches that are broken.

• Current w1 is a real-valued variable denoting the current, in amps, flow-
ing through wire w1. Current w1 = 1.3 means there are 1.3 amps flow-
ing through wire w1. Inequalities between variables and constants form
Boolean conditions; for example, Current w1 ≥ 1.3 is true when there are
at least 1.3 amps flowing through wire w1.
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A total assignment specifies the position of every switch, the status of every
device, and so on. For example, an assignment may be switch 1 is up, switch 2
is down, fuse 1 is okay, wire 3 is broken, etc.

Example 4.3 Crossword puzzles, a popular form of recreation, involve fill-
ing in squares on a grid to make words that fit clues. There are two different
representations of crossword puzzles in terms of variables:

• In one representation, the variables are the numbered squares with the
direction of the word (down or across) and the domains are the set of pos-
sible words that can be used. For example, one across could be a variable
with domain {“ant”, “big”, “bus”, “car”, “has”}. A total assignment gives
a word for each of the variables.

• In another representation of a crossword, the variables are the individual
squares and the domain of each variable is the set of letters in the alpha-
bet. For example, the top-left square could be a variable p00 with domain
{a, . . . , z}. A total assignment gives a letter to each square.

Example 4.4 A trading agent, in planning a trip for a group of tourists, may
be required to schedule a given set of activities. There could be two variables
for each activity: one for the time, for which the domain is the set of possible
times or days for the activity, and one for the location, for which the domain
is the set of possible locations where it may occur. A total assignment gives a
time and location for each activity.

An alternative representation may have the times as the variables (e.g., each
hour for each day), with domains the set of possible activity–location pairs.

The number of total assignments is the product of the number of values in
the domains of the variables.

Example 4.5 If there are two variables, A with domain {0, 1, 2} and B with
domain {true, false}, there are six total assignments, which we name w0, . . . , w5
as follows”

• w0 = {A= 0, B= true}
• w1 = {A= 0, B= false}
• w2 = {A= 1, B= true}
• w3 = {A= 1, B= false}
• w4 = {A= 2, B= true}
• w5 = {A= 2, B= false}

If there are n variables, each with domain size d, there are dn total assignments.
One main advantage of reasoning in terms of variables is computational

saving. Consider deciding whether to model in terms of states explicitly or to
model the states in terms of binary variables. Many states can be described by
a few variables:

• 10 binary variables can describe 210 = 1024 states
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• 20 binary variables can describe 220 = 1, 048, 576 states
• 30 binary variables can describe 230 = 1, 073, 741, 824 states
• 100 binary variables can describe 2100 = 1, 267, 650, 600, 228, 229, 401, 496,

703, 205, 376 states.

Reasoning in terms of thirty variables may be easier than reasoning in terms
of more than a billion states. One hundred variables is not that many, but
reasoning in terms of more than 2100 states explicitly is not possible. Many
real-world problems have thousands, if not millions, of variables.

4.1.2 Constraints

In many applications, not all possible assignments of values to variables are
permissible. A hard constraint, or simply constraint, specifies legal combina-
tions of assignments of values to some of the variables. The set of variables
involved in the constraint is the scope of the constraint. A constraint specifies
a condition on these variables that is true or false for each assignment to the
variables in the scope.

A unary constraint is a constraint on a single variable (e.g., B ≤ 3). A bi-
nary constraint is a constraint over a pair of variables (e.g., A ≤ B). In general,
a k-ary constraint has a scope of size k. For example, A + B = C is a 3-ary
(ternary) constraint.

A constraint can be evaluated in an assignment that assigns a superset of
the variables in the scope. The extra variables are ignored. For example, A ≤ B
is true of the assignment {A = 3, B = 7, C = 5}.

Assignment A satisfies constraint c if A assigns the variables in the scope
of c and the condition of c evaluates to true for A restricted to the scope of c.
Assignment A violates constraint c if A assigns the variables in the scope of c
and the condition of c evaluates to false for that assignment.

If an assignment A satisfies a constraint, then any assignment that is a su-
perset of A also satisfies the constraint.

Example 4.6 Suppose a robot needs to schedule a set of activities for a manu-
facturing process, involving casting, milling, drilling, and bolting. Each activity
has a set of possible times at which it may start. The robot has to satisfy various
constraints arising from prerequisite requirements and resource use limitations.
For each activity there is a variable that represents the time that it starts. For
example, it could use D to represent the start time for the drilling, B the start
time of the bolting, and C the start time for the casting. Drilling must start be-
fore bolting corresponds to the constraint D < B. Casting and drilling must not
start at the same time corresponds to the constraint C �= D. Bolting must start
3 time units after casting starts corresponds to the constraint B = C + 3.

Constraints are defined either by their intension, in terms of formulas, or
by their extension, listing all the assignments that are true. Constraints de-
fined extensionally can be seen as relations of legal assignments as in relational
databases (page 800).
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Example 4.7 Consider a constraint on the possible dates for three activities.
Let A, B, and C be variables that represent the date of each activity. Suppose
the domain of each variable is {1, 2, 3, 4}.

A constraint with scope {A, B, C} could be described by its intension, using
a logical formula to specify the legal assignments, such as

(A ≤ B) ∧ (B < 3) ∧ (B < C) ∧ ¬(A = B∧ C ≤ 3)

where ∧ means and and ¬ means not. This formula says that A is on the same
date or before B, and B is before day 3, B is before C, and it cannot be that A and
B are on the same date when C is on or before day 3.

The extensional definition of this constraint is defined using the following
table specifying the legal assignments:

A B C
2 2 4
1 1 4
1 2 3
1 2 4

The first assignment is {A= 2, B= 2, C= 4}, which assigns A the value 2, B the
value 2, and C the value 4. There are four legal assignments of the variables.

The assignment {A= 1, B= 2, C= 3, D= 3, E= 1} satisfies this constraint be-
cause when restricted to the scope of the relation, namely {A= 1, B= 2, C= 3},
it is one of the legal assignments in the table.

Example 4.8 Consider the constraints for the two representations of crossword
puzzles of Example 4.3 (page 130):

• For the representation in which the domains are words, the constraint is
that the letters where a pair of words intersect must be the same.

• For the representation in which the domains are letters, the constraint is
that each contiguous sequence of letters must form a legal word.

4.1.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of:

• a set of variables
• a domain for each variable
• a set of constraints.

A solution is a total assignment that satisfies all of the constraints.

Example 4.9 Suppose the delivery robot must carry out a number of delivery
activities, a, b, c, d, and e. Suppose that each activity happens at any of times 1,
2, 3, or 4. Let A be the variable representing the time that activity a will occur,
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and similarly for the other activities. The variable domains, which represent
possible times for each of the deliveries, are

domain(A) = {1, 2, 3, 4}, domain(B) = {1, 2, 3, 4}, domain(C) = {1, 2, 3, 4},
domain(D) = {1, 2, 3, 4}, domain(E) = {1, 2, 3, 4}.

Suppose the following constraints must be satisfied:

{(B �= 3), (C �= 2), (A �= B), (B �= C), (C < D), (A = D),
(E < A), (E < B), (E < C), (E < D), (B �= D).}

It is instructive for you to try to find a solution for this example; try to assign a
value to each variable that satisfies these constraints.

Given a CSP, a number of tasks are useful:

• determine whether or not there is a solution
• find a solution when there is one
• count the number of solutions
• enumerate all of the solutions
• find a best solution, given a measure of how good solutions are
• determine whether some statement holds in all solutions.

The multidimensional aspect of CSPs, where each variable is a separate
dimension, makes these tasks difficult to solve, but also provides structure that
can be exploited.

CSPs are very common, so it is worth trying to find relatively efficient ways
to solve them. Determining whether there is a solution for a CSP with finite do-
mains is NP-complete (see box on page 89) and no known algorithms exist to
solve such problems that do not use exponential time in the worst case. How-
ever, just because a problem is NP-complete does not mean that all instances
are difficult to solve. Many instances have structure to exploit.

4.2 Solving CSPs by Searching

A finite CSP could be solved by exhaustively searching the total assignments.
The generate-and-test algorithm to find one solution is as follows: check

each total assignment in turn; if an assignment is found that satisfies all of the
constraints, return that assignment. A generate-and-test algorithm to find all
solutions is the same except, instead of returning the first solution found, it
enumerates the solutions.

Example 4.10 In Example 4.9 (page 132), the assignment space is

S = {{A= 1, B= 1, C= 1, D= 1, E= 1},
{A= 1, B= 1, C= 1, D= 1, E= 2}, . . . ,
{A= 4, B= 4, C= 4, D= 4, E= 4}}.
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In this case there are |S| = 45 = 1024 different assignments to be tested. If
there were fifteen variables instead of five, there would be 415, which is about
a billion, assignments to test. This method could not work for thirty variables.

If there are n variables, each with domain size d, there are dn total assign-
ments. If there are e constraints, the total number of constraints tested is O(edn).
As n becomes large, this becomes intractable very quickly.

The generate-and-test algorithm assigns values to all variables before check-
ing the constraints. Because individual constraints only involve a subset of the
variables, some constraints can be tested before all of the variables have been
assigned values. If a partial assignment violates a constraint, any total assign-
ment that extends the partial assignment will also violate the constraint. This
can potentially prune a large part of the search space.

Example 4.11 In the delivery scheduling problem of Example 4.9 (page 132),
the assignment {A= 1, B= 1} violates the constraint A �= B regardless of the
values of the other variables. If the variables A and B are assigned values first,
this violation can be discovered before any values are assigned to C, D, or E,
thus saving a large amount of work.

Figure 4.1 gives a depth-first search-based algorithm to find all solutions for
a CSP defined by variables Vs and constraints Cs that extend context, a partial
or total assignment. Vs contains the variables not assigned in context, and Cs
contains the constraints that involve at least one variable in Vs. It is called
initially using

DFS solver(Vs, Cs, {})

1: procedure DFS solver(Vs, Cs, context)
2: � Returns the set of all solutions of constraints Cs that extend

assignment context, where Vs are the variables not assigned in Cs
3: Let ce = {c ∈ Cs | c can be evaluated in context}
4: if context violates a constraint in ce then
5: return {}
6: else if Vs = {} then
7: return {context} � all variables assigned and constraints satisfied
8: else
9: select variable var ∈ Vs

10: sols := {}
11: for val in domain(var) do
12: sols := sols∪DFS solver(Vs \ {var}, Cs \ ce, {var= val} ∪ context)
13: return sols

Figure 4.1: Search-based algorithm to find all solutions to a CSP
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where Vs is the set of all variables, and Cs is the set of all constraints in a CSP,
with domain implicit.

It first collects in ce the assignments that can be evaluated given the context.
If the context violates a constraint that can be evaluated, there are no solutions
that extend this context. If there are no variables in Vs, all variables have been
assigned and so all constraints have been satisfied and it has found a solution.
Otherwise, it selects a variable not assigned in the context and branches on all
values of that variable.

This algorithm can be modified to implement generate and test by making
it check the constraints only when all variables have been assigned.

The search-based algorithm carries out a depth-first search. It is possible to
use any of the search strategies of the previous chapter to search the graph of
assignments. However, as all of the solution paths are the same length – the
length is the number of variables – there is not much point in doing so.

Example 4.12 Consider a CSP with variables A, B, and C, each with domain
{1, 2, 3, 4}, and constraints A < B and B < C. A possible search tree is shown
in Figure 4.2. In this figure, a node corresponds to all of the assignments from
the root to that node. The potential nodes that are pruned because they violate
constraints are labeled �.

The leftmost � corresponds to the assignment {A= 1, B= 1}. This violates
the A < B constraint, and so it is pruned.

This CSP has four solutions. The leftmost one is {A= 1, B= 2, C= 3}. The
size of the search tree, and thus the efficiency of the algorithm, depends on
which variable is selected at each time. A static ordering, such as always split-
ting on A then B then C, is usually less efficient than the dynamic ordering used

A=1 A=2 A=3 A=4

B=1

A=1 A=2 A=3 A=4

B=2

C=1 C=2 C=3 C=4

B=3

C=1 C=2 C=3 C=4

B=4

C=1 C=2 C=3 C=4 A=1 A=2 A=3 A=4

Figure 4.2: A possible search tree for the CSP of Example 4.12
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here, but it might be more difficult to find the best dynamic ordering than to
find the best static ordering. The set of answers is the same regardless of the
variable ordering.

There would be 43 = 64 total assignments tested in a generate-and-test
algorithm. For the search method, there are 8 total assignments generated, and
16 other partial assignments that were tested as to whether they satisfy some of
the constraints.

4.3 Consistency Algorithms

Although depth-first search over the search space of assignments is usually a
substantial improvement over generate and test, it still has various inefficien-
cies that can be overcome.

Example 4.13 In Example 4.12 (page 135), the variables A and B are related
by the constraint A < B. The assignment A= 4 is inconsistent with each of the
possible assignments to B because domain(B) = {1, 2, 3, 4}. In the course of the
backtrack search (see Figure 4.2), this fact is rediscovered for different assign-
ments to B and C. This inefficiency can be avoided by the simple expedient
of deleting 4 from domain(A), once and for all. This idea is the basis for the
consistency algorithms.

The consistency algorithms are best thought of as operating over a constraint
network defined as:

• There is a node (drawn as a circle or an oval) for each variable.
• There is a node (drawn as a rectangle) for each constraint.
• For every constraint c, and for every variable X in the scope of c, there is

an arc 〈X, c〉. The constraint network is thus a bipartite graph, with the
two parts consisting of the variable nodes and the constraint nodes; each
arc goes from a variable node to a constraint node.

• There is also a dictionary dom with the variables as keys, where dom[X] is
a set of possible values for variable X. dom[X] is initially the domain of X.

Example 4.14 Consider Example 4.12 (page 135). There are three variables A,
B, and C, each with domain {1, 2, 3, 4}. The constraints are A < B and B < C.
In the constraint network, shown in Figure 4.3, there are four arcs:

〈A, A < B〉

A A<B B B<C C

Figure 4.3: Constraint network for the CSP of Example 4.14
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〈B, A < B〉
〈B, B < C〉
〈C, B < C〉 .

Example 4.15 The constraint X �= 4 has one arc:

〈X, X �= 4〉 .

The constraint X + Y = Z has three arcs:

〈X, X + Y = Z〉
〈Y, X + Y = Z〉
〈Z, X + Y = Z〉 .

In the simplest case, when a constraint has just one variable in its scope, the arc
is domain consistent if every value of the variable satisfies the constraint.

Example 4.16 The constraint B �= 3 has scope {B}. With this constraint, and
with dom[B] = {1, 2, 3, 4}, the arc 〈B, B �= 3〉 is not domain consistent because
B= 3 violates the constraint. If the value 3 were removed from the domain of
B, then it would be domain consistent.

Suppose constraint c has scope {X, Y1, . . . , Yk}. Arc 〈X, c〉 is arc consistent
if, for each value x ∈ dom[X], there are values y1, . . . , yk where yi ∈ dom[Yi],
such that the assignment {X= x, Y1 = y1, . . . , Yk = yk} satisfies c. A network is
arc consistent if all its arcs are arc consistent.

Example 4.17 Consider the network of Example 4.14 (page 136) shown in Fig-
ure 4.3 (page 136). None of the arcs are arc consistent. The first arc, 〈A, A < B〉,
is not arc consistent because for A= 4 there is no corresponding value for B for
which A < B. If 4 were removed from the domain of A, then it would be arc
consistent. The second arc, 〈B, A < B〉, is not arc consistent because there is no
corresponding value for A when B= 1.

If an arc 〈X, c〉 is not arc consistent, there are some values of X for which
there are no values for Y1, . . . , Yk for which the constraint holds. In this case,
all values of X in dom[X] for which there are no corresponding values for the
other variables can be deleted from dom[X] to make the arc 〈X, c〉 consistent.
When a value is removed from a domain, this may make some other arcs that
were previously consistent no longer consistent.

The generalized arc consistency (GAC) algorithm is given in Figure 4.4
(page 138). It takes in a CSP with variables Vs, constraints Cs, and (possibly
reduced) domains specified by the dictionary dom and a set to do of potentially
inconsistent arcs. The set to do initially consists of all arcs in the graph, {〈X, c〉 |
c ∈ Cs and X ∈ scope(c)}. It modifies dom to make the network arc consistent.

While to do is not empty, an arc 〈X, c〉 is removed from the set and consid-
ered. If the arc is not arc consistent, it is made arc consistent by pruning the
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domain of variable X. All of the previously consistent arcs that could, as a re-
sult of pruning X, have become inconsistent are added to the set to do if they
are not already there. These are the arcs 〈Z, c′〉, where c′ is a constraint different
from c that involves X, and Z is a variable involved in c′ other than X. When
to do is empty, the constraint graph is arc consistent.

Example 4.18 Consider the GAC algorithm operating on the network from
Example 4.14 (page 136), with constraints A < B, B < C. Initially, all of the arcs
are in the to do set. Here is one possible sequence of selections of arcs, showing
what values are pruned and what is added to the set to do.

Arc Domain reduced Added to to do
〈A, A < B〉 dom[A] = {1, 2, 3} –
〈B, A < B〉 dom[B] = {2, 3, 4} –
〈B, B < C〉 dom[B] = {2, 3} 〈A, A < B〉
〈A, A < B〉 dom[A] = {1, 2} –
〈C, B < C〉 dom[C] = {3, 4} –

In the first step, the algorithm selects the arc 〈A, A < B〉. For A= 4, there is
no value of B that satisfies the constraint. Thus, 4 is pruned from the domain of
A. Nothing is added to to do because there is no arc involving B not in to do.

In the second step, 1 is removed from the domain of B. The arc 〈A, A < B〉
is not added back to to do because it involves the same constraint as the arc
visited.

In the third step, 〈B, B < C〉 is selected. The value 4 is removed from the
domain of B. Because the domain of B has been reduced, the arc 〈A, A < B〉
must be added back into the to do set because the domain of A could potentially
be reduced further now that the domain of B is smaller.

The algorithm then terminates with dom[A] = {1, 2}, dom[B] = {2, 3},
dom[C] = {3, 4}. Although this has not fully solved the problem, it has greatly
simplified it. For example, depth-first backtracking search (page 133) would
now solve the problem more efficiently.

1: procedure GAC(Vs, dom, Cs, to do)
2: � Returns arc-consistent domains for CSP 〈Vs, dom, Cs〉 given to do
3: while to do �= {} do
4: select and remove 〈X, c〉 from to do
5: let {Y1, . . . , Yk} = scope(c) \ {X}
6: ND := {x | x ∈ dom[X] and exists y1 ∈ dom[Y1] . . . yk ∈ dom[Yk] such

that c(X= x, Y1 = y1, . . . , Yk = yk)}
7: if ND �= dom[X] then
8: to do := to do∪ {〈Z, c′〉 | {X, Z} ⊆ scope(c′), c′ �= c, Z �= X}
9: dom[X] := ND

10: return dom

Figure 4.4: Generalized arc consistency algorithm
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Example 4.19 Consider applying GAC to the scheduling problem of Example
4.9 (page 132). The network shown in Figure 4.5 has already been made domain
consistent (the value 3 has been removed from the domain of B and 2 has been
removed from the domain of C). The following is a sequence of arcs processed
for one sequence of selections from to do, where the order of arcs is arbitrary:

Arc Domain Reduced Added to to do
〈B, B �= C〉 – –
〈D, C < D〉 dom[D] = {2, 3, 4} –
〈C, E < C〉 dom[C] = {3, 4} 〈D, C < D〉, 〈B, B �= C〉
〈D, C < D〉 dom[D] = {4} –
〈B, B �= C〉 – –
〈C, C < D〉 dom[C] = {3} 〈B, B �= C〉
〈A, A = D〉 dom[A] = {4} –
〈B, B �= D〉 dom[B] = {1, 2} –
〈B, E < B〉 dom[B] = {2} 〈B, B �= D〉
〈E, E < B〉 dom[E] = {1} 〈C, E < C〉
. . . – –

At the end, all the arcs are consistent, and so the algorithm terminates with
the to do set empty. The set of reduced variable domains is returned. In this
case, the domains all have size 1 and there is a unique solution: A= 4, B= 2,
C= 3, D= 4, E= 1.

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Figure 4.5: Domain-consistent constraint network. The variables are depicted as
circles or ovals with their corresponding domain. The constraints are represented
as rectangles. There is an arc between each variable and each constraint that
involves that variable
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Notice that at the third step, when C is reduced, all processed constraints
that involve C, but do not involve E, are added back to the set to do.

Regardless of the order in which the arcs are considered, the algorithm will
terminate with the same result, namely, an arc-consistent network and the same
set of reduced domains. Three cases are possible, depending on the state of the
network upon termination:

• In the first case, one domain becomes empty, indicating there is no solu-
tion for the CSP. Note that, as soon as any one domain becomes empty,
all domains of connected nodes will become empty before the algorithm
terminates.

• In the second case, each domain has a singleton value, indicating that
there is a unique solution, as in Example 4.19 (page 139).

• In the third case, every domain is non-empty and at least one has mul-
tiple values. There may or may not be a solution. Methods to solve the
problem in this case are explored in the following sections.

The following example shows that it is possible for a network to be arc
consistent even though there is no solution.

Example 4.20 Suppose there are variables, A, B, and C, each with the domain
{1, 2, 3, 4} and constraints A = B, B = C, and A �= C. This is arc consistent: no
domain can be pruned using any single constraint. However, there are no solu-
tions; there is no assignment to the three variables that satisfies the constraints.

Consider the time complexity of the generalized arc-consistency algorithm
for binary constraints. Suppose there are c binary constraints, and the domain
of each variable is of size d. There are 2c arcs. Checking an arc 〈X, r(X, Y)〉
involves, in the worst case, iterating through each value in the domain of Y for
each value in the domain of X, which takes O(d2) time. This arc may need to
be checked once for every element in the domain of Y, thus GAC for binary
variables can be done in time O(cd3), which is linear in c, the number of con-
straints. The space used is O(nd), where n is the number of variables and d
is the domain size. Exercise 4.5 (page 174) explores the complexity of more
general constraints.

Various extensions to arc consistency are also possible. The domains need
not be finite; they may be specified using intensions, such as 3 < X < 7.
Higher-order consistency techniques, such as path consistency, consider k-
tuples of variables at a time, not just pairs of variables that are connected by a
constraint. For example, by considering all three variables, an algorithm could
recognize that there is no solution in Example 4.20. These higher-order meth-
ods are often less efficient for solving a problem than using arc consistency
augmented with the methods described below.
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4.4 Domain Splitting

To enable consistency methods to find all of the solutions, we need to incorpo-
rate search. While the search methods of Section 4.2 (page 133) can be adapted
to allow for simplification of the domains, we can do better by domain split-
ting, a form of case analysis that interleaves search and arc consistency. The
idea is to split a problem into a number of disjoint cases and solve each case
separately. The set of all solutions to the initial problem is the union of the
solutions to each case.

In the simplest case, suppose there is a binary variable X with domain {t, f}.
All of the solutions either have X= t or X= f . One way to find all of the so-
lutions is to set X= t, find all of the solutions with this assignment, and then
assign X= f and find all of the solutions with this assignment. Assigning a
value to a variable gives a smaller reduced problem to solve. If we only want
to find one solution, we can look for the solutions with X= t, and if we do not
find any, we can look for the solutions with X= f .

If the domain of a variable has more than two elements, for example if the
domain of A is {1, 2, 3, 4}, there are a number of ways to split it:

• Split the domain into a case for each value. For example, split A into the
four cases A= 1, A= 2, A= 3, and A= 4.

• Always split the domain into two disjoint non-empty subsets. For exam-
ple, split A into the two cases A ∈ {1, 2} and A ∈ {3, 4}.

The first approach makes more progress with one split, but the second may
allow for more pruning with fewer steps. For example, if the same values for
B can be pruned whether A is 1 or 2, the second case allows this fact to be
discovered once and not have to be rediscovered for each element of A. This
saving depends on how the domains are split.

Recursively solving the cases using domain splitting, recognizing when
there is no solution based on the assignments, is equivalent to the search al-
gorithm of Section 4.2 (page 133). It can be more efficient to interleave arc
consistency with the search.

One effective way to solve a CSP is to use arc consistency to simplify the
network before each step of domain splitting. That is, to solve a problem:

• simplify the problem using arc consistency, and
• if the problem is not solved, select a variable whose domain has more

than one element, split it, and recursively solve each case.

Arc consistency does not need to start from scratch after domain splitting. If
the variable X has its domain split, to do can start with just the arcs that are
possibly no longer arc consistent as a result of the split. These are all the arcs
of the form 〈Y, r〉, where X appears in r and Y is not X.

Figure 4.6 (page 142) shows how to solve a CSP with arc consistency and
domain splitting. Con Solve(Vs, dom, Cs, to do) returns a solution to constraint

https://doi.org/10.1017/9781009258227.007


142 4. Reasoning with Constraints

satisfaction problem Vs, dom, Cs if there is (at least) one, or false otherwise. Ini-
tially, dom contains the domain for each variable, and to do is {〈X, c〉 | c ∈
Cs and X ∈ scope(c)}. The “or” in line 14 is assumed to return the value of its
first argument if it is not false, and otherwise returns the value of the second
argument. GAC must not change to do, otherwise the second td might have the
wrong value.

It is possible to use essentially the same algorithm to find all solutions: line
5 should return the empty set, line 7 should return the set containing one ele-
ment, and line 14 should return the union of the answers from each case.

Example 4.21 In Example 4.18 (page 138), arc consistency simplified the net-
work, but did not solve the problem. After arc consistency had completed,
there were multiple elements in the domains. Suppose B is split. There are two
cases:

• B= 2. In this case A= 2 is pruned. Splitting on C produces two of the
answers.

• B= 3. In this case C= 3 is pruned. Splitting on A produces the other two
answers.

This search tree should be contrasted with the search tree of Figure 4.2 (page 135).
The search space with arc consistency is much smaller.

Domain splitting forms a search space from which any of the methods of
Chapter 3 can be used. However, as it is only the solution and not the path that
is of interest, and because the search space is finite, depth-first search is often
used for these problems.

One other enhancement can make domain splitting much more efficient
when counting the number of solutions. If assigning values to the variables

1: procedure Con Solve(Vs, dom, Cs, to do)
2: � Returns a solution to CSP 〈Vs, dom, Cs〉 or false otherwise
3: dom0 := GAC(Vs, dom, Cs, to do)
4: if there is a variable X such that dom0[X] = {} then
5: return false
6: else if for every variable X, |dom0[X]| = 1 then
7: return solution with each variable X having the value in dom0[X]
8: else
9: select variable X such that |dom0[X]| > 1

10: partition dom0[X] into D1 and D2
11: dom1 := a copy of dom0 but with dom1[X] = D1
12: dom2 := a copy of dom0 but with dom2[X] = D2
13: td := {〈Z, c′〉 | {X, Z} ⊆ scope(c′), Z �= X}
14: return Con Solve(Vs, dom1, Cs, td) or Con Solve (Vs, dom2, Cs, td)

Figure 4.6: Finding a solution for a CSP using arc consistency and domain splitting
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disconnects the graph, each disconnected component can be solved separately.
The solution to the complete problem is the product of the solutions to each
component. For example, if one component has 100 solutions and the other
component has 20 solutions, there are 2000 solutions. Treating them indepen-
dently is more efficient than finding each of the 2000 solutions separately.

4.5 Variable Elimination

Arc consistency simplifies the network by removing values from the domains
of variables. A complementary method is variable elimination (VE), which
simplifies the network by removing variables.

The idea of VE is to remove the variables one by one. When removing a
variable X, VE constructs a new constraint on some of the remaining variables
reflecting the effects of X on the other variables. This new constraint replaces
all of the constraints that involve X, forming a reduced network that does not
involve X. VE provides a way to construct a solution to the CSP that contains
X from a solution to the reduced CSP.

The following algorithm is described using the relational algebra opera-
tions of join and project (page 800).

When eliminating X, the influence of X on the remaining variables is through
the constraint relations that involve X. First, the algorithm collects all of the
constraints that involve X. Let the join of all of these relations be the relation
rX(X, Y), where Y is the set of other variables in the scope of rX. Thus Y is
the set of all variables that are neighbors of X in the constraint graph. The al-
gorithm then projects rX onto Y; this relation replaces all of the relations that
involve X. The algorithm thus creates a reduced CSP that involves one less
variable, which it solves recursively. Once it has a solution for the reduced
CSP, it extends that solution to a solution for the original CSP by joining the
solution with rX.

When only one variable is left, it returns the domain elements that are con-
sistent with the constraints on this variable.

Example 4.22 Consider a CSP that contains the variables A, B, and C, each
with domain {1, 2, 3, 4}. Suppose the constraints that involve B are A < B
and B < C. There may be many other variables, but if B does not have any
constraints in common with these variables, eliminating B will not impose any
new constraints on these other variables. To remove B, first join on the relations
that involve B:

A B
1 2
1 3
1 4
2 3
2 4
3 4

��

B C
1 2
1 3
1 4
2 3
2 4
3 4

=

A B C
1 2 3
1 2 4
1 3 4
2 3 4
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To get the relation on A and C induced by B, project this join onto A and C,
which gives

A C
1 3
1 4
2 4

This relation on A and C contains all of the information about the constraints
on B that affect the solutions of the rest of the network.

The original constraints on B are replaced with the new constraint on A
and C. VE then solves the rest of the network, which is now simpler because it
does not involve the variable B. To generate one or all solutions, the algorithm
remembers the joined relation on A, B, C to construct a solution that involves B
from a solution to the reduced network.

Figure 4.7 gives a recursive algorithm for variable elimination, VE CSP, to
find all solutions for a CSP.

The base case of the recursion occurs when only one variable is left. The
constraints are on one variable, giving the set of allowable values for that vari-
able. The values for that variable are the intersection of the sets for each con-
straint.

In the non-base case, a variable X is selected for elimination (line 10). To
eliminate variable X, the algorithm propagates the effect of X onto those vari-
ables that X is directly related to. This is achieved by joining all of the relations
in which X is involved (line 12) and then projecting X out of the resulting re-
lation (line 13). Thus, a simplified problem (with one less variable) has been

1: procedure VE CSP(Vs, Cs)
2: Inputs
3: Vs: a set of variables
4: Cs: a set of constraints on Vs
5: Output
6: a relation containing all of the consistent variable assignments
7: if Vs contains just one element then
8: return the join of all relations in Cs
9: else

10: select variable X to eliminate
11: CX := {C ∈ Cs : C involves X}
12: R := join of all of the constraints in CX
13: NR := R projected onto the variables other than X
14: S := VE CSP(Vs \ {X}, (Cs \ CX) ∪ {NR})
15: return R �� S

Figure 4.7: Variable elimination for finding all solutions to a CSP
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created that can be solved recursively. To get the possible values for X, the
algorithm joins the solution of the simplified problem with the relation R that
defines the effect of X. If any value of R in this algorithm contains no tuples,
there are no solutions.

Example 4.23 Consider the constraints of Example 4.9 (page 132), shown in
Figure 4.5 (page 139). If the variables are selected in the elimination order A, C,
D, E, the algorithm has the following sequence of constraints being joined (CX
in the algorithm) and new constraint created (NR in the algorithm) where, for
example, c1(B, D, E) is a new constraint on variables {B, D, E}:

Variable Eliminated Constraints Joined New Constraint
A A �= B, A = D, E < A c1(B, D, E)
C B �= C, C < D, E < C c2(B, D, E)
D E < D, B �= D, c1(B, D, E), c2(B, D, E) c3(B, E)
E E < B, c3(B, E) c4(B)

The legal assignment(s) for B is given in c4(B).
The elimination order B, C, A, E has the following constraints joined and

new constraints:

Variable Eliminated Constraints Joined New Constraint
B A �= B, B �= D, B �= C, E < B c5(A, C, D, E)
C C < D, E < C , c5(A, C, D, E) c6(A, D, E)
A A = D, E < A, c6(B, D, E) c7(D, E)
E E < D, c7(D, E) c8(D)

These elimination orderings result in the same set of answers.

If you only wanted to find one solution, instead of returning R �� S, the al-
gorithm can return one element of the join. No matter which element it returns,
that element is guaranteed to be part of a solution.

The order in which the variables are selected at line 10 is called the elim-
ination ordering. The elimination ordering does not affect the correctness of
the algorithm, but it may affect efficiency.

The intermediate structure – which variables the intermediate constraints
are over – depends only on the graph structure of the constraint network and
the elimination order. The maximum number of variables in the scope of an
intermediate factor for a variable ordering is the treewidth of the graph for that
variable ordering. The treewidth of a graph is the minimum treewidth for all
orderings. The time complexity of variable elimination for finding one solution
or counting the number of solutions is exponential in the treewidth and linear
in the number of variables. The space is exponential in the treewidth. This can
be compared to depth-first search (see Section 4.2, page 133), where the time is
exponential in the number of variables, but the space is linear in the number
of variables. The time complexity of the task for enumerating the solutions can
be greater than this if there are many solutions.
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Finding an elimination ordering that results in the smallest treewidth is
NP-hard. However, some good heuristics exist. The two most common are:

• Min-factor. At each stage, select the variable that results in the smallest
factors being created at that stage.

• Minimum deficiency or minimum fill. At each stage, select a variable
that has the fewest pair variables in the new constraint that were not to-
gether in a constraint before the variable was eliminated. The deficiency
of a variable X is the number of pairs of variables that are in a constraint
with X that are not in another constraint with each other. The intuition is
that it is okay to remove a variable that results in a large relation as long
as it does not make the network more complicated.

The minimum deficiency has usually been found empirically to give a smaller
treewidth than min-factor, but it is more difficult to compute.

VE can also be combined with GAC (page 137); whenever VE removes a
variable, arc consistency can be used to further simplify the problem. This
approach can result in smaller intermediate tables. For example, following
eliminating one of the variables in Example 4.20 (page 140), arc consistency
will result in empty domains (even if there were many other variables and
constraints).

4.6 Local Search

The preceding algorithms systematically search the space of assignments of
values to variables. If the space is finite, they will either find a solution or re-
port that no solution exists. Unfortunately, many spaces are too big for system-
atic search and are possibly even infinite. In any reasonable time, systematic
search will have failed to consider enough of the space to give any meaningful
results. This section and the next consider methods intended to work in these
very large spaces. The methods do not systematically search the whole search
space but they are designed to find solutions quickly on average. They do not
guarantee that a solution will be found even if one exists, and so they are not
able to determine that no solution exists. They are often the method of choice
for applications where solutions are known to exist or are very likely to exist.

Local search methods start with a total assignment of a value to each vari-
able and try to improve this assignment iteratively by taking improving steps,
by taking random steps, or by restarting with another total assignment. Many
different local search techniques have been proposed. Understanding when
these techniques work for different problems forms the focus of a number of
research communities, in both operations research and AI.

A generic local search algorithm is given in Figure 4.8 (page 147). It main-
tains a total assignment in the dictionary A, which has the variables as the keys.
Each iteration of the outer (repeat) loop is called a try. The first for each loop
(line 11) assigns a random value to each variable. The first time it is executed

https://doi.org/10.1017/9781009258227.007


4.6. Local Search 147

is called a random initialization. At subsequent times it is a random restart.
An alternative to random assignment is to use an informed guess, utilizing
heuristic or prior knowledge, which is then iteratively improved.

The while loop (line 13 to line 15) does a local search, or a walk, through
the assignment space. It considers a set of possible successors of the total as-
signment A, and selects one to be the next total assignment. In Figure 4.8, the
possible successors of a total assignment are those assignments that differ in
the assignment of a single variable.

This walk through assignments continues until either a satisfying assign-
ment is found and returned or the stop walk() condition is true, in which case
the algorithm either does a random restart, starting again with a new assign-
ment, or terminates with no solution found. A common case is that stop walk()
becomes true after a certain number of steps.

An algorithm is complete if it guarantees to find an answer whenever there
is one. This algorithm can be complete or incomplete, depending on the selec-
tion of variable and value, and the stop walk and termination() conditions.

One version of this algorithm is random sampling. In random sampling,
the stopping criterion stop walk() always returns true so that the while loop from
line 13 is never executed. Random sampling keeps picking random assign-
ments until it finds one that satisfies the constraints, and otherwise it does not
halt. Random sampling is complete in the sense that, given enough time, it

1: procedure Local search(Vs, domain, Cs)
2: Inputs
3: Vs: a set of variables
4: domain: a function such that domain(X) is the domain of variable X
5: Cs: set of constraints to be satisfied
6: Output
7: total assignment that satisfies the constraints
8: Local
9: A a dictionary of values indexed by variables in Vs

10: repeat
11: for each variable X in Vs do
12: A[X] := a (random or other) value in domain(X)

13: while not stop walk() & A is not a satisfying assignment do
14: Select a variable Y and a value w ∈ domain(Y)
15: A[Y] := w
16: if A is a satisfying assignment then
17: return A
18: until termination()

Figure 4.8: Local search for finding a solution to a CSP
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guarantees that a solution will be found if one exists, but there is no upper
bound on the time it may take. It is typically very slow. The efficiency depends
on the product of the domain sizes and how many solutions exist.

Another version is a random walk when stop walk() is always false, and the
variable and value are selected at random. Thus there are no random restarts,
and the while loop is only exited when it has found a satisfying assignment.
Random walk is also complete in the same sense as random sampling. Each
step takes less time than resampling all variables, but it can take more steps
than random sampling, depending on how the solutions are distributed. When
the domain sizes of the variables differ, a random walk algorithm can either
select a variable at random and then a value at random, or select a variable–
value pair at random. The latter is more likely to select a variable when it has
a larger domain.

4.6.1 Iterative Best Improvement

Iterative best improvement is a local search algorithm that selects a variable
and value on line 14 of Figure 4.8 that most improves some evaluation func-
tion. If there are several possible successors that most improve the evaluation
function, one is chosen at random. When the aim is to minimize a function, this
algorithm is called greedy descent. When the aim is to maximize a function,
this is called hill climbing or greedy ascent. We only consider minimization;
to maximize a quantity, you can minimize its negation.

Iterative best improvement requires a way to evaluate each total assign-
ment. For constraint satisfaction problems, a common evaluation function is
the number of constraints that are violated. A violated constraint is called a
conflict. With the evaluation function being the number of conflicts, a solution
is a total assignment with an evaluation of zero. Sometimes this evaluation
function is refined by weighting some constraints more than others.

A local optimum is an assignment such that no possible successor im-
proves the evaluation function. This is also called a local minimum in greedy
descent, or a local maximum in greedy ascent. A global optimum is an assign-
ment that has the best value out of all assignments. All global optima are local
optima, but there can be many local optima that are not a global optimum.

If the heuristic function is the number of conflicts, a satisfiable CSP has a
global optimum with a heuristic value of 0, and an unsatisfiable CSP has a
global optimum with a value above 0. If the search reaches a local minimum
with a value above 0, you do not know if it is a global minimum (which implies
the CSP is unsatisfiable) or not.

Example 4.24 Consider the delivery scheduling in Example 4.9 (page 132).
Suppose greedy descent starts with the assignment A= 2, B= 2, C= 3, D= 2,
E= 1. This assignment has an evaluation of 3, because it violates A �= B, B �= D,
and C < D. One possible successor with the minimal evaluation has B= 4
with an evaluation of 1 because only C < D is unsatisfied. This assignment
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is selected. This is a local minimum. One possible successor with the fewest
conflicts can be obtained by changing D to 4, which has an evaluation of 2. It
can then change A to 4, with an evaluation of 2, and then change B to 2, with
an evaluation of 0, and a solution is found.

The following gives a trace of the assignments through the walk:

A B C D E Evaluation
2 2 3 2 1 3
2 4 3 2 1 1
2 4 3 4 1 2
4 4 3 4 1 2
4 2 3 4 1 0

Different initializations, or different choices when multiple assignments have
the same evaluation, give different sequences of assignments to the variables
and possibly different results.

Iterative best improvement considers the best successor assignment even
if it is equal to or even worse than the current assignment. This means that if
there are two or more assignments that are possible successors of each other
and are all local, but not global, optima, it will keep moving between these
assignments, and never reach a global optimum. Thus, this algorithm is not
complete.

4.6.2 Randomized Algorithms

Iterative best improvement randomly picks one of the best possible successors
of the current assignment, but it can get stuck in local minima that are not
global minima.

Randomness can be used to escape local minima that are not global minima
in two main ways:

• random restart (page 147), in which values for all variables are chosen at
random; this lets the search start from a completely different part of the
search space

• random steps, in which some random selections of variable and/or value
are interleaved with the optimizing steps; with greedy descent, this pro-
cess allows for upward steps that may enable random walk to escape a
local minimum that is not a global minimum.

A random step is a cheap local operation only affecting a single variable, whereas
a random restart is a global operation affecting all variables. For problems in-
volving a large number of variables, a random restart can be quite expensive.

A mix of iterative best improvement with random steps is an instance of a
class of algorithms known as stochastic local search.

Unfortunately, it is very difficult to visualize the search space to understand
which algorithms work because there are often thousands or millions of dimen-
sions (variables), each with a discrete, or even continuous, set of values. Some
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intuitions can be gleaned from lower-dimensional problems. Consider the two
one-dimensional search spaces in Figure 4.9, where the objective is to find the
minimum value. Suppose that a possible successor is obtained by a small step,
either left or right of the current position. To find the global minimum in the
search space (a), one would expect the greedy descent with random restart af-
ter a local optimum has been found to find the optimal value quickly. Once a
random choice has found a point in the deepest valley, greedy descent quickly
leads to the global minimum. One would not expect a random walk to work
well in this example, because many random steps are required to exit one of
the local, but not global, minima. However, for search space (b), a random
restart quickly gets stuck on one of the jagged peaks and does not work very
well. However, a random walk combined with greedy descent enables it to
escape these local minima. A few random steps may be enough to escape a
local minimum. Thus, one may expect that a random walk would work better
in this search space.

Because it is difficult to determine which method would work best from ex-
amining the problem, practitioners evaluate many methods to see which one
works well in practice for the particular problem. It is even possible that dif-
ferent parts of the search space have different characteristics. Some of the most
efficient methods use algorithm portfolios – sets of algorithms, together with a
learned function that, given a problem, chooses an appropriate algorithm from
the portfolio.

4.6.3 Local Search Variants

There are many variants of iterative best improvement with randomness.
If the variables have small finite domains, a local search algorithm can con-

sider all other values of the variable when considering the possible successors.
If the domains are large, the cost of considering all the other values may be too
high. An alternative is to consider only a few other values, often the close val-

(a) (b)

Figure 4.9: Two search spaces; find the minimum
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ues, for one of the variables. Sometimes quite sophisticated methods are used
to select an alternative value.

As presented, the local search has no memory. It does not remember any-
thing about the search as it proceeds. A simple way to use memory to improve
a local search is to use tabu search, which prevents recently changed variable
assignments from being changed again. The idea is, when selecting a variable
to change, not to select a variable that was changed in the last t steps for some
integer t, called the tabu tenure. If t is small, tabu search can be implemented
by having a list of the recently changed variables. If t is larger, it can be im-
plemented by including, for each variable, the step at which the variable got
its current value. Tabu search prevents cycling among a few assignments. The
tabu tenure is one of the parameters that can be optimized. A tabu list of size 1
is equivalent to not allowing the same assignment to be immediately revisited.

Algorithms differ in how much work they require to guarantee the best
improvement step. At one extreme, an algorithm can guarantee to select one of
the new assignments with the best improvement out of all possible successors.
At the other extreme, an algorithm can select a new assignment at random and
reject the assignment if it makes the situation worse. It is often better to make
a quick choice than to spend a lot of time making the best choice. Which of
these methods works best is, typically, an empirical question; it is difficult to
determine theoretically whether large slow steps are better than small quick
steps for a particular problem domain. There are many possible variants of
which successor to select, some of which are explored in the next sections.

Most Improving Step

The most improving step method always selects a variable–value pair that
makes the best improvement. If there are many such pairs, one is chosen at
random.

The naive way of implementing most improving step is, given the current
total assignment, A, to linearly scan the variables, and for each variable X and
for each value v in the domain of X (other than the value of X in A), evaluate
the assignment A but with X= v. Then select one of the variable–value pairs
that results in the lowest evaluation. One step requires O(ndr) evaluations of
constraints, where n is the number of variables, d is the domain size, and r is
the number of constraints for each variable.

A more sophisticated alternative is to have a priority queue of variable–
value pairs with associated weights. For each variable X, and each value v
in the domain of X such that X is not assigned to v in A, the pair 〈X, v〉 is
in the priority queue with weight the evaluation of A, but with X= v minus
the evaluation of A. This weight depends on values assigned to X and the
other variables in the constraints involving X in the constraint, but does not
depend on the values assigned to other variables. At each stage, the algorithm
selects a variable–value pair with minimum weight, which gives a successor
with the biggest improvement. Once a variable X has been given a new value,
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the weights of all variable–value pairs that participate in a constraint that has
been made satisfied or been made unsatisfied by the new assignment to X must
have their weights reassessed and, if changed, they need to be reinserted into
the priority queue.

The size of the priority queue is n(d− 1), where n is the number of variables
and d is the average domain size. To insert or remove an element takes time
O(log nd). The algorithm removes one element from the priority queue, adds
another, and updates the weights of at most rk variables, where r is the number
of constraints per variable and k is the number of variables per constraint. The
complexity of one step of this algorithm is O(rkd log nd), where n is the number
of variables, d is the average domain size, and r is the number of constraints
per variable. This algorithm spends much time maintaining the data structures
to ensure that the most improving step is taken at each time.

Two-Stage Choice

An alternative is to first select a variable and then select a value for that vari-
able. The two-stage choice algorithm maintains a priority queue of variables,
weighted by the number of conflicts (unsatisfied constraints) in which each
variable participates. At each time, the algorithm selects a variable that partic-
ipates in the maximum number of conflicts. Once a variable has been chosen,
it can be assigned either a value that minimizes the number of conflicts or a
value at random. For each constraint that becomes true or false as a result of
this new assignment, the other variables participating in the constraint must
have their weight re-evaluated.

The complexity of one step of this algorithm is O(rk log n), where n is the
number of variables and r is the number of constraints per variable, and k is the
number of variables per constraint. Compared to selecting the best variable–
value pair, this does less work for each step and so more steps are achievable
for any given time period. However, the steps tend to give less improvement,
giving a trade-off between the number of steps and the complexity per step.

Any Conflict

Instead of choosing the best variable, an even simpler alternative is to select
any variable participating in a conflict. A variable that is involved in a conflict
is a conflicting variable. In the any-conflict algorithm, at each step, one of the
conflicting variables is selected at random. The algorithm assigns to the chosen
variable one of the values that minimizes the number of violated constraints or
a value at random.

There are two variants of this algorithm, which differ in how the variable
to be modified is selected:

• In the first variant, a conflict is chosen at random, and then a variable that
is involved in the conflict is chosen at random.
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• In the second variant, a variable that is involved in a conflict is chosen at
random.

These differ in the probability that a variable in a conflict is chosen. In the first
variant, the probability a variable is chosen depends on the number of conflicts
it is involved in. In the second variant, all of the variables that are in conflicts
are equally likely to be chosen.

Each of these algorithms requires maintaining data structures that enable
a variable to be quickly selected at random. The data structure needs to be
maintained as variables change their values. The first variant requires a set of
conflicts from which a random element is selected, such as a binary search tree.
The complexity of one step of this algorithm is thus O(r log c), where r is the
number of constraints per variable and c is the number of constraints, because
in the worst case r constraints may need to be added or removed from the set
of conflicts.

Simulated Annealing

The last method maintains no data structure of conflicts; instead, it picks a vari-
able and a new value for that variable at random and either rejects or accepts
the new assignment.

Annealing is a metallurgical process where molten metals are slowly cooled
to allow them to reach a low-energy state, making them stronger. Simulated
annealing is an analogous method for optimization. It is typically described in
terms of thermodynamics. The random movement corresponds to high tem-
perature; at low temperature, there is little randomness. Simulated annealing
is a stochastic local search algorithm where the temperature is reduced slowly,
starting from approximately a random walk at high temperature, eventually
becoming pure greedy descent as it approaches zero temperature. The ran-
domness should allow the search to jump out of local minima and find regions
that have a low heuristic value, whereas the greedy descent will lead to local
minima. At high temperatures, worsening steps are more likely than at lower
temperatures.

Like the other local search methods, simulated annealing maintains a cur-
rent total assignment. At each step, it picks a variable at random, then picks a
value for that variable at random. If assigning that value to the variable does
not increase the number of conflicts, the algorithm accepts the assignment of
that value to the variable, resulting in a new current assignment. Otherwise, it
accepts the assignment with some probability, depending on the temperature
and how much worse the new assignment is than the current assignment. If
the change is not accepted, the current assignment is unchanged.

Suppose A is the current total assignment and h(A) is the evaluation of
assignment A to be minimized. For constraint solving, h(A) is typically the
number of conflicts of A. Simulated annealing selects a possible successor at
random, which gives a new assignment A′. If h(A′) ≤ h(A), it accepts the as-
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signment and A′ becomes the new assignment. Otherwise, the new assignment
is accepted randomly, using a Gibbs distribution or Boltzmann distribution,
with probability

e−(h(A
′)−h(A))/T

where T is a positive real-valued temperature parameter. This is only used
when h(A′) − h(A) > 0, and so the exponent is always negative. If h(A′) is
close to h(A), the assignment is more likely to be accepted. If the temperature
is high, the exponent will be close to zero, and so the probability will be close to
one. As the temperature approaches zero, the exponent approaches −∞, and
the probability approaches zero.

Table 4.1 shows the probability of accepting worsening steps at different
temperatures. In this figure, k-worse means that h(A′)− h(A) = k. For exam-
ple, if the temperature T is 10, a change that is one worse (i.e., if h(A′)− h(A) =
1) will be accepted with probability e−0.1 ≈ 0.9; a change that is two worse will
be accepted with probability e−0.2 ≈ 0.82. If the temperature T is 1, accepting a
change that is one worse will happen with probability e−1 ≈ 0.37. If the tem-
perature is 0.1, a change that is one worse will be accepted with probability
e−10 ≈ 0.00005. At this temperature, it is essentially only performing steps that
improve the value or leave it unchanged.

If the temperature is high, as in the T = 10 case, the algorithm tends to
accept steps that only worsen a small amount; it does not tend to accept very
large worsening steps. There is a slight preference for improving steps. As
the temperature is reduced (e.g., when T = 1), worsening steps, although still
possible, become much less likely. When the temperature is low (e.g., T = 0.1),
it is very rare that it selects a worsening step.

Simulated annealing requires an annealing schedule, which specifies how
the temperature is reduced as the search progresses. Geometric cooling is one
of the most widely used schedules. An example of a geometric cooling sched-
ule is to start with a temperature of 10 and multiply by 0.99 after each step;
this will give a temperature of 0.07 after 500 steps. Finding a good annealing
schedule is an art, and depends on the problem.

Temperature Probability of Acceptance
1-worse 2-worse 3-worse

10 0.9 0.82 0.74
1 0.37 0.14 0.05
0.25 0.018 0.0003 0.000006
0.1 0.00005 2 ∗ 10−9 9 ∗ 10−14

Table 4.1: Probability of simulated annealing accepting worsening steps
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4.6.4 Evaluating Randomized Algorithms

It is difficult to compare randomized algorithms when they give a different re-
sult and a different run time each time they are run, even for the same problem.
It is especially difficult when the algorithms sometimes do not find an answer;
they either run forever or must be stopped at an arbitrary point.

Unfortunately, summary statistics, such as the mean or median run time,
are not very useful. For example, comparing algorithms on the mean run time
requires deciding how to average in unsuccessful runs, where no solution was
found. If unsuccessful runs are ignored in computing the average, an algorithm
that picks a random assignment and then stops would be the best algorithm;
it does not succeed very often, but when it does, it is very fast. Treating the
non-terminating runs as having infinite time means all algorithms that do not
find a solution will have infinite averages. A run that has not found a solution
will need to be terminated. Using the time it was terminated in the average is
more of a function of the stopping time than of the algorithm itself, although
this does allow for a crude trade-off between finding some solutions fast versus
finding more solutions.

If you were to compare algorithms using the median run time, you would
prefer an algorithm that solves the problem 51% of the time but very slowly
over one that solves the problem 49% of the time but very quickly, even though
the latter is more useful. The problem is that the median (the 50th percentile)
is just an arbitrary value; you could just as well consider the 47th percentile or
the 87th percentile.

One way to visualize the run time of an algorithm for a particular problem
is to use a run-time distribution, which shows the variability of the run time
of a randomized algorithm on a single problem instance. The x-axis represents
either the number of steps or the run time. The y-axis shows, for each value
of x, the number of runs, or the proportion of the runs, solved within that run
time or number of steps. Thus, it provides a cumulative distribution of how
often the problem was solved within some number of steps or run time. For
example, you can find the run time of the 30th percentile of the runs by finding
the x-value that maps to 30% on the y-scale. The run-time distribution can
be plotted (or approximated) by running the algorithm for a large number of
times (say, 100 times for a rough approximation or 1000 times for a reasonably
accurate plot) and then by sorting the runs by run time.

Example 4.25 Five empirically generated run-time distributions for the CSP
of Figure 4.5 (page 139) are shown in Figure 4.10 (page 156). On the x-axis is
the number of steps, using a logarithmic scale. On the y-axis is the number
of instances that were successfully solved out of 1000 runs. This shows five
run-time distributions on the same problem instance.

The two dark lines (labeled P(best) = 1) use the same settings, and show an
example of the variability of using 1000 runs. These solved the problem 20% of
the time in 19 or fewer steps, but only solved the problem in around 55% of the
cases.
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The any-conflict case (labeled P(best) = 0.00, P(ac) = 1.00) took 32 steps to
solve 20% of the runs, but managed to solve in all runs, taking up to 784 steps.

The other two cases, which chose the best node with probability 0.5 and
otherwise chose a constraint in any conflict, solved all of the problems. Again
these two cases used the same settings and show the variability of the experi-
ment.

This only compares the number of steps; the time taken would be a better
evaluation but is more difficult to measure for small problems and depends on
the details of the implementation. The any-conflict algorithm takes less time
than maintaining the data structures for finding a most-improving variable
choice. The other algorithms that need to maintain the same data structures

Figure 4.10: Run-time distributions. These are empirical run-time distributions of
1000 runs, with each run having a limit of 1000 steps. On the x-axis is the number
of steps (using a logarithmic scale) and on the y-axis is the number of successes
out of 1000 runs. This is generated using AIPython (aipython.org) for the network
of Figure 4.5 (page 139). The dark lines (labeled P(best) = 1) are two separate
runs for the two-stage greedy descent (picking a variable with the most conflicts).
The line labeled P(best) = 0.00, P(ac) = 1.00 is any conflict, which picks a variable
in a conflict at random. In the other two (labeled P(best) = 0.50, P(ac) = 0.50),
with probability 0.5, a variable with the most conflicts is selected, otherwise a
random variable in a random conflict is selected
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take a similar time per step.

One algorithm strictly dominates another for this problem if its run-time
distribution is completely to the left (and above) the run-time distribution of
the second algorithm. Often two algorithms are incomparable under this mea-
sure. Which algorithm is better depends on how much time an agent has before
it needs to use a solution or how important it is to actually find a solution.

Example 4.26 In the run-time distributions of Figure 4.10 (page 156), the
probabilistic mix P(best) = 0.50, P(ac) = 0.50 dominated P(ac) = 1.0. For any
number of steps, it solved the problem in more runs.

This example was very small, and the empirical results here may not reflect
performance on larger or different problems.

4.6.5 Random Restart

It may seem like a randomized algorithm that only succeeds, say, 20% of the
time is not very useful if you need an algorithm to succeed, say, 99% of the
time. However, a randomized algorithm that succeeds some of the time can
be extended to an algorithm that succeeds more often by running it multiple
times, using a random restart, and reporting any solution found.

Whereas a random walk, and its variants, are evaluated empirically by run-
ning experiments, the performance of random restart can also be predicted
ahead of time, because the runs following a random restart are independent of
each other.

A randomized algorithm for a problem that has a solution, and succeeds
with probability p independently each time, that is run n times or until a solu-
tion is found, will find a solution with probability 1− (1− p)n. It fails to find a
solution if it fails for each retry, and each retry is independent of the others.

For example, an algorithm that succeeds with probability p = 0.5 tried 5
times will find a solution around 96.9% of the time; tried 10 times it will find
a solution 99.9% of the time. If each run succeeded with a probability p = 0.1,
running it 10 times will succeed 65% of the time, and running it 44 times will
give a 99% success rate. It is also possible to run these in parallel.

A run-time distribution allows us to predict how the algorithm will work
with random restart after a certain number of steps. Intuitively, a random
restart will repeat the lower left corner of the run-time distribution, suitably
scaled down, at the stage where the restart occurs. A random restart after a
certain number of greedy descent steps will make any algorithm that some-
times finds a solution into an algorithm that always finds a solution, given that
one exists, if it is run for long enough.

Example 4.27 In the distribution of Figure 4.10 (page 156), greedy search
(P(best) = 1.0) solved more problems in the first 10 steps, after which it is
not as effective as any-conflict search or a probabilistic mix. This may lead
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you to try to suggest using these settings with a random restart after 10 steps.
This does, indeed, dominate the other algorithms for this problem instance,
at least in terms of the number of steps (counting a restart as a single step).
However, because the random restart is an expensive operation, this algorithm
may not be the most efficient. This also does not necessarily predict how well
the algorithm will work in other problem instances.

A random restart can be expensive if there are many variables. A partial
restart randomly assigns just some not all of the variables, say 100 variables, or
10% of the variables, to move to another part of the search space. While this is
often effective, the above theoretical analysis does not work because the partial
restarts are not independent of each other.

4.7 Population-Based Methods

The preceding local search algorithms maintain a single total assignment. This
section considers algorithms that maintain multiple total assignments. The first
method, beam search, maintains the best k assignments. The next algorithm,
stochastic beam search, selects which assignments to maintain stochastically.
In genetic algorithms, which are inspired by biological evolution, the k assign-
ments forming a population interact to produce the new population. In these
algorithms, a total assignment of a value to each variable is called an individ-
ual and the set of current individuals is a population.

Beam search is a method similar to iterative best improvement, but it main-
tains up to k assignments instead of just one. It reports success when it finds
a satisfying assignment. At each stage of the algorithm, it selects k best possi-
ble successors of the current individuals (or all of them if there are less than k)
and picks randomly in the case of ties. It repeats with this new set of k total
assignments.

Beam search considers multiple assignments at the same time. Beam search
is useful for memory-bounded cases, where k can be selected depending on the
memory available. The variants of stochastic local search presented earlier are
also applicable to beam search; you can spend more time finding the best k, or
spend less time and only approximate the best k.

Stochastic beam search is an alternative to beam search, which, instead of
choosing the best k individuals, selects k of the individuals at random; the in-
dividuals with a better evaluation are more likely to be chosen. This is done by
making the probability of being chosen a function of the evaluation function.
A standard method is to use a Gibbs distribution or Boltzmann distribution
(page 154) and select assignment A with probability proportional to

e−h(A)/T

where h(A) is an evaluation function and T is temperature.
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Stochastic beam search tends to allow more diversity in the k individuals
than does plain beam search. As an analogy to evolution in biology, the eval-
uation function reflects the fitness of the individual; the fitter the individual,
the more likely it is to pass its genetic material – here its variable assignment
– on to the next generation. Stochastic beam search is like asexual reproduc-
tion; each individual gives slightly mutated children and then stochastic beam
search proceeds with survival of the fittest. Note that under stochastic beam
search it is possible for an individual to be selected multiple times at random.

Genetic algorithms further pursue the evolution analogy. Genetic algo-
rithms are like stochastic beam searches, but each new element of the popula-
tion is a combination of a pair of individuals – its parents. In particular, genetic
algorithms use an operation known as crossover that selects pairs of individ-
uals and then creates new offspring by taking some of the values for the off-
spring’s variables from one of the parents and the rest of the values from the
other parent, loosely analogous to how DNA is spliced in sexual reproduction.

A genetic algorithm is shown in Figure 4.11 (page 160). This maintains a
population of k individuals. At each step, a new generation of individuals is
generated via the following steps until a solution is found:

• Randomly select pairs of individuals where the fitter individuals are more
likely to be chosen. How much more likely a fit individual is to be chosen
than a less fit individual depends on the difference in fitness levels and a
temperature parameter. This is called fitness proportional selection.

• For each pair, perform a crossover (see below).
• Randomly mutate some (very few) values by choosing other values for

some randomly chosen variables. This is a random walk step.

It proceeds in this way until it has created k individuals, and then the operation
proceeds to the next generation.

An alternative to fitness proportional selection is tournament selection,
which involves selecting t individuals, then choosing the fittest among them.
The parameter t determines how greedy the selection is.

The new operation in genetic algorithms is crossover. Uniform crossover
takes two individuals (the parents) and creates two new individuals, called the
offspring. The value for each variable in a child comes from one of the parents.
A common method is one-point crossover, shown in the procedure Crossover in
Figure 4.11 (page 160), which assumes a total ordering of the variables. An in-
dex i is selected at random. One of the offspring is constructed by selecting the
values for the variables up to i from one of the parents, and the values for vari-
ables after i from the other parent. The other child gets the other values. The
effectiveness of the crossover depends on the total ordering of the variables.
The ordering of the variables is part of the design of the genetic algorithm.

Example 4.28 Consider Example 4.9 (page 132), where the evaluation func-
tion to be minimized is the number of unsatisfied constraints. The individual
A= 2, B= 2, C= 3, D= 1, E= 1 has an evaluation of 4. It has a low value mainly
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1: procedure Genetic algorithm(Vs, Cs, S, k)
2: Inputs
3: Vs: a set of variables
4: Cs: set of constraints to be satisfied
5: S: a cooling schedule for the temperature
6: k: population size
7: Output
8: total assignment that satisfies the constraints
9: Local

10: Pop: a set of total assignments
11: T: real
12: Pop := k random total assignments
13: T is assigned a value according to S
14: repeat
15: if some A ∈ Pop satisfies all constraints in Cs then
16: return A
17: Npop := {}
18: repeat k/2 times
19: A1 := Random selection(Pop, T)
20: A1 := Random selection(Pop, T)
21: N1, N2 := Crossover(A1, A2)
22: Npop := Npop∪ {mutate(N1), mutate(N2)}
23: Pop := Npop
24: T is updated according to S
25: until termination()
26: procedure Random selection(Pop, T)
27: select A from Pop with probability proportional to e−h(A)/T

28: return A
29: procedure Crossover(A1, A2)
30: select integer i, 1 ≤ i < |Vs| at random
31: Let N1 := {(Xj = vj) ∈ A1 for j ≤ i} ∪ {(Xj = vj) ∈ A2 for j > i}
32: Let N2 := {(Xj = vj) ∈ A2 for j ≤ i} ∪ {(Xj = vj) ∈ A1 for j > i}
33: return N1, N2

Figure 4.11: Genetic algorithm for finding a solution to a CSP
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because E= 1. Its offspring that preserve this property will tend to have a lower
evaluation than those that do not and, thus, will be more likely to survive.
Other individuals may have low values for different reasons; for example, the
individual A= 4, B= 2, C= 3, D= 4, E= 4 also has an evaluation of 4. It is low
mainly because of the assignment of values to the first four variables. Again,
offspring that preserve this property will be fitter and more likely to survive
than those that do not. If these two were to mate, some of the offspring would
inherit the bad properties of both and would die off. Some, by chance, would
inherit the good properties of both. These would then have a better chance of
survival.

Efficiency is very sensitive to the variables used to describe the problem and
the ordering of the variables. Getting this to work is an art. As with many
other randomized algorithms, evolutionary algorithms have many degrees of
freedom and, therefore, are difficult to configure or tune for good performance.

A large community of researchers are working on genetic algorithms to
make them practical for real problems and there have been some impressive
results. What we have described here is only one of the possible genetic algo-
rithms.

4.8 Optimization

Instead of just having a total assignment satisfy constraints or not, we often
have a preference relation over assignments, and we want a best total assign-
ment according to the preference.

An optimization problem is given:

• a set of variables, each with an associated domain
• an objective function that maps total assignments to real numbers
• an optimality criterion, which is typically to find a total assignment that

minimizes or maximizes the objective function.

The aim is to find a total assignment that is optimal according to the optimality
criterion. For concreteness, we assume that the optimality criterion is to mini-
mize the objective function. When minimizing, the function is often called the
cost function, loss function, or error function.

A constrained optimization problem is an optimization problem that also
has hard constraints. The set of assignments that does not violate a constraint
is the set of feasible assignments. The aim is to find a feasible assignment that
optimizes the objective function according to the optimality criterion.

Example 4.29 The University of British Columbia (UBC) is one of the larger
universities in Canada. It needs to schedule exams multiple times a year. Exam
scheduling is a constrained optimization problem. In one term, there were
30,000 students taking exams, and 1700 course sections that needed to be sched-
uled into 52 time slots over 13 days, and 274 rooms. There any many courses
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that are divided into multiple sections, with lectures at different times, that
must have exams at the same time, so there can be no simple mapping from
lecture times to exam times. With the hard constraint that no student should
have two exams at the same time – which seems reasonable – there are no pos-
sible exam schedules. Thus, soft constraints are needed. When an AI system
started to be used for exam scheduling, the hard constraints were:

• There must be no more than 30 conflicts for a section, where a conflict is a
student that has two exams at the same time.

• Each exam must fit into the allowable times and the allowable rooms for
that exam (for the few cases where there are constraints on allowable times
and rooms).

• There cannot be more students than the room capacity in a room.

• Each exam must go into a room that has the required room features.

• Unrelated exams cannot share a room.

• Cross-listed courses must have the same exam time.

• Evening courses must have evening exams.

The soft constraints that need to be minimized include:

• the number of conflicts

• the number of students with two or more exams on the same day

• the number of students with three or more exams in four consecutive time
slots

• the number of students with back-to-back exams

• the number of students with less than eight time slots between exams

• the preferred times for each exam

• the preferred rooms for each exam

• first-year exams should not be on the last two days in the Fall (to allow
time for large exams to be marked before the holidays)

• fourth-year exams should not be on the last two days in the Spring (so
exams can be marked before graduation is determined).

These are not weighted equally.
One representation is that there is a time variable for each section with do-

main the set of possible time slots, and there is a room variable for each section,
with domain the set of rooms.

This is simpler than many real-world scheduling problems as each exam
only needs to be scheduled once and all of the time slots are the same length.

A huge literature exists on optimization. There are many techniques for
particular forms of constrained optimization problems. For example, linear
programming is the class of constrained optimization where the variables are
real valued, the objective function is a linear function of the variables, and the
hard constraints are linear inequalities. If the problem you are interested in
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solving falls into one of the classes for which there are more specific algorithms,
or can be transformed into one, it is generally better to use those techniques
than the more general algorithms presented here.

In a factored optimization problem, the objective function is factored into
a set of soft constraints. A soft constraint has a scope that is a set of variables.
The soft constraint is a function from the domains of the variables in its scope
into a real number, a cost. A typical objective function is the sum of the costs
of the soft constraints, and the optimality criterion is to minimize the objective
function.

Example 4.30 Suppose a number of delivery activities must be scheduled,
similar to Example 4.9 (page 132), but, instead of hard constraints, there are
preferences on times for the activities. The values of the variables are times.
The soft constraints are costs associated with combinations of times associated
with the variables. The aim is to find a schedule with the minimum total sum
of the costs.

Suppose variables A, C, D, and E have domain {1, 2}, and variable B has
domain {1, 2, 3}. The soft constraints are c1 with scope {A, B}, c2 with scope
{B, C}, and c3 with scope {B, D}. Define their extension (page 131) as

c1: A B Cost
1 1 5
1 2 2
1 3 2
2 1 0
2 2 4
2 3 3

c2: B C Cost
1 1 5
1 2 2
2 1 0
2 2 4
3 1 2
3 2 0

c3: B D Cost
1 1 3
1 2 0
2 1 2
2 2 2
3 1 2
3 2 4

The constraint c4, with scope {A, C}, has a cost of 3 if A = C, and 0 otherwise;
c4 provides a soft constraint that A and C should be different.

Soft constraints can be added point-wise. The sum of two soft constraints
is a soft constraint with scope that is the union of their scopes. The cost of any
assignment to variables in the scope is the sum of the costs of the constraints
being added on that assignment.

Example 4.31 Consider functions c1 and c2 in Example 4.30. c1 + c2 is a func-
tion with scope {A, B, C}, defined point-wise. For example, c1 + c2 evaluated
in context {A= 1, B= 1, C= 2} is

(c1 + c2)(A= 1, B= 1, C= 2) = c1(A= 1, B= 1) + c2(B= 1, C= 2)
= 5 + 2 = 7.

Similarly, c1 + c2 + c3 evaluated in context {A= 1, B= 1, C= 2, D= 2} is

(c1 + c2 + c3)(A= 1, B= 1, C= 2, D= 1)
= c1(A= 1, B= 1) + c2(B= 1, C= 2) + c3(B= 1, D= 1)
= 5 + 2 + 3 = 10.
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Hard constraints can be modeled as having a cost of infinity for violating a
constraint. As long as the cost of an assignment is finite, it does not violate a
hard constraint. An alternative is to use a large number – larger than the sum
of the soft constraints could be – as the cost of violating a hard constraint. Then
optimization can be used to find a solution with the fewest number of violated
hard constraints and, among those, one with the lowest cost.

Optimization problems have one difficulty that goes beyond constraint sat-
isfaction problems. It is difficult to know whether an assignment is optimal.
Whereas, for a CSP, an algorithm can check whether an assignment is a solu-
tion by just considering the assignment and the constraints, in optimization
problems an algorithm can only determine whether an assignment is optimal
by comparing it to other assignments.

Many of the methods for solving hard constraints can be extended to opti-
mization problems, as outlined in the following sections.

4.8.1 Systematic Methods for Discrete Optimization

When all of the variables have finite discrete domains, optimization is known
as discrete optimization. In this case, it is possible to search through the space
of assignments to find the least-cost assignment.

Any of the search algorithms of the previous chapter that minimize path
cost can be used to search for the best solution. To do that, we need to define
the optimization problem in terms of a search graph. The graph to search is
defined as follows:

• The nodes are assignments of values to some subset of the variables.
• The neighbors of a node n are obtained by selecting a variable var that is

not assigned in node n and by having a neighbor for each assignment of
a value to var. The cost of the arc is the sum of the costs of the constraints
that can be evaluated when var is assigned a value.

Suppose node n is the assignment {X1 = v1, . . . , Xk = vk}. To find the
neighbors of n, select a variable Y that is not in the set {X1, . . . , Xk}. For
each value yi ∈ domain(Y), where X1 = v1, . . . , Xk = vk, Y= yi is consistent
with each of the constraints, the node {X1 = v1, . . . , Xk = vk, Y= yi} is a
neighbor of n. The cost of the arc is the sum of the constraints that involve
only {X1, . . . , Xk, Y} that were not previously evaluated in this branch.

• The start node is the empty assignment that does not assign a value to
any variables.

• A goal node is a node that assigns a value to every variable. Note that
this only exists if the assignment is consistent with all of the constraints.

By assigning costs as soon as a soft constraint is able to be evaluated, search
algorithms such as A∗ or branch and bound can be used to find a minimal
solution. These methods require each arc cost to be non-negative. To achieve
this, the lowest cost in each soft constraint – even if it is negative – is subtracted
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from each of the costs in the soft constraint. This cost then needs to be added
to the cost of a final solution.

Example 4.32 Suppose X and Y are variables with domain {0, 1}. The soft
constraint

X Y Cost
0 0 −4
0 1 −1
1 0 6
1 1 5

is converted into non-negative form by subtracting −4 (i.e., adding 4) to each
cost, so the costs range from 0 to 10, rather than from −4 to 6. The 4 is then
subtracted from the cost of the solution.

Figure 4.12 (page 166) shows the branch-and-bound search of Figure 3.14
(page 106) for factored optimization. The heuristic function, h(context, Cs), is
an estimate of how much the soft constraints Cs will cost, given context. It can
be the sum of the minimum values for the constraints in Cs given context. As
long as h is an underestimate, the algorithm will find the optimal solution. If
all of the constraints are in non-negative form, h always returning zero will be
an underestimate, but we can typically do much better.

Example 4.33 The soft constraint of Example 4.32 in non-negative form is

X Y Cost
0 0 0
0 1 3
1 0 10
1 1 9

In a context where X = 1, the heuristic value of this soft constraint is 9, the min-
imum cost for assignments with X = 1. In a context with Y = 1, the heuristic
value is 3. The other contexts have value 0, because that is the minimum value
for no assignments or for X = 0 or Y = 0.

This can be made more efficient by exploiting the structure of the constraint
network. In particular, if the context disconnects the constraint graph (when
the assigned variables are removed), the separate components can be solved
independently. This can be recognized because CCs can be partitioned into sets
that have no variables in CVs in common. Another way to exploit structure is
to cache values that have already been computed. These two refinements are
explored in more detail in an analogous algorithm for probabilistic reasoning
(see Section 9.5.1, page 409).

Arc consistency (page 137) can be generalized to optimization problems
by allowing pruning of dominated assignments. Suppose c1, . . . , ck are the soft
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constraints that involve X. Let c = c1 + · · · + ck. Suppose Y1, . . . , Ym are the
variables, other than X, that are involved in c. A value v for variable X is strictly
dominated if, for all values y1, . . . , yk of Y1, . . . , Ym, some value v′ of X ex-
ists such that c(X= v′, Y1 = y1, . . . , Ym = ym) < c(X= v, Y1 = y1, . . . , Ym = ym).
Pruning strictly dominated values does not remove a minimal solution. The
pruning of domains can be done repeatedly, as in the GAC algorithm (page 138).

Weakly dominated has the same definition as strictly dominated, but with
“less than” replaced by “less than or equal to.” If only one solution is required,
weakly dominated values can be pruned sequentially. Which weakly dom-
inated values are removed may affect which optimal solution is found, but

1: procedure DF branch and bound const(Vs, domain, Cs, h, bound0)
2: Inputs
3: (Vs, domain, Cs): CSP with variables (Vs), domain (dom), and con-

straints Cs
4: h: heuristic function
5: bound0: initial depth bound (can be ∞ if not specified)
6: Output
7: a lowest-cost total assignment with cost less than bound0
8: or ⊥ if there is no solution with cost less than bound0

9: Local
10: best asst: total assignment or ⊥
11: bound: non-negative real
12: procedure cbsearch(CVs, CCs, context)
13: � context is an assignment, CVs is set of unassigned variables,

CCs is set of unevaluated constraints
14: can eval := {c ∈ CCs | scope(c) ⊆ variables(context)}
15: rem Cs := CCs \ can eval
16: cost context := ∑c∈can eval cost(c, context)
17: if cost context + h(context, rem Cs) < bound then
18: if CVs = {} then
19: best asst := context
20: bound := cost context
21: else
22: select variable var ∈ CVs
23: for each val ∈ domain(var) do
24: cbsearch(CVs \ {var}, rem Cs, {var = val} ∪ context)
25: best asst := ⊥
26: bound := bound0
27: cbsearch(Vs, Cs, {})
28: return best asst

Figure 4.12: Depth-first branch-and-bound search for optimization
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removing a weakly dominated value does not remove all optimal solutions.
As with arc consistency for hard constraints, pruning (strictly or weakly)

dominated values may greatly simplify the problem but does not, by itself, al-
ways solve the problem. Arc consistency can be combined with domain split-
ting (page 141) to build a search tree to find an optimal solution.

Variable elimination (page 143) can also be used for soft constraints. In-
stead of the join, sum the factors and select the value of the eliminated variable
with the minimum cost.

4.8.2 Local Search for Optimization

Local search is directly applicable to optimization problems, where the local
search is used to minimize the objective function, rather than find a solution.
The algorithm runs for a certain amount of time (perhaps including random
restarts to explore other parts of the search space), always keeping the best
assignment found thus far, and returning this as its answer.

Local search for optimization has one extra complication that does not arise
when there are only hard constraints. With only hard constraints, the algorithm
has found a solution when there are no conflicts. For optimization, it is difficult
to determine whether the best total assignment found is the best possible solu-
tion. A local optimum is a total assignment that is at least as good, according
to the optimality criterion, as any of its possible successors. A global optimum
is a total assignment that is at least as good as all of the other total assign-
ments. Without systematically searching the other assignments, the algorithm
may not know whether the best assignment found so far is a global optimum
or whether a better solution exists in a different part of the search space.

When using local search to solve constrained optimization problems, with
both hard and soft constraints, it is often useful to allow the algorithm to violate
hard constraints on the way to a solution. This is done by making the cost of
violating a hard constraint some large, but finite, value.

4.8.3 Gradient Descent for Continuous Functions

Local search for optimization with continuous domains requires a more refined
definition of a successor of a total assignment.

Consider a function f (x) = y, where x and y are real numbers (e.g., f (x) =
exp(1.7 ∗ x2 + 0.3)). f is continuous if a small change in x can only result in a
small change in y. If f is continuous, and f (x) = y, for each x and ε, there is an
εy such that

f (x + ε) = y + εy.

Continuous means that if ε is small, then so is εy. For example, the function
int(x) that returns the largest integer smaller than x is not continuous.
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f is smooth if it doesn’t have any abrupt angles. For example, f (x) =
max(x, 0) is continuous but not smooth. A continuous and smooth function
can be approximated at a point by a linear function of ε:

f (x + ε) = f (x) + ε ∗ δ.

This approximation gets better, the smaller that ε is. Solving for δ gives δ =
(f (x + ε) − f (x))/ε. For a continuous and smooth function, as ε gets closer
to zero, this ratio gets closer to a value called the derivative of f at x, written
( d

dx f )(x). Thus, d
dx f is the function that returns the slope of f at any point. You

do not need to know how to derive the derivative; modern tools are good at
automatically differentiating any function that is made up of addition, subtrac-
tion, exponentiation, and may other functions.

If f is a function of one variable, the derivative is sometimes written f ′. The
function f (v) + x ∗ f ′(v) is called the tangent of f at v. The derivative of f at a
point gives the slope of the tangent at that point. The tangent of a function at v
approximates the function near v.

Example 4.34 Consider the function f (x) = 2 ∗ (x − 1.3) ∗ (x − 1.5) ∗ (x −
2) ∗ (x − 4.5) + 15 plotted in Figure 4.13. The tangents of f at 1 and 4.5 are
shown. Notice how they form a good approximation to the function close to
these points, even though they may be a poor approximation at further points.

Figure 4.13: Derivatives and gradient decent
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A (small) step in the direction of the derivative will increase the value un-
less the derivative is zero. A small step in the opposite direction will reduce
the value. To find a minimum, gradient descent takes steps in the direction
of the negative of the gradient. Gradient descent is like walking downhill and
always taking a step in the direction that is locally downward. The successor
of a total assignment is a step downhill, where the steps become bigger as the
slope becomes steeper.

To minimize f (x), where x is a real-valued variable with current value of v,
the next value

v− η ∗
(

df
dx

)
(v)

where η is the step size determines how big a step to take. The algorithm is
sensitive to the step size. If η is too large, the algorithm can overshoot the
minimum. If η is too small, progress becomes very slow.

Example 4.35 Consider finding the minimum value for a function f (x) shown
in Figure 4.13 (page 168). Suppose the step size is 0.05 and gradient descent
starts at x = 4.5. The derivative is positive, so it steps to the left. Here it
overshoots the minimum and the next position is x = 2.1, where the derivative
is negative and has a smaller absolute value, so it takes a smaller step to the
right. The steps are shown as the dotted trajectory in Figure 4.13 (page 168). It
eventually finds a point close to the minimum. At that point the derivative is
close to zero and so it makes very small steps.

If the step size was slightly larger, it could step into the shallow local min-
imum between 1.3 and 1.5, where the derivative is close to zero, and would be
stuck there. If it took an even larger step, it might end up with x close to zero
or negative, in which case the derivative is larger in magnitude and will then
step to a value greater than 4.5, and eventually diverges.

If the step size was much smaller, it might take a longer time to get to the
local minimum. There is nothing special about 0.05. For example, if the y values
were 10 times as much, a step size of 0.005 would give the same behavior.

For multidimensional optimization, when there are many variables, the
partial derivative of a function with respect to a variable is the derivative of
the function with the other variables fixed. We write ∂f

∂x to be the derivative of
f , with respect to variable x, with the other variables fixed.

Gradient descent takes a step in each direction proportional to the partial
derivative of that direction. If 〈x1, . . . , xn〉 are the variables that have to be as-
signed values, a total assignment corresponds to a tuple of values 〈v1, . . . , vn〉.
Assume that the evaluation function to be minimized, h, is continuous and
smooth. The successor of the total assignment 〈v1, . . . , vn〉 is obtained by mov-
ing in each direction in proportion to the slope of h in that direction. The new
value for Xi is

vi − η ∗
(

∂h
∂xi

)
(v1, . . . , vn)
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where η is the step size.
Gradient descent and variants are used for parameter learning (page 291);

some large language models (page 364) have over 1012 parameters to be op-
timized. There are many variants of this algorithm. For example, instead of
using a constant step size, the algorithm could do a binary search to determine
a locally optimal step size. See Section 8.2 (page 336) for variants used in mod-
ern neural networks.

For smooth functions, where there is a minimum, if the step size is small
enough, gradient descent will converge to a local minimum. If the step size is
too big, it is possible that the algorithm will diverge. If the step size is too small,
the algorithm will be very slow. If there is a unique local minimum which
is the global minimum, gradient descent, with a small enough step size, will
converge to that global minimum. When there are multiple local minima, not
all of which are global minima, it may need to search to find a global minimum,
for example by doing a random restart (page 147) or a random walk (page 149).
These are not guaranteed to find a global minimum unless the whole search
space is exhausted, but are often as good as we can get. The algorithms that
power modern deep learning algorithms are described Section 8.2 (page 336);
these adapt the step size for each dimension.

4.9 Social Impact

While it might seem that the main problem is how to optimize and how to
solve a constraint problem, a perhaps more important problem is to decide
on what to optimize. Consider the exam scheduling problem of Example 4.29
(page 161). A bad exam schedule can affect a student’s performance, which
could potentially affect whether they get into the career they want if they are
on the borderline. The schedule found depends on the soft constraints, and
their costs.

Students in a first-year class were asked their opinions on a perfect exam
schedule, and they generally wanted one or two days off between each exam,
no early morning exams, no evening exams, the first exam should be early in
the exam period, and the last exam as early in the exam period as possible.
Not all students can have such a schedule. Making a schedule better for some
people may make it worse for others.

When the schedule was created by someone in an office (presumably by
making adjustments to the previous schedule), it was not open to inspection.
One of the hopes is that by making the preference function explicit, it can be
criticized, and improved.

Constraint reasoning techniques are used to solve logistic problems of sig-
nificant economic importance. Consider the routing problem of scheduling
multiple vehicles to various customer locations where the items, of varying
size, being transported must be picked up and delivered within given time
windows. The task is to minimize the number of vehicles required by the
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schedule. Bent and Van Hentenryck [2004] show that a two-stage algorithm
using simulated annealing followed by neighborhood search with branch and
bound achieves excellent performance on standard benchmarks.

4.10 Review

The following are the main points you should have learned from this chapter:

• Instead of reasoning explicitly in terms of states, it is almost always much
more efficient for an agent to reason in terms of variables or features.

• Constraint satisfaction problems are represented as a set of variables, do-
mains for the variables, and a set of hard and/or soft constraints. A so-
lution is an assignment of a value to each variable that satisfies a set of
hard constraints or optimizes the sum of the soft constraints.

• Arc consistency and search can often be combined to find assignments
that satisfy some constraints or to show that there is no assignment.

• Stochastic local search can be used to find satisfying assignments, but
not to show there are no satisfying assignments. The efficiency depends
on the trade-off between the time taken for each improvement and how
much the value is improved at each step. Some method must be used to
allow the search to escape local minima that are not solutions.

• Optimization can use systematic methods when the constraint graph is
sparse. Local search can also be used, but the added problem arises of
not knowing when the search is at a global optimum.

• In a scheduling task, it is important to consider the preferences and con-
straints of everyone involved in the task, and to consider any tradeoffs
required.

4.11 References and Further Reading

Constraint satisfaction techniques are described by Mackworth [1977a], Dechter
[2003], Freuder and Mackworth [2006], and Dechter [2019]. The GAC algorithm
was invented by Mackworth [1977b].

Variable elimination for propositional satisfiability was proposed by Davis
and Putnam [1960]. VE for optimization has been called non-serial dynamic
programming and was invented by Bertelè and Brioschi [1972]. For a more re-
cent overview see Dechter [2019], who calls variable elimination bucket elim-
ination (the buckets contain the constraints to be joined).

Stochastic local search is described by Spall [2003] and Hoos and Stützle
[2004]. The any-conflict algorithm is based on Minton et al. [1992]. Simulated
annealing was invented by Kirkpatrick et al. [1983]. Xu et al. [2008] describe the
use of algorithm portfolios to choose the best solver for each problem instance.

Genetic algorithms were pioneered by Holland [1975]. A huge literature
exists on genetic algorithms; for overviews, see Mitchell [1996], Bäck [1996],
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Goldberg [2002], Lehman et al. [2018], Stanley et al. [2019], and Katoch et al.
[2021]

Gradient descent is due to Cauchy [1847].
Python implementations that emphasize readability over efficiency are avail-

able at AIPython (aipython.org).

4.12 Exercises

Exercise 4.1 Consider the crossword puzzle shown in Figure 4.14.
You must find six three-letter words: three words read across (1-across, 4-across,

5-across) and three words read down (1-down, 2-down, 3-down). Each word must be
chosen from the list of 18 possible words shown. Try to solve it yourself, first by
intuition, then using domain consistency, and then arc consistency.

There are at least two ways to represent the crossword puzzle shown in Figure
4.14 as a constraint satisfaction problem.

The first is to represent the word positions (1-across, 4-across, etc.) as variables,
with the set of words as possible values. The constraints are that the letter is the
same where the words intersect.

The second is to represent the nine squares as variables. The domain of each
variable is the set of letters of the alphabet, {a, b, . . . , z}. The constraints are that
there is a word in the word list that contains the corresponding letters. For ex-
ample, the top-left square and the center-top square cannot both have the value a,
because there is no word starting with aa.

(a) Give an example of pruning due to domain consistency using the first rep-
resentation (if one exists).

(b) Give an example of pruning due to arc consistency using the first represen-
tation (if one exists).

(c) Are domain consistency plus arc consistency adequate to solve this problem
using the first representation? Explain.

(d) Give an example of pruning due to domain consistency using the second
representation (if one exists).

1 2 3

4

5

Words:
add, age, aid, aim, air,
are, arm, art, bad, bat,
bee, boa, dim, ear, eel,
eft, lee, oaf

Figure 4.14: A crossword puzzle to be solved with six words
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(e) Give an example of pruning due to arc consistency using the second repre-
sentation (if one exists).

(f) Are domain consistency plus arc consistency adequate to solve this problem
using the second representation?

(g) Which representation leads to a more efficient solution using consistency-
based techniques? Give the evidence on which you are basing your answer.

Exercise 4.2 Suppose you have a relation v(N, W) that is true if there is a vowel
(one o: a, e, i, o, u) as the N-th letter of word W. For example, v(2, cat) is true
because there is a vowel (“a”) as the second letter of the word “cat”; v(3, cat) is
false because the third letter of “cat” is “t”, which is not a vowel; and v(5, cat) is
also false because there is no fifth letter in “cat”.

Suppose the domain of N is {1, 3, 5} and the domain of W is {added, blue, fever,
green, stare}.

(a) Is the arc 〈N, v〉 arc consistent? If so, explain why. If not, show what ele-
ment(s) can be removed from a domain to make it arc consistent.

(b) Is the arc 〈W, v〉 arc consistent? If so, explain why. If not, show what ele-
ment(s) can be removed from a domain to make it arc consistent.

Exercise 4.3 Consider the crossword puzzles shown in Figure 4.15. The possible
words for (a) are

ant, big, bus, car, has, book, buys, hold, lane, year, ginger, search, sym-
bol, syntax.

The available words for (b) are

1 2

3

4

1 2

3

4 5

6

(a) (b)

Figure 4.15: Two crossword puzzles
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at, eta, be, hat, he, her, it, him, on, one, desk, dance, usage, easy, dove,
first, else, loses, fuels, help, haste, given, kind, sense, soon, sound, this,
think.

(a) Draw the constraint graph nodes for the positions (1-across, 2-down, etc.) and
words for the domains, after it has been made domain consistent.

(b) Give an example of pruning due to arc consistency.
(c) What are the domains after arc consistency has halted?
(d) Consider the dual representation in which the squares on the intersection of

words are the variables. The domains of the variable contain the letters that
could go in those positions. Give the domains after this network has been
made arc consistent. Does the result after arc consistency in this representa-
tion correspond to the result in part (c)?

(e) Show how variable elimination solves the crossword problem. Start from
the arc-consistent network from part (c).

(f) Does a different elimination ordering affect the efficiency? Explain.

Exercise 4.4 Pose and solve the crypt-arithmetic problem SEND + MORE =
MONEY as a CSP. In a crypt-arithmetic problem, each letter represents a different
digit, the leftmost digit cannot be zero (because then it would not be there), and
the sum must be correct considering each sequence of letters as a base ten numeral.
In this example, you know that Y = (D+ E) mod 10 and that E = (N +R+ ((D+
E)÷ 10)) mod 10, and so on.

Exercise 4.5 Consider the complexity for generalized arc consistency beyond
the binary case considered in the text (page 140). Suppose there are n variables,
c constraints, where each constraint involves k variables, and the domain of each
variable is of size d. How many arcs are there? What is the worst-case cost of
checking one arc as a function of c, k, and d? How many times must an arc be
checked? Based on this, what is the time complexity of GAC as a function of c, k,
and d? What is the space complexity?

Exercise 4.6 For the constraints of Example 4.9 (page 132), shown in Figure 4.5
(page 139), show the variables eliminated, the constraints joined, and the new
constraint (as in Example 4.23 (page 145)) for the variable ordering elimination
ordering A, B, C, D.

Exercise 4.7 Consider how stochastic local search can solve Exercise 4.3 (page 173).
You can use the AIPython (aipython.org) code to answer this question. Start with
the arc-consistent network.

(a) How well does random walking work?
(b) How well does iterative best improvement work?
(c) How well does the combination work?
(d) Which (range of) parameter settings works best? What evidence did you use

to answer this question?

Exercise 4.8 Consider a scheduling problem, where there are five activities to be
scheduled in four time slots. Suppose we represent the activities by the variables
A, B, C, D, and E, where the domain of each variable is {1, 2, 3, 4} and the con-
straints are A > D, D > E, C �= A, C > E, C �= D, B ≥ A, B �= C, and C �= D + 1.
[Before you start this, try to find the legal schedule(s) using your own intuitions.]
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(a) Show how backtracking solves this problem. To do this, you should draw
the search tree generated to find all answers. Indicate clearly the valid sched-
ule(s). Make sure you choose a reasonable variable ordering.

To indicate the search tree, write it in text form with each branch on one
line. For example, suppose we had variables X, Y, and Z with domains t, f
and constraints X �= Y and Y �= Z. The corresponding search tree is written
as

X=t Y=t failure

Y=f Z=t solution

Z=f failure

X=f Y=t Z=t failure

Z=f solution

Y=f failure

[Hint: It may be easier to write a program to generate such a tree for a par-
ticular problem than to do it by hand.]

(b) Show how arc consistency solves this problem. To do this you must

• draw the constraint graph

• show which arc is considered, the domain reduced, and the arcs added
to the set to do (similar to the table of Example 4.18 (page 138))

• show explicitly the constraint graph after arc consistency has stopped

• show how splitting a domain can be used to solve this problem.

Exercise 4.9 Which of the following methods can

(a) determine that there is no model, if there is not one
(b) find a model if one exists
(c) find all models?

The methods to consider are

(i) arc consistency with domain splitting
(ii) variable elimination

(iii) stochastic local search
(iv) genetic algorithms.

Exercise 4.10 Give the algorithm for variable elimination to return one of the
models rather than all of them. How is finding one easier than finding all?

V C
1 W C

2 X C
3 Y C

4 Z

Figure 4.16: A chain constraint network
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Exercise 4.11 Consider the constraint network in Figure 4.16 (page 175). The
form of the constraints are not given, but assume the network is arc consistent and
there are multiple values for each variable. Suppose one of the search algorithms
has split on variable X, so X is assigned the value a.

(a) Suppose the aim is to count the number of solutions. Bao suggested that the
subproblem with X= a can be divided into two that can be solved separately.
How can the solutions to each half be combined?

(b) Suppose the constraints are soft constraints (with costs for each assignment).
Manpreet suggested that the problem with X = a can be divided into two
subproblems that can be solved separately, with the solution combined. What
are the two independent subproblems? How can the optimal solution (the
cost and the total assignment) be computed from a solution to each subprob-
lem?

(c) How can the partitioning of constraints into non-empty sets such that the
constraints in each set do not share a non-assigned variable (the sets that
can be solved independently) be implemented?

Exercise 4.12 Explain how arc consistency with domain splitting can be used to
count the number of models. If domain splitting results in a disconnected graph,
how can this be exploited by the algorithm?

Exercise 4.13 Modify VE CSP to count the number of models, without enumer-
ating them all. [Hint: You do not need to save the join of all the constraints, but
instead you can pass forward the number of solutions there would be.]

Exercise 4.14 Consider the constraint graph of Figure 4.17 with named binary
constraints. r1 is a relation on A and B, which we write as r1(A, B), and similarly
for the other relations. Consider solving this network using variable elimination.

(a) Suppose you were to eliminate variable A. Which constraints are removed?
A constraint is created on which variables? (You can call this r11.)

(b) Suppose you were to subsequently eliminate B (i.e., after eliminating A).
Which relations are removed? A constraint is created on which variables?

A r1 B Dr3

r2

r6

r4

r7

r5

C E F

G

r8 r9 r10

Figure 4.17: Abstract constraint network
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Chapter 5

Propositions and Inference

For when I am presented with a false theorem, I do not need to examine or
even to know the demonstration, since I shall discover its falsity a poste-
riori by means of an easy experiment, that is, by a calculation, costing no
more than paper and ink, which will show the error no matter how small
it is . . .

And if someone would doubt my results, I should say to him: “Let us
calculate, Sir,” and thus by taking to pen and ink, we should soon settle
the question.

– Gottfried Wilhelm Leibniz [1677]

This chapter considers simple forms of reasoning in terms of propositions –
statements that can be true or false. Some reasoning includes model finding,
finding logical consequences, and various forms of hypothetical reasoning. Se-
mantics forms the foundations of specification of facts, reasoning, and debug-
ging.

5.1 Propositions

5.1.1 Syntax of the Propositional Calculus

A proposition is a sentence, written in a language, that has a truth value (i.e.,
it is true or false) in a world. A proposition is built from atomic propositions
and logical connectives.

An atomic proposition, or just an atom, is a symbol (page 128). Atoms are
written as sequences of letters, digits, and the underscore ( ) and start with a
lower-case letter. For example, a, ai is fun, lit l1, live outside, mimsy, and sunny
are all atoms.

177
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Propositions can be built from simpler propositions using logical connec-
tives. A proposition or logical formula is either

• an atomic proposition or
• a compound proposition of the form

¬p “not p” negation of p
p∧ q “p and q” conjunction of p and q
p∨ q “p or q” disjunction of p and q
p → q “p implies q” implication of q from p
p ← q “p if q” implication of p from q
p ↔ q “p if and only if q” equivalence of p and q
p⊕ q “p XOR q” exclusive-or of p and q

where p and q are propositions.

The operators ¬, ∧, ∨,→,←,↔, and ⊕ are logical connectives.
Parentheses can be used to make logical formulas unambiguous. When

parentheses are omitted, the precedence of the operators is in the order they
are given above. Thus, a compound proposition can be disambiguated by
adding parentheses to the subexpressions in the order the operations are de-
fined above. For example, ¬a ∨ b ∧ c → d ∧ ¬e ∨ f is an abbreviation for
((¬a) ∨ (b∧ c))→ ((d∧ (¬e)) ∨ f ).

5.1.2 Semantics of the Propositional Calculus

Semantics defines the meaning of the sentences of a language. The seman-
tics of propositional calculus is defined below. Intuitively, propositions have
meaning to someone who specifies propositions they claim are true, and then
queries about what else must also be true. An interpretation is a way that the
world could be. All that the system knows about the world is that the propo-
sitions specified are true, so the world must correspond to an interpretation in
which those propositions hold.

An interpretation consists of a function π that maps atoms to {true, false}.
If π(a) = true, atom a is true in the interpretation. If π(a) = false, atom a is false
in the interpretation. Sometimes it is useful to think of π as the set of the atoms
that map to true, and the rest of the atoms map to false.

Whether a compound proposition is true in an interpretation is inferred
using the truth table of Figure 5.1 (page 179) from the truth values of the com-
ponents of the proposition.

Truth values are only defined with respect to interpretations; propositions
may have different truth values in different interpretations.

Example 5.1 Suppose there are three atoms: ai is fun, happy, and light on.
Suppose interpretation I1 assigns true to ai is fun, false to happy, and true to

light on. That is, I1 is defined by the function π1:

π1(ai is fun) = true, π1(happy) = false, π1(light on) = true.
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Then

• ai is fun is true in I1

• ¬ai is fun is false in I1

• happy is false in I1

• ¬happy is true in I1

• ai is fun∨ happy is true in I1

• ai is fun ← happy is true in I1

• happy ← ai is fun is false in I1

• ai is fun ← happy∧ light on is true in I1.

Suppose interpretation I2 assigns false to ai is fun, true to happy, and false to
light on:

• ai is fun is false in I2

• ¬ai is fun is true in I2

• happy is true in I2

• ¬happy is false in I2

• ai is fun∨ happy is true in I2

• ai is fun ← happy is false in I2

• ai is fun ← light on is true in I2

• ai is fun ← happy∧ light on is true in I2.

A knowledge base is a set of propositions that are stated to be true. An
element of the knowledge base is an axiom. The elements of a knowledge base
are implicitly conjoined, so that a knowledge base is true when all of the axioms
in it are true.

A model of knowledge base KB is an interpretation in which all the propo-
sitions in KB are true.

If KB is a knowledge base and g is a proposition, g is a logical consequence
of KB, or g logically follows from KB, or KB entails g, written

KB |= g

if g is true in every model of KB. Thus, g is not a logical consequence of KB,
written KB �|= g, when there is a model of KB in which g is false.

p q ¬p p∧ q p∨ q p → q p ← q p ↔ q p⊕ q
true true false true true true true true false
true false false false true false true false true
false true true false true true false false true
false false true false false true true true false

Figure 5.1: Truth table defining ¬, ∧, ∨, ←, →, ↔, and ⊕
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Example 5.2 Suppose KB is the following knowledge base:

sam is happy.
ai is fun.
worms live underground.
night time.
bird eats apple.
apple is eaten ← bird eats apple.
switch 1 is up ← someone is in room∧ night time.

Given this knowledge base:

KB |= bird eats apple.
KB |= apple is eaten.

KB does not entail switch 1 is up as there is a model of the knowledge base
where switch 1 is up is false. The atom someone is in room must be false in that
interpretation.

The Human’s View of Semantics

The description of semantics does not tell us why semantics is interesting or
how it can be used as a basis to build intelligent systems. The basic idea be-
hind the use of logic is that, when a knowledge base designer has a particular
world to characterize, the designer can choose that world as an intended in-
terpretation, choose meanings for the symbols with respect to that world, and
write propositions about what is true in that world. When the system com-
putes a logical consequence of a knowledge base, the designer can interpret
this answer with respect to the intended interpretation.

The methodology used by a knowledge base designer to represent a world
can be expressed as follows:

Step 1 A knowledge base designer chooses a task domain or world to rep-
resent, which is the intended interpretation. This could be some aspect
of the real world (for example, the structure of courses and students at
a university, or a laboratory environment at a particular point in time),
some imaginary world (such as the world of Alice in Wonderland, or the
state of the electrical environment if a switch breaks), or an abstract world
(for example, the world of numbers and sets).

Step 2 The knowledge base designer selects atoms to represent propositions
of interest. Each atom has a precise meaning to the designer with respect
to the intended interpretation. This meaning of the symbols forms an
intended interpretation or conceptualization.

Step 3 The knowledge base designer tells the system propositions that are
true in the intended interpretation. This is often called axiomatizing the
domain, where the given propositions are the axioms of the domain.
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Step 4 A user can now ask questions about the intended interpretation. The
system can answer these questions. A user who knows the intended in-
terpretation is able to interpret the answers using the meaning assigned
to the symbols.

Within this methodology, the designer does not actually tell the computer any-
thing until step 3.

The Computer’s View of Semantics

A computer does not have access to the intended interpretation. All the com-
puter knows about the intended interpretation is the knowledge base KB. If
KB |= g, then g must be true in the intended interpretation, because it is true in
all models of the knowledge base. If KB �|= g, meaning g is not a logical conse-
quence of KB, there is a model of KB in which g is false. As far as the computer
is concerned, the intended interpretation may be the model of KB in which g is
false, and so it does not know whether g is true in the intended interpretation.

Given a knowledge base, the models of the knowledge base correspond to
all of the ways that the world could be, given that the knowledge base is true.

Example 5.3 Consider the knowledge base of Example 5.2 (page 180). The
user could interpret these symbols as having some meaning. The computer
does not know the meaning of the symbols, but it can still draw conclusions
based on what it has been told. It can conclude that apple is eaten is true in the
intended interpretation. It cannot conclude switch 1 is up because it does not
know if someone is in room is true or false in the intended interpretation.

If the knowledge base designer tells lies – some axioms are false in the in-
tended interpretation – the computer’s answers are not guaranteed to be true
in the intended interpretation.

5.2 Propositional Constraints

Chapter 4 shows how to reason with constraints. Logical formulas provide a
concise form of constraints with structure that can be exploited.

There are a number of reasons for using propositions for specifying con-
straints and queries:

• It is often more concise and readable to give a logical statement about the
relationship among some variables than to use an extensional represen-
tation.

• The form of the knowledge can be exploited to make reasoning more
efficient.

• They are modular, so small changes to the problem result in small changes
to the knowledge base. This also means that a knowledge base is easier
to debug than other representations.
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• The kind of queries may be richer than single assignments of values to
variables.

• This language can be extended to reason about individuals (things, enti-
ties) and relations; see Chapter 15.

The class of propositional satisfiability or SAT problems have

• Boolean variable. A Boolean variable (page 127) is a variable with do-
main {true, false}. If X is a Boolean variable, X= true is written as its
lower-case equivalent, x, and X= false as ¬x.

For example, the proposition happy means Boolean variable Happy is
true (Happy= true), and ¬happy means Happy= false.

• Clausal constraints. A clause is an expression of the form l1 ∨ l2 ∨ · · · ∨ lk,
where each li is a literal. A literal is an atom or the negation of an atom;
thus a literal is an assignment of a value to a Boolean variable. A clause is
true in an interpretation if and only if at least one of the literals that make
up the clause is true in that interpretation.

If ¬a appears in a clause, the atom a is said to appear negatively in the
clause. If a appears unnegated in a clause, it is said to appear positively
in a clause.

In terms of the propositional calculus, a set of clauses is a restricted form of
logical formula. Any propositional formula can be converted into clausal form.
A total assignment (page 129) corresponds to an interpretation (page 178).

In terms of constraints (page 131), a clause is a constraint on a set of Boolean
variables that rules out one of the assignments of the literals in the clause. The
clause l1 ∨ l2 ∨ · · · ∨ lk corresponds to the statement ¬(¬l1 ∧ ¬l2 ∧ · · · ∧ ¬lk),
which says that not all of the li are false.

Example 5.4 The clause happy ∨ sad ∨ ¬living is a constraint among the vari-
ables Happy, Sad, and Living, which is true if Happy has value true, Sad has value
true, or Living has value false. The atoms happy and sad appear positively in the
clause, and living appears negatively in the clause.

The assignment¬happy, ¬sad, living violates the constraint of clause happy∨
sad∨¬living. It is the only assignment of these three variables that violates this
clause.

5.2.1 Clausal Form for CSPs

It is possible to convert any finite constraint satisfaction problem (CSP) (page 132)
into a propositional satisfiable problem:

• A variable Y with domain {v1, . . . , vk} can be converted into k Boolean
variables {Y1, . . . , Yk}, where Yi is true when Y has value vi and is false
otherwise. Each Yi is called an indicator variable. Thus, k atoms, y1, . . . , yk,
are used to represent the CSP variable.
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• There are constraints that specify that yi and yj cannot both be true when
i �= j, namely the clause ¬yi ∨ ¬yj for i < j. There is also a constraint that
one of the yi must be true, namely the clause y1 ∨ · · · ∨ yk.

• To translate the constraints, notice that ¬x1 ∨ · · · ∨ ¬xk is equivalent to
¬(x1 ∧ · · · ∧ xk) for any atoms x1, . . . , xk. One way to represent a con-
straint is to use a clause for each assignment of values that violates the
constraint. Thus, for example, the clause ¬x5 ∨¬y7 represents that X= v5
and Y= v7 is a combination that violates a constraint.

Often we can use many fewer clauses than by applying this naively.

Example 5.5 Consider two variables A and B each with domain {1, 2, 3, 4}.
For the variable A, construct four Boolean variables a1, a2, a3, and a4, where a1
is true just when A= 1, a2 is true just when A= 2, etc. Variables a1, a2, a3, and
a4 are disjoint and covering which leads to the seven clauses

¬a1 ∨ ¬a2,¬a1 ∨ ¬a3,¬a1 ∨ ¬a4,¬a2 ∨ ¬a3,¬a2 ∨ ¬a4,¬a3 ∨ ¬a4,
a1 ∨ a2 ∨ a3 ∨ a4.

Similarly for B.
The constraint A < B implies that a4 is false, b1 is false, and the pairs that

violate the constraint are also false, which gives the five clauses

¬a4,¬b1,¬a2 ∨ ¬b2,¬a3 ∨ ¬b3,¬a3 ∨ ¬b2.

Note that you don’t need the clause ¬a1 ∨ ¬b1 because this is implied by ¬b1.

Consistency algorithms (page 136) can be made more efficient for proposi-
tional satisfiability problems than for general CSPs. When there are only two
values, pruning a value from a domain is equivalent to assigning the opposite
value. Thus, if X has domain {true, false}, pruning true from the domain of X is
the same as assigning X to have value false.

Arc consistency can be used to prune the set of values and the set of con-
straints. Assigning a value to a Boolean variable can simplify the set of con-
straints:

• If X is assigned true, all of the clauses with X= true become redundant;
they are automatically satisfied. These clauses can be removed from con-
sideration. Similarly, if X is assigned false, clauses containing X= false
can be removed.

• If X is assigned true, any clause with X= false can be simplified by re-
moving X= false from the clause. Similarly, if X is assigned false, then
X= true can be removed from any clause it appears in. This step is called
unit resolution.

If, after pruning the clauses, there is a clause that contains just one assignment,
Y= v, the other value can be removed from the domain of Y. This is a form
of arc consistency. If all of the assignments are removed from a clause, the
constraints are unsatisfiable.
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Example 5.6 Consider the clause ¬x ∨ y ∨ ¬z. If X is assigned to true, the
clause can be simplified to y ∨ ¬z. If Y is then assigned to false, the clause can
be simplified to ¬z. Thus, true can be pruned from the domain of Z.

If, instead, X is assigned to false, the clause can be removed.

If a variable has the same value in all remaining clauses, and the algorithm
must only find one model, it can assign that value to that variable. For example,
if variable Y only appears as Y= true (i.e., ¬y is not in any clause), then Y can
be assigned the value true. That assignment does not remove all of the models;
it only simplifies the problem because the set of clauses remaining after setting
Y= true is a subset of the clauses that would remain if Y were assigned the
value false. A variable that only has one value in all of the clauses is called a
pure literal.

Pruning the domains and constraints, domain splitting, and assigning pure
literals is the Davis–Putnam–Logemann–Loveland (DPLL) algorithm. It is a
very efficient algorithm, as long as the data structures are indexed to carry out
these tasks efficiently.

5.2.2 Exploiting Propositional Structure in Local Search

Stochastic local search (page 146) can be faster for CSPs in the form of proposi-
tional satisfiability problems (page 182) than for general CSPs, for the following
reasons:

• Because only one alternative value exists for each assignment to a vari-
able, the algorithm does not have to search through the alternative val-
ues.

• Changing any value in an unsatisfied clause makes the clause satisfied.
As a result, it is easy to satisfy a clause, but this may make other clauses
unsatisfied.

• If a variable is changed to be true, all of the clauses where it appears
positively become satisfied, and only clauses where it appears negatively
can become unsatisfied. Conversely, if a variable is changed to be false,
all of the clauses where it appears negatively become satisfied, and only
those clauses where it appears positively can become unsatisfied. This
enables fast indexing of clauses.

• The search space is expanded. In particular, before a solution has been
found, more than one of the indicator variables for a variable Y could be
true (which corresponds to Y having multiple values) or all of the indi-
cator variables could be false (which corresponds to Y having no values).
This can mean that some assignments that were local minima in the orig-
inal problem may not be local minima in the new representation.

• Satisfiability has been studied much more extensively than most other
types of CSPs and more efficient solvers exist because more of the space
of potential algorithms has been explored by researchers.
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Whether converting a particular CSP to a satisfiability problem makes search
performance better is an empirical question, depending on the problem and
the tools available.

5.3 Propositional Definite Clauses

The rest of this chapter considers some restricted languages and reasoning
tasks that are useful and can be efficiently implemented.

The language of propositional definite clauses is a subset of propositional
calculus that does not allow uncertainty or ambiguity. In this language, propo-
sitions have the same meaning as in propositional calculus, but not all com-
pound propositions are allowed in a knowledge base.

The syntax of propositional definite clauses is defined as follows:

• An atomic proposition or atom is the same as in propositional calculus.
• A definite clause is of the form

h ← a1 ∧ . . . ∧ am.

where h is an atom, the head of the clause, and each ai is an atom. It can
be read “h if a1 and . . . and am”.

If m > 0, the clause is called a rule, where a1 ∧ . . . ∧ am is the body of
the clause.

If m = 0, the arrow can be omitted and the clause is called an atomic
clause or fact. The clause has an empty body.

• A knowledge base is a set of definite clauses.

Example 5.7 The elements of the knowledge base in Example 5.2 (page 180)
are all definite clauses.

The following are not definite clauses:

¬apple is eaten.
apple is eaten∧ bird eats apple.
sam is in room∧ night time ← switch 1 is up.
Apple is eaten ← Bird eats apple.
happy∨ sad∨ ¬alive.

The fourth statement is not a definite clause because an atom must start with a
lower-case letter.

A definite clause h ← a1 ∧ . . . ∧ am is false in interpretation I (page 178) if
a1, . . . , am are all true in I and h is false in I; otherwise, the definite clause is true
in I.

A definite clause is a restricted form of a clause (page 182). For example,
the definite clause

a ← b∧ c∧ d
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is equivalent to the clause

a∨ ¬b∨ ¬c∨ ¬d.

In general, a definite clause is equivalent to a clause with exactly one positive
literal (non-negated atom). Propositional definite clauses cannot represent dis-
junctions of atoms (e.g., a∨ b) or disjunctions of negated atoms (e.g., ¬c∨ ¬d).

Example 5.8 Consider how to axiomatize the electrical environment of Fig-
ure 5.2 following the methodology for the user’s view of semantics (page 180).
This axiomatization will allow us to simulate the electrical system. It will be ex-
panded in later sections to let us diagnose faults based on observed symptoms.

The representation will be used to determine whether lights are on or off,
based on switch positions and the status of circuit breakers.

The knowledge base designer must choose a level of abstraction. The aim
is to represent the domain at the most general level that will enable the agent
to solve the problems it must solve. We also want to represent the domain at
a level that the agent will have information about. For example, we could rep-
resent the actual voltages and currents, but exactly the same reasoning would
be done if this were a 12-volt DC system or a 120-volt AC system; the voltages
and frequencies are irrelevant for questions about how switch positions (up or
down) affect whether lights are on. Our agent is not concerned here with the
color of the wires, the design of the switches, the length or weight of the wire,
the date of manufacture of the lights and the wires, or any of the other myriad
details one could imagine about the domain.

Let’s represent this domain at a commonsense level that non-electricians
may use to describe the domain, in terms of wires being live and currents flow-
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Figure 5.2: An electrical environment with components named

https://doi.org/10.1017/9781009258227.008


5.3. Propositional Definite Clauses 187

ing from the outside through wires to the lights, and that circuit breakers and
light switches connect wires if they are turned on and working.

The designer must choose what to represent. Here we represent proposi-
tions about whether lights are lit, whether wires are live, whether switches are
up or down, and whether components are working properly.

We then choose atoms with a specific meaning in the world. We can use
descriptive names for these. For example, up s2 is true when switch s2 is up.
ok l1 is true when light l1 is working properly (will be lit if it is has power
coming into it). live w1 is true when w1 has power coming in. The computer
does not know the meaning of these names and does not have access to the
components of the atom’s name.

At this stage, we have not told the computer anything. It does not know
what the atoms are, let alone what they mean.

Once we have decided which symbols to use and what they mean, we tell
the system, using definite clauses, background knowledge about what is true
in the world. The simplest forms of definite clauses are those without bodies –
the atomic clauses – such as

light l1. light l2. ok l1.
ok l2. ok cb1. ok cb2.
live outside.

The designer may look at part of the domain and know that light l1 is live if wire
w0 is live, because they are connected together, but may not know whether w0
is live. Such knowledge is expressible in terms of rules:

live l1 ← live w0. live p1 ← live w3.
live w0 ← live w1 ∧ up s2. live w3 ← live w5 ∧ ok cb1.
live w0 ← live w2 ∧ down s2. live p2 ← live w6.
live w1 ← live w3 ∧ up s1. live w6 ← live w5 ∧ ok cb2.
live w2 ← live w3 ∧ down s1. live w5 ← live outside.
live l2 ← live w4. lit l1 ← light l1 ∧ live l1 ∧ ok l1.
live w4 ← live w3 ∧ up s3. lit l2 ← light l2 ∧ live l2 ∧ ok l2.

Online, the user is able to input the observations of the current switch positions,
such as

down s1. up s2. up s3.

The knowledge base consists of all the definite clauses, whether specified as
background knowledge or as observations.

5.3.1 Queries and Answers

One reason to build a description of a real or imaginary world is to be able to
determine what else must be true in that world. After the computer is given a
knowledge base about a particular domain, a user might like to ask the com-
puter questions about that domain. The computer can answer whether or not a
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proposition is a logical consequence of the knowledge base. A user that knows
the meaning of the atoms, for example when is up s3 true, can interpret the
answer in terms of the domain.

A query is a way of asking whether a proposition is a logical consequence
of a knowledge base. Once the system has been provided with a knowledge
base, a query is used to ask whether a proposition is a logical consequence of
the knowledge base. Queries have the form

ask b.

where b is an atom or a conjunction of atoms (analogous to the body of a rule
(page 185)).

A query is a question that has the answer yes if the body is a logical con-
sequence of the knowledge base, or the answer no if the body is not a conse-
quence of the knowledge base. The latter does not mean that body is false in the
intended interpretation but rather that it is impossible to determine whether it
is true or false based on the knowledge provided.

Example 5.9 Once the computer has been told the knowledge base of Exam-
ple 5.8 (page 186), it can answer queries such as

ask light l1.

for which the answer is yes. The query

ask light l6.

has answer no. The computer does not have enough information to know
whether or not l6 is a light. The query

ask lit l2.

has answer yes. This atom is true in all models.
The user can interpret this answer with respect to the intended interpreta-

tion.

5.3.2 Proofs

So far, we have specified what an answer is, but not how it can be computed.
The definition of |= (page 179) specifies which propositions should be logical
consequences of a knowledge base but not how to compute them. The problem
of deduction is to determine if some proposition is a logical consequence of a
knowledge base. Deduction is a specific form of inference.

A proof is a mechanically derivable demonstration that a proposition log-
ically follows from a knowledge base. A theorem is a provable proposition.
A proof procedure is a – possibly non-deterministic – algorithm for deriving
consequences of a knowledge base. (See the box on page 89 for a description
of non-deterministic choice.)

Given a proof procedure, KB � g means g can be proved or derived from
knowledge base KB.
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A proof procedure’s quality can be judged by whether it computes what it
is meant to compute.

A proof procedure is sound with respect to the semantics if everything that
can be derived from a knowledge base is a logical consequence of the knowl-
edge base. That is, if KB � g, then KB |= g.

A proof procedure is complete with respect to the semantics if there is a
proof of each logical consequence of the knowledge base. That is, if KB |= g,
then KB � g.

We present two ways to construct proofs for propositional definite clauses:
a bottom-up procedure and a top-down procedure.

Bottom-Up Proof Procedure

A bottom-up proof procedure can be used to derive all logical consequences
of a knowledge base. It is called bottom-up as an analogy to building a house,
where each part of the house is built on the structure already completed. The
bottom-up proof procedure builds on atoms that have already been established.
It should be contrasted with a top-down approach (page 191), which starts
from a query and tries to find definite clauses that can be used to prove the
query. Sometimes we say that a bottom-up procedure is forward chaining on
the definite clauses, in the sense of going forward from what is known rather
than going backward from the query.

The general idea is based on one rule of derivation, a generalized form of
the rule of inference called modus ponens:

If “h ← a1 ∧ . . . ∧ am” is a definite clause in the knowledge base,
and each ai has been derived, then h can be derived.

An atomic clause (page 185) corresponds to the case of m = 0; modus ponens
can always immediately derive any atomic clauses in the knowledge base.

Figure 5.3 (page 190) gives a procedure for computing the consequence set
C of a set KB of definite clauses. Under this proof procedure, if g is an atom,
KB � g if g ∈ C at the end of the Prove DC BU procedure. For a conjunction,
KB � g1 ∧ · · · ∧ gk, if {g1, . . . , gk} ⊆ C.

Example 5.10 Given the knowledge base KB:

a ← b∧ c. d.
b ← d∧ e. e.
b ← g∧ e. f ← a∧ g.
c ← e.

one trace of the value assigned to C in the bottom-up procedure is

{}
{d}
{e, d}

https://doi.org/10.1017/9781009258227.008


190 5. Propositions and Inference

{c, e, d}
{b, c, e, d}
{a, b, c, e, d}.

The algorithm terminates with C = {a, b, c, e, d}. Thus, KB � a, KB � b, and so
on.

The last rule in KB is never used. The bottom-up proof procedure cannot
derive f or g. This is as it should be because there is a model of the knowledge
base in which f and g are both false.

The proof procedure of Figure 5.3 has a number of interesting properties:

Soundness The bottom-up proof procedure is sound. Every atom in C is a
logical consequence of KB. That is, if KB � g then KB |= g. To show
this, assume that there is an atom in C that is not a logical consequence
of KB. If such an atom exists, let h be the first atom added to C that is
not true in every model of KB. Suppose I is a model of KB in which h is
false. Because h has been generated, there must be some definite clause
in KB of the form h ← a1 ∧ . . .∧ am such that a1, . . . , am are all in C (which
includes the case where h is an atomic clause and so m = 0). Because h
is the first atom added to C that is not true in all models of KB, and the
ai are generated before h, all of the ai are true in I. This clause’s head is
false in I, and its body is true in I. Therefore, by the definition of truth of
clauses, this clause is false in I. This is a contradiction to the fact that I is
a model of KB. Thus, every element of C is a logical consequence of KB.

Complexity The algorithm of Figure 5.3 halts, and the number of times the
loop is repeated is bounded by the number of definite clauses in KB. This
is easily seen because each definite clause is only used at most once. Thus,
the time complexity of the bottom-up proof procedure is linear in the size

1: procedure Prove DC BU(KB)
2: Inputs
3: KB: a set of definite clauses
4: Output
5: Set of all atoms that are logical consequences of KB
6: Local
7: C is a set of atoms
8: C := {}
9: repeat

10: select “h ← a1 ∧ . . . ∧ am” in KB where ai ∈ C for all i, and h /∈ C
11: C := C∪ {h}
12: until no more definite clauses can be selected
13: return C

Figure 5.3: Bottom-up proof procedure for computing consequences of KB
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of the knowledge base if it indexes the definite clauses so that the inner
loop is carried out in constant time.

Fixed Point The final C generated in the algorithm of Figure 5.3 (page 190) is
called a fixed point because any further application of the rule of deriva-
tion does not change C. C is the least fixed point because there is no
smaller fixed point.

Let I be the interpretation in which every atom in the least fixed point
is true and every atom not in the least fixed point is false. To show that
I must be a model of KB, suppose “h ← a1 ∧ . . . ∧ am” ∈ KB is false in
I. The only way this could occur is if a1, . . . , am are in the fixed point,
and h is not in the fixed point. By construction, the rule of derivation can
be used to add h to the fixed point, a contradiction to it being the fixed
point. Therefore, there can be no definite clause in KB that is false in an
interpretation defined by a fixed point. Thus, I is a model of KB.

I is the minimal model in the sense that it has the fewest true propo-
sitions. Every other model must also assign the atoms in C to be true.

Completeness The bottom-up proof procedure is sound. Suppose KB |= g.
Then g is true in every model of KB, so it is true in the minimal model,
and so it is in C, and so KB � g.

Top-Down Proof Procedure

An alternative proof method is to search backwards or top-down from a query
to determine whether it is a logical consequence of the given definite clauses.
This procedure is called propositional definite clause resolution or SLD res-
olution, where SL stands for Selecting an atom using a Linear strategy and
D stands for Definite clauses. It is an instance of the more general resolution
method.

The top-down proof procedure can be understood as refining an answer
clause of the form

yes ← a1 ∧ a2 ∧ . . . ∧ am

where yes is a special atom. Intuitively, yes is going to be true exactly when the
answer to the query is “yes.”

If the query is

ask q1 ∧ . . . ∧ qm

then the initial answer clause is

yes ← q1 ∧ . . . ∧ qm.

Given an answer clause yes ← a1 ∧ a2 ∧ . . . ∧ am, the top-down algorithm
selects an atom in the body of the answer clause. Suppose it selects the leftmost
atom, a1. The atom selected is called a subgoal. The algorithm proceeds by
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doing steps of resolution. In one step of resolution, it chooses a definite clause
in KB with a1 as the head. If there is no such clause, the algorithm fails.

Suppose the chosen clause is a1 ← b1 ∧ . . . ∧ bp.
The resolvent of the answer clause yes ← a1 ∧ a2 ∧ . . .∧ am with the definite

clause a1 ← b1 ∧ . . . ∧ bp is the answer clause

yes ← b1 ∧ . . . ∧ bp ∧ a2 ∧ . . . ∧ am.

That is, an atom is replaced by the body of a definite clause with that atom in
the head.

An answer is an answer clause with an empty body (m = 0). That is, it is
the answer clause yes ← .

An SLD derivation of a query “ask q1 ∧ . . . ∧ qk” from knowledge base KB
is a sequence of answer clauses γ0, γ1, . . . , γn such that:

• γ0 is the answer clause corresponding to the original query, namely the
answer clause yes ← q1 ∧ . . . ∧ qk

• γi is the resolvent of γi−1 with a definite clause in KB
• γn is an answer.

Another way to think about the algorithm is that the top-down algorithm
maintains a collection (list or set) G of atoms to prove. Each atom that must
be proved is a subgoal. Initially, G contains the atoms in the query. A clause
a ← b1 ∧ . . . ∧ bp means a can be replaced by b1, . . . , bp. The query is proved
when G becomes empty.

Figure 5.4 specifies a non-deterministic procedure for solving a query. It
follows the definition of a derivation. In this procedure, G is the set of atoms in

1: non-deterministic procedure Prove DC TD(KB, Query)
2: Inputs
3: KB: a set of definite clauses
4: Query: a set of atoms to prove
5: Output
6: yes if KB |= Query and the procedure fails otherwise
7: Local
8: G is a set of atoms
9: G := Query

10: repeat
11: select an atom a in G
12: choose definite clause “a ← B” in KB with a as head
13: G := B∪ (G \ {a})
14: until G = {}
15: return yes

Figure 5.4: Top-down definite clause proof procedure
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the body of the answer clause. The procedure is non-deterministic: at line 12 it
has to choose a definite clause to resolve against. If there are choices that result
in G being the empty set, the algorithm returns yes; otherwise it fails, and the
answer is no.

This algorithm treats the body of a clause as a set of atoms and G is also
a set of atoms. An alternative, used by the language Prolog, is to have G as a
list of atoms, in which case duplicates are not eliminated, as they would be if
G were a set. In Prolog, the order of the atoms is defined by the programmer.
It does not have the overhead of checking for duplicates, which is needed for
maintaining a set.

Example 5.11 The system is given the knowledge base of Example 5.10:

a ← b∧ c. d.
b ← d∧ e. e.
b ← g∧ e. f ← a∧ g.
c ← e.

It is asked the query

ask a.

The following shows a derivation that corresponds to a sequence of assign-
ments to G in the repeat loop of Figure 5.4 (page 192), where the leftmost atom
in the body is selected:

Answer Clause Resolved with
yes ← a a ← b∧ c
yes ← b∧ c b ← d∧ e
yes ← d∧ e∧ c d
yes ← e∧ c e
yes ← c c ← e
yes ← e e
yes ←

The following shows a sequence of choices, where the second definite clause
for b was chosen. This choice does not lead to a proof.

Answer Clause Resolved with
yes ← a a ← b∧ c
yes ← b∧ c b ← g∧ e
yes ← g∧ e∧ c

If g is selected, there are no rules that can be chosen. This proof attempt is said
to fail.

Note the use of select and choose (see box on page 89). Any atom in the
body can be selected, and if one selection does not lead to a proof, other selec-
tions do not need to be tried. When choosing a clause, the algorithm may need
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to search for a choice that makes the proof succeed. Given a selection strategy,
the algorithm induces a search graph. Each node in the search graph repre-
sents an answer clause. The neighbors of a node yes ← a1 ∧ . . . ∧ am, where a1
is the selected atom, represent all of the possible answer clauses obtained by
resolving on a1. There is a neighbor for each definite clause whose head is a1.
The goal nodes of the search are of the form yes ←.

Example 5.12 Given the knowledge base

a ← b∧ c. a ← g. a ← h.
b ← j. b ← k. d ← m.
d ← p. f ← m. f ← p.
g ← m. g ← f . k ← m.
h ← m. p.

and the query

ask a∧ d.

the search graph for an SLD derivation, assuming the leftmost atom is selected
in each answer clause, is shown in Figure 5.5.

The search graph is not defined statically, because this would require an-
ticipating every possible query. Instead, the search graph is dynamically con-
structed as needed.

yes ← a∧ d

yes ← g∧ dyes ← b∧ c∧ d yes ← h∧ d

yes ← j∧ c∧ d

yes ← k ∧ c∧ d

yes ← m∧ c∧ d

yes ← m∧ d

yes ← f ∧ d

yes ← m∧ d yes ← p∧ d

yes ← d

yes ← m yes ← p

yes ←

yes ← m∧ d

Figure 5.5: A search graph for a top-down derivation

https://doi.org/10.1017/9781009258227.008


5.4. Querying the User 195

Any of the search methods of Chapter 3 can be used to search the search
space. The search space depends on the query and which atom is selected at
each node. Whether the query is a logical consequence does not depend on the
path found, so an optimal path is not necessary.

When the top-down procedure has derived the answer, the rules used in
the derivation can be used in a bottom-up proof procedure to infer the query.
Similarly, a bottom-up proof of an atom can be used to construct a correspond-
ing top-down derivation. This equivalence can be used to show the soundness
and completeness of the top-down proof procedure. As defined, the top-down
proof procedure may spend extra time re-proving the same atom multiple
times, whereas the bottom-up procedure proves each atom only once. How-
ever, the bottom-up procedure proves every atom, but the top-down procedure
proves only atoms that are relevant to the query.

It is possible that the proof procedure can get into an infinite loop, as in the
following example (without cycle pruning).

Example 5.13 Consider the knowledge base

g ← a. a ← b.
g ← c. b ← a.
c.

Atoms g and c are the only atomic logical consequences of this knowledge base,
and the bottom-up proof procedure will halt with fixed point {c, g}. However,
the top-down proof procedure with a depth-first search, trying to prove g, will
go on indefinitely, and not halt if the first clause for g is chosen, and there is no
cycle pruning.

The algorithm requires a selection strategy to decide which atom to select
at each time. In the above examples the leftmost atom a1 was selected, but any
atom could be selected. Which atom is selected affects the efficiency and per-
haps even whether the algorithm terminates if there is no cycle pruning. The
best selection strategy is to select the atom that is most likely to fail. Ordering
the atoms and selecting the leftmost atom is a common strategy, because this
lets someone who is providing the rules provide heuristic knowledge about
which atom to select.

5.4 Querying the User

An agent (page 15) receives some information as background knowledge and
some as observations online. An observation (page 14) is information received
online from users, sensors, or other knowledge sources. Assume an observa-
tion is a set of atomic propositions, which are implicitly conjoined.

A user (page 69) is a person who has need for expertise or has information
about individual situations. Users cannot be expected to tell us everything that
is true. First, they do not know what is relevant, and second, they do not know

https://doi.org/10.1017/9781009258227.008


196 5. Propositions and Inference

what vocabulary to use. An ontology (page 716) that specifies the meaning of
the symbols, or a graphical user interface to allow the user to click on what
is true, may help to solve the vocabulary problem. However, there can be too
many possibly relevant truths to expect the user to specify everything that is
true, even with a sophisticated user interface. We need to ensure that users are
only asked to provide information that is potentially useful. Similarly, passive
sensors (page 70) may be able to provide direct observations of conjunctions of
atomic propositions, but active sensors (page 70) may have to be queried by
the agent for the information that is necessary for a task.

A simple way to acquire information from a user or a sensor is to incor-
porate an ask-the-user mechanism, where an atom is askable if the user may
know the truth value at run time, or it can be asked of an active sensor. The top-
down proof procedure (page 191), when it has selected an atom to prove, either
can use a clause in the knowledge base to prove it, or, if the atom is askable and
hasn’t already been asked, it can ask the user or an active sensor whether the
atom is true. Users are thus only asked about atoms that are relevant for the
query.

A bottom-up proof procedure can also be adapted to ask a user, but it
should avoid asking about all askable atoms; see Exercise 5.5 (page 224).

Example 5.14 In the electrical domain of Example 5.8 (page 186), one would
not expect the designer of the model of the house wiring to know the switch
positions (whether each switch is up or down). It is reasonable that all of the
definite clauses of Example 5.8, except for the switch positions, should be given
by the designer. The switch positions can then be made askable.

Here is a possible dialog, where the user asks a query and answers yes or no
to the system’s questions. The user interface here is minimal to show the basic
idea; a real system would use a more sophisticated user-friendly interface.

ask lit l1.
Is down s2 true? no.
Is up s2 true? yes.
Is up s1 true? yes.
Answer: True.

The system only asks the user questions that the user is able to answer and
that are relevant to the task at hand.

5.5 Knowledge-Level Debugging

The explicit use of semantics allows explanation and debugging at the knowl-
edge level (page 44). To make a system usable by people, the system cannot
just give an answer and expect the user to believe it. Consider the case of a sys-
tem advising doctors who are legally responsible for the treatment that they
carry out based on the diagnosis. The doctors must be convinced that the di-
agnosis is appropriate. The system must be able to justify that its answer is
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correct. The same mechanism can be used to explain how the system found a
result and to debug the knowledge base; a good explanation should convince
someone there are no bugs.

Knowledge-level debugging is the process of finding errors in knowledge
bases with reference only to what the symbols mean and what is true in the
world, not the reasoning steps.

Three types of non-syntactic errors arise in rule-based systems:

• An incorrect answer is produced; that is, some atom that is false in the
intended interpretation was derived.

• An answer that was not produced; that is, the proof failed on a particular
true atom when it should have succeeded.

• The program gets into an infinite loop. These can be handled for the top-
down proof procedure in a similar way to cycle pruning (page 109), but
where only the selected atoms need to be checked for cycles, and not the
whole answer clause. The bottom-up proof procedure never gets into an
infinite loop.

Ways to debug the first two of these types of error are examined below.

5.5.1 Incorrect Answers

An incorrect answer, or false-positive error, is an answer that has been proved
yet is false in the intended interpretation. An incorrect answer is only produced
by a sound proof procedure if a false clause was used in the proof. The aim is
to find a false clause from an incorrect answer.

Suppose atom g was proved yet is false in the intended interpretation.
There must be a clause g ← a1 ∧ . . . ∧ ak in the knowledge base that was used
to prove g. Either all of the ai are true, in which case the buggy clause has been
found, or one of the ai is false. This ai can be debugged in the same way.

This leads to an algorithm, presented in Figure 5.6 (page 198) to debug
false positives. It can find a false clause in a knowledge base when an atom
that is false in the intended interpretation is derived. It only requires the person
debugging the knowledge base to be able to answer true–false questions.

Example 5.15 Consider Example 5.8 (page 186), involving the electrical do-
main, but assume there is a bug in the knowledge base. Suppose that the do-
main expert or user had inadvertently said that whether w1 is connected to w3
depends on the status of s3 instead of s1 (see Figure 5.2 (page 186)). Thus, the
knowledge includes the following incorrect rule:

live w1 ← live w3 ∧ up s3

instead of the rule with up s1. All of the other axioms are the same as in Exam-
ple 5.8. The atom lit l1 can be derived, which is false in the intended interpre-
tation.

The atom lit l1 was derived using the following rule:

lit l1 ← light l1 ∧ live l1 ∧ ok l1.
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The atoms light l1 and ok l1 are true in the intended interpretation, but live l1 is
false in the intended interpretation. The rule used to derive this atom is

live l1 ← live w0.

The atom live w0 is false in the intended interpretation. It was proved using the
clause

live w0 ← up s2 ∧ live w1.

The atom live w1 is false in the intended interpretation, and was proved using
the clause

live w1 ← up s3 ∧ live w3.

Both elements of the body are true in the intended interpretation, so this is a
buggy rule.

5.5.2 Missing Answers

The second type of error occurs when an expected answer is not produced.
This manifests itself by a failure when an answer is expected. An atom g that is
true in the domain, but is not a consequence of the knowledge base, is a false-
negative error. The preceding algorithm does not work in this case; there is no
proof.

An appropriate answer is not produced only if a definite clause or clauses
are missing from the knowledge base. By knowing the intended interpretation
of the symbols and by knowing what queries should succeed (i.e., what is true
in the intended interpretation), a domain expert can debug a missing answer.
Figure 5.7 (page 199) shows how to debug false negatives. Given g, a true atom
for which there is no proof, it returns an atom for which there is a missing
clause (or clauses).

1: procedure Debug false(g, KB)
2: Inputs
3: KB a knowledge base
4: g an atom: KB � g and g is false in intended interpretation
5: Output
6: clause in KB that is false
7: Find the definite clause g ← a0 ∧ . . . ∧ ak ∈ KB used to prove g
8: Present the rule to the user and ask if each ai is true
9: if user specifies ai is false then

10: return Debug false(ai, KB)
11: else if user specifies all ai are true then
12: return g ← a0 ∧ . . . ∧ ak

Figure 5.6: An algorithm to debug false positive answers
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It searches the space of plausible proofs until it finds an atom where there
is no appropriate clause in the knowledge base.

Example 5.16 Suppose that, for the axiomatization of the electrical domain
in Example 5.8 (page 186), the world of Figure 5.2 (page 186) actually had s2
down. Thus, it is missing the definite clause specifying that s2 is down. The
axiomatization of Example 5.8 fails to prove lit l1 when it should succeed. Con-
sider how to find the bug.

There is one clause with lit l1 in the head:

lit l1 ← light l1 ∧ live l1 ∧ ok l1.

All of the elements of the body are true. The atoms light l1 and ok l1 can both be
proved, but live l1 fails, so the algorithm recursively debugs this atom. There is
one rule with live l1 in the head:

live l1 ← live w0.

The atom live w0 is true in the intended interpretation and cannot be proved.
The clauses for live w0 are

live w0 ← live w1 ∧ up s2.
live w0 ← live w2 ∧ down s2.

The user can determine that the body of the second rule is true. There is a
proof for live w2. There are no clauses for down s2, so this atom is returned. The
correction is to add an appropriate clause, by stating it as a fact or providing a
rule for it.

1: procedure Debug missing(g, KB)
2: Inputs
3: KB a knowledge base
4: g an atom: KB �� g and g is true in the intended interpretation
5: Output
6: atom for which there is a clause missing
7: if there is a definite clause g ← a1 ∧ . . . ∧ ak ∈ KB such that all ai are

true in the intended interpretation then
8: select ai that cannot be proved
9: return Debug missing(ai, KB)

10: else
11: return g

Figure 5.7: An algorithm for debugging missing answers (false negatives)
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5.6 Proving by Contradiction

Definite clauses can be used in a proof by contradiction by allowing rules that
give contradictions. For example, in the electrical wiring domain (page 186), it
is useful to be able to specify that some prediction, such as that light l2 is on, is
not true. This will enable diagnostic reasoning to deduce that some switches,
lights, or circuit breakers are broken.

5.6.1 Horn Clauses

The definite-clause language does not allow a contradiction to be stated. How-
ever, a simple expansion of the language can allow proof by contradiction.

An integrity constraint is a clause of the form

false ← a1 ∧ . . . ∧ ak.

where the ai are atoms and false is a special atom that is false in all interpreta-
tions.

A Horn clause is either a definite clause (page 185) or an integrity con-
straint. That is, a Horn clause has either false or a normal atom as its head.

Integrity constraints allow the system to prove that some conjunction of
atoms is false in all models of a knowledge base. Recall (page 178) that ¬p is
the negation of p, which is true in an interpretation when p is false in that inter-
pretation, and p ∨ q is the disjunction of p and q, which is true in an interpre-
tation if p is true or q is true or both are true in the interpretation. The integrity
constraint false ← a1 ∧ . . . ∧ ak is logically equivalent to ¬a1 ∨ . . . ∨ ¬ak.

Unlike a definite-clause knowledge base, a Horn clause knowledge base
can imply negations of atoms, as shown in Example 5.17.

Example 5.17 Consider the knowledge base KB1:

false ← a∧ b.
a ← c.
b ← c.

The atom c is false in all models of KB1. To see this, suppose instead that c is
true in model I of KB1. Then a and b would both be true in I (otherwise I would
not be a model of KB1). Because false is false in I and a and b are true in I, the
first clause is false in I, a contradiction to I being a model of KB1. Thus, ¬c is
true in all models of KB1, which can be written as

KB1 |= ¬c.

Although the language of Horn clauses does not allow disjunctions and
negations to be input, disjunctions of negations of atoms can be derived, as the
following example shows.
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Example 5.18 Consider the knowledge base KB2:

false ← a∧ b.
a ← c.
b ← d.
b ← e.

Either c is false or d is false in every model of KB2. If they were both true in
some model I of KB2, both a and b would be true in I, so the first clause would
be false in I, a contradiction to I being a model of KB2. Similarly, either c is false
or e is false in every model of KB2. Thus

KB2 |= ¬c∨ ¬d
KB2 |= ¬c∨ ¬e.

A set of clauses is unsatisfiable if it has no models. A set of clauses is prov-
ably inconsistent with respect to a proof procedure if false can be derived from
the clauses using that proof procedure. If a proof procedure is sound and com-
plete, a set of clauses is provably inconsistent if and only if it is unsatisfiable.

It is always possible to find a model for a set of definite clauses. The inter-
pretation with all atoms true is a model of any set of definite clauses. Thus, a
definite-clause knowledge base is always satisfiable. However, a set of Horn
clauses can be unsatisfiable.

Example 5.19 The set of clauses {a, false ← a} is unsatisfiable. There is no
interpretation that satisfies both clauses. Both a and false ← a cannot be true in
any interpretation.

Both the top-down and the bottom-up proof procedures can be used to
prove inconsistency, by using false as the query.

5.6.2 Assumables and Conflicts

Reasoning from contradictions is a very useful tool. For many activities it is
useful to know that some combination of assumptions is incompatible. For
example, it is useful in planning to know that some combination of actions
an agent is contemplating is impossible. When designing a new artifact, it is
useful to know that some combination of components cannot work together.

In a diagnostic application it is useful to be able to prove that some com-
ponents working normally is inconsistent with the observations of the system.
Consider a system that has a description of how it is supposed to work and
some observations. If the system does not work according to its specification,
a diagnostic agent should identify which components could be faulty.

To carry out these tasks it is useful to be able to make assumptions that can
be proven to be false.

An assumable is an atom that can be assumed in a proof by contradiction.
A proof by contradiction derives a disjunction of the negation of assumables.
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With a Horn clause knowledge base and explicit assumables, if the system
can prove a contradiction from some assumptions, it can extract those combi-
nations of assumptions that cannot all be true. Instead of proving a query, the
system tries to prove false, and collects the assumables that are used in a proof.

If KB is a set of Horn clauses, a conflict of KB is a set of assumables that,
given KB, implies false. That is, C = {c1, . . . , cr} is a conflict of KB if

KB∪ {c1, . . . , cr} |= false.

In this case, an answer is

KB |= ¬c1 ∨ . . . ∨ ¬cr.

A minimal conflict is a conflict such that no strict subset is also a conflict.

Example 5.20 In Example 5.18 (page 201), if {c, d, e, f , g, h} is the set of as-
sumables, then {c, d} and {c, e} are minimal conflicts of KB2; {c, d, e, h} is also a
conflict, but not a minimal conflict.

In the examples that follow, assumables are specified using the assumable
keyword followed by one or more assumable atoms separated by commas.

5.6.3 Consistency-Based Diagnosis

Making assumptions about what is working normally, and deriving what com-
ponents could be abnormal, is the basis of consistency-based diagnosis. Sup-
pose a fault is something that is wrong with a system. The aim of consistency-
based diagnosis is to determine the possible faults based on a model of the
system and observations of the system. By making the absence of faults as-
sumable, conflicts can be used to prove what is wrong with the system.

Example 5.21 Consider the house wiring example depicted in Figure 5.2
(page 186) and represented in Example 5.8 (page 186). Figure 5.8 (page 203)
gives a background knowledge base suitable for consistency-based diagnosis.
Normality assumptions, specifying that switches, circuit breakers, and lights
must be ok to work as expected, are added to the clauses. There are no clauses
for the ok atoms, but they are made assumable.

The user is able to observe the switch positions and whether a light is lit or
dark.

A light cannot be both lit and dark. This knowledge is stated in the follow-
ing integrity constraints:

false ← dark l1 ∧ lit l1.
false ← dark l2 ∧ lit l2.

Suppose the user observes that all three switches are up, and that l1 and l2
are both dark. This is represented by the atomic clauses

up s1. up s2. up s3.
dark l1. dark l2.
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Given the knowledge of Figure 5.8 together with the observations, there are
two minimal conflicts:

{ok cb1, ok s1, ok s2, ok l1}
{ok cb1, ok s3, ok l2}.

Thus, it follows that

KB |= ¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1
KB |= ¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2

which means that at least one of the components cb1, s1, s2, or l1 must not be
ok, and at least one of the components cb1, s3, or l2 must not be ok.

Given the set of all conflicts, a user can determine what may be wrong with
the system being diagnosed. However, sometimes it is more useful to give a
disjunction of conjunctions of faults. This lets the user see whether all of the
conflicts can be accounted for by a single fault or a pair of faults, or the system
perhaps needs more faults.

Given a set of conflicts, a consistency-based diagnosis is a set of assum-
ables that has at least one element in each conflict. A minimal diagnosis is a
diagnosis such that no subset is also a diagnosis. For one of the diagnoses, all
of its elements must be false in the world being modeled.

Example 5.22 In Example 5.21 (page 202), the disjunction of the negation of
the two conflicts is a logical consequence of the clauses. Thus, the conjunction

(¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1)
∧ (¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2)

light l1. live w0 ← live w1 ∧ up s2 ∧ ok s2.
light l2. live w0 ← live w2 ∧ down s2 ∧ ok s2.
live outside. live w1 ← live w3 ∧ up s1 ∧ ok s1.
live l1 ← live w0. live w2 ← live w3 ∧ down s1 ∧ ok s1.
live l2 ← live w4. live w3 ← live w5 ∧ ok cb1.
live p1 ← live w3. live w4 ← live w3 ∧ up s3 ∧ ok s3.
live p2 ← live w6. live w5 ← live outside.
lit l1 ← light l1 ∧ live l1 ∧ ok l1. live w6 ← live w5 ∧ ok cb2.
lit l2 ← light l2 ∧ live l2 ∧ ok l2. false ← dark l1 ∧ lit l1.
false ← dark l2 ∧ lit l2.
assumable ok cb1, ok cb2, ok s1, ok s2, ok s3, ok l1, ok l2.

Figure 5.8: Knowledge for Example 5.21 (page 202)
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follows from the knowledge base. This conjunction of disjunctions in con-
junctive normal form (CNF) can be distributed into disjunctive normal form
(DNF), a disjunction of conjunctions, here of negated atoms:

¬ok cb1 ∨
(¬ok s1 ∧ ¬ok s3) ∨ (¬ok s1 ∧ ¬ok l2) ∨
(¬ok s2 ∧ ¬ok s3) ∨ (¬ok s2 ∧ ¬ok l2) ∨
(¬ok l1 ∧ ¬ok s3) ∨ (¬ok l1 ∧ ¬ok l2).

Thus, either cb1 is broken or there is at least one of six double faults.
The propositions that are disjoined together correspond to the seven mini-

mal diagnoses: {ok cb1}, {ok s1, ok s3}, {ok s1, ok l2}, {ok s2, ok s3}, {ok s2, ok l2},
{ok l1, ok s3}, {ok l1, ok l2}. The system has proved that one of these combina-
tions must be faulty.

5.6.4 Reasoning with Assumptions and Horn Clauses

This section presents a bottom-up implementation and a top-down implemen-
tation for finding conflicts in Horn clause knowledge bases.

Bottom-Up Implementation

The bottom-up proof procedure for assumables and Horn clauses is an aug-
mented version of the bottom-up algorithm for definite clauses presented in
Section 5.3.2 (page 189).

The modification to that algorithm is that the conclusions are pairs 〈a, A〉,
where a is an atom and A is a set of assumables that imply a in the context of
the Horn clause knowledge base KB.

Initially, the conclusion set C is {〈a, {a}〉 : a is assumable}. Clauses can be
used to derive new conclusions. If there is a clause h ← b1 ∧ . . . ∧ bm such that
for each bi there is some Ai such that 〈bi, Ai〉 ∈ C, then 〈h, A1 ∪ . . . ∪Am〉 can be
added to C. This covers the case of atomic clauses, with m = 0, where 〈h, {}〉 is
added to C.

Figure 5.9 (page 205) gives code for the algorithm. This algorithm is an
assumption-based truth maintenance system (ATMS), and can be combined
with the incremental addition of clauses and assumables.

When the pair 〈false, A〉 is generated, the assumptions A form a conflict.
One refinement of this program is to prune supersets of assumptions. If

〈a, A1〉 and 〈a, A2〉 are in C, where A1 ⊂ A2, then 〈a, A2〉 can be removed from C
or not added to C. There is no reason to use the extra assumptions to imply a.
Similarly, if 〈false, A1〉 and 〈a, A2〉 are in C, where A1 ⊆ A2, then 〈a, A2〉 can be
removed from C because A1 and any superset – including A2 – are inconsistent
with the clauses given, and so nothing more can be learned from considering
such sets of assumables.
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Example 5.23 Consider the axiomatization of Figure 5.8 (page 203), discussed
in Example 5.21 (page 202).

Initially, in the algorithm of Figure 5.9, C has the value

{〈ok l1, {ok l1}〉 , 〈ok l2, {ok l2}〉 , 〈ok s1, {ok s1}〉 , 〈ok s2, {ok s2}〉 ,
〈ok s3, {ok s3}〉 , 〈ok cb1, {ok cb1}〉 , 〈ok cb2, {ok cb2}〉}.

The following shows a sequence of values added to C under one sequence of
selections:

〈live outside, {}〉
〈live w5, {}〉
〈live w3, {ok cb1}〉
〈up s3, {}〉
〈live w4, {ok cb1, ok s3}〉
〈live l2, {ok cb1, ok s3}〉
〈light l2, {}〉
〈lit l2, {ok cb1, ok s3, ok l2}〉
〈dark l2, {}〉
〈false, {ok cb1, ok s3, ok l2}〉 .

Thus, the knowledge base entails

¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2.

The other conflict can be found by continuing the algorithm.

1: procedure Prove conflict BU(KB, Assumables)
2: Inputs
3: KB: a set of Horn clauses
4: Assumables: a set of atoms that can be assumed
5: Output
6: set of conflicts
7: Local
8: C is a set of pairs of an atom and a set of assumables
9: C := {〈a, {a}〉 : a is assumable}

10: repeat
11: select clause “h ← b1 ∧ . . . ∧ bm” in KB such that
12: 〈bi, Ai〉 ∈ C for all i and
13: 〈h, A〉 /∈ C where A = A1 ∪ . . . ∪Am
14: C := C∪ {〈h, A〉}
15: until no more selections are possible
16: return {A : 〈false, A〉 ∈ C}

Figure 5.9: Bottom-up proof procedure for computing conflicts
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Top-Down Implementation

The top-down implementation is similar to the top-down definite-clause inter-
preter described in Figure 5.4 (page 192), except the top-level query is to prove
false, and the assumables encountered in a proof are not proved but collected.

The algorithm is shown in Figure 5.10. Different choices can lead to differ-
ent conflicts being found. If no choices are available, the algorithm fails.

Example 5.24 Consider the representation of the circuit in Example 5.21
(page 202). The following is a sequence of the values of G for one sequence
of selections and choices that leads to a conflict:

{false}
{dark l1, lit l1}
{lit l1}
{light l1, live l1, ok l1}
{live l1, ok l1}
{live w0, ok l1}
{live w1, up s2, ok s2, ok l1}
{live w3, up s1, ok s1, up s2, ok s2, ok l1}
{live w5, ok cb1, up s1, ok s1, up s2, ok s2, ok l1}
{live outside, ok cb1, up s1, ok s1, up s2, ok s2, ok l1}
{ok cb1, up s1, ok s1, up s2, ok s2, ok l1}
{ok cb1, ok s1, up s2, ok s2, ok l1}
{ok cb1, ok s1, ok s2, ok l1}.

1: non-deterministic procedure Prove conflict TD(KB, Assumables)
2: Inputs
3: KB: a set Horn clauses
4: Assumables: a set of atoms that can be assumed
5: Output
6: A conflict
7: Local
8: G is a set of atoms (that implies false)
9: G := {false}

10: repeat
11: select an atom a in G such that a /∈ Assumables
12: choose clause “a ← B” in KB with a as head
13: G := (G \ {a}) ∪ B
14: until G ⊆ Assumables
15: return G

Figure 5.10: Top-down Horn clause proof procedure to find conflicts
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The set {ok cb1, ok s1, ok s2, ok l1} is returned as a conflict. Different choices of
the clause to use can lead to another answer.

5.7 Complete Knowledge Assumption

A database is often complete in the sense that anything not implied is false.

Example 5.25 You may want the user to specify which switches are up and
which circuit breakers are broken so that the system can conclude that any
switch not mentioned as up is down and any circuit breaker not specified as
broken is ok. Thus, down is the default value of switches and ok is the default
value for circuit breakers. It is easier for users to communicate using defaults
than it is to specify the seemingly redundant information about which switches
are down and which circuit breakers are ok. To reason with such defaults, an
agent must assume it has complete knowledge; a switch’s position is not men-
tioned because it is down, not because the agent does not know whether it is
up or down.

The given definite-clause logic does not allow the derivation of a conclusion
from a lack of knowledge or a failure to prove. It does not assume that the
knowledge is complete. In particular, the negation of an atom can never be a
logical consequence of a definite-clause knowledge base.

The complete knowledge assumption assumes that, for every atom, the
clauses with the atom as the head cover all the cases when the atom is true. In
particular, an atom with no clauses is false. Under this assumption, an agent
can conclude that an atom is false if it cannot derive that the atom is true. This
is also called the closed-world assumption. It can be contrasted with the open-
world assumption, which is that the agent does not know everything and so
cannot make any conclusions from a lack of knowledge. The closed-world
assumption requires that everything relevant about the world is known to the
agent.

This assumption that there is a definition of each atom in terms of clauses is
the basis of logic programming. Here we give the propositional version; richer
variants are presented in Section 15.4 (page 655) and Section 15.6 (page 667).

Suppose the clauses for atom a are

a ← b1.
...

a ← bn.

where an atomic clause a is treated as the rule a ← true. The complete knowl-
edge assumption specifies that if a is true in some interpretation then one of the
bi must be true in that interpretation; that is,

a → b1 ∨ . . . ∨ bn.
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Because the clauses defining a are equivalent to

a ← b1 ∨ . . . ∨ bn

the meaning of the clauses can be seen as the conjunction of these two propo-
sitions, namely, the equivalence

a ↔ b1 ∨ . . . ∨ bn

where ↔ is read as “if and only if” (see Figure 5.1 (page 179)). This equiva-
lence is called Clark’s completion of the clauses for a. Clark’s completion of a
knowledge base is the completion for each atom in the knowledge base.

Clark’s completion means that if there are no rules for an atom a, then the
completion of this atom is a ↔ false, which means that a is false.

Example 5.26 Consider the clauses from Example 5.8 (page 186):

down s1.
up s2.
ok cb1.
live l1 ← live w0.
live w0 ← live w1 ∧ up s2.
live w0 ← live w2 ∧ down s2.
live w1 ← live w3 ∧ up s1.
live w2 ← live w3 ∧ down s1.
live w3 ← live outside∧ ok cb1.
live outside.

Suppose that these are the only clauses for the atoms in the heads of these
clauses, and there are no clauses for up s1 or down s2. The completion of these
atoms is

down s1 ↔ true.
up s1 ↔ false.
up s2 ↔ true.
down s2 ↔ false.
ok cb1 ↔ true.
live l1 ↔ live w0.
live w0 ↔ (live w1 ∧ up s2) ∨ (live w2 ∧ down s2).
live w1 ↔ live w3 ∧ up s1.
live w2 ↔ live w3 ∧ down s1.
live w3 ↔ live outside∧ ok cb1.
live outside ↔ true.

This implies that up s1 is false, live w1 is false, and live w2 is true.
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With the completion, the system can derive negations, and so it is useful
to extend the language to allow negations in the body of clauses. A literal is
either an atom or the negation of an atom. The definition of a definite clause
(page 185) can be extended to allow literals in the body rather than just atoms.
We write the negation of atom a under the complete knowledge assumption as
∼a to distinguish it from classical negation that does not assume the comple-
tion. This negation is often called negation as failure.

Under negation as failure, body g is a consequence of the knowledge base
KB if KB′ |= g, where KB′ is Clark’s completion of KB. A negation ∼a in the
body of a clause or the query becomes ¬a in the completion. That is, a query
follows from a knowledge base under the complete knowledge assumption
means that the query is a logical consequence of the completion of the knowl-
edge base.

Example 5.27 Consider the axiomatization of Example 5.8 (page 186). Repre-
senting a domain can be made simpler by expecting the user to tell the system
only what switches are up and by the system concluding that a switch is down
if it has not been told the switch is up. This can be done by adding the following
rules:

down s1 ← ∼up s1.
down s2 ← ∼up s2.
down s3 ← ∼up s3.

Similarly, the system may conclude that the circuit breakers are ok unless it has
been told they are broken:

ok cb1 ← ∼broken cb1.
ok cb2 ← ∼broken cb2.

Although this may look more complicated than the previous representation, it
means that it is easier for the user to specify what is occurring in a particular
situation. The user has to specify only what is up and what is broken. This
may save time if being down is normal for switches and being ok is normal for
circuit breakers.

To represent the state of Figure 5.2 (page 186), the user specifies

up s2.
up s3.

The system can infer that s1 must be down and both circuit breakers are ok.
The completion of the knowledge base consisting of the clauses above is

down s1 ↔ ¬up s1.
down s2 ↔ ¬up s2.
down s3 ↔ ¬up s3.
ok cb1 ↔ ¬broken cb1.
ok cb2 ↔ ¬broken cb2.
up s1 ↔ false.
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up s2 ↔ true.
up s3 ↔ true.
broken cb1 ↔ false.
broken cb2 ↔ false.

Notice that atoms that are in the bodies of clauses but are not in the head of
any clauses are false in the completion.

Recall that a knowledge base is acyclic (page 85) if there is an assignment
of natural numbers (non-negative integers) to the atoms so that the atoms in
the body of a clause are assigned a lower number than the atom in the head.
With negation as failure, non-acyclic knowledge bases become semantically
problematic.

The following knowledge base is not acyclic:

a ← ∼b.
b ← ∼a.

Clark’s completion of this knowledge base is equivalent to a ↔ ¬b, which just
specifies that a and b have different truth values but not which one is true.

The following knowledge base is also not acyclic:

a ← ∼a.

Clark’s completion of this knowledge base is a ↔ ¬a, which is logically incon-
sistent.

Clark’s completion of an acyclic knowledge base is always consistent and
always gives a unique truth value to each atom. For the rest of this chapter, we
assume that the knowledge bases are acyclic.

5.7.1 Non-Monotonic Reasoning

A logic is monotonic if any proposition that can be derived from a knowledge
base can also be derived when extra propositions are added to the knowledge
base. That is, adding knowledge does not reduce the set of propositions that
can be derived. The definite-clause logic is monotonic.

A logic is non-monotonic if some conclusions can be invalidated by adding
more knowledge. The logic of definite clauses with negation as failure is non-
monotonic. Non-monotonic reasoning is useful for representing defaults. A
default is a rule that can be used unless it is overridden by an exception.

For example, to say that b is normally true if c is true, a knowledge base
designer can write a rule of the form

b ← c∧∼ab a.

where ab a is an atom that means abnormal with respect to some aspect a.
Given c, the agent can infer b unless it is told ab a. Adding ab a to the knowl-
edge base can prevent the conclusion of b. Rules that imply ab a can be used to
prevent the default under the conditions of the body of the rule.

https://doi.org/10.1017/9781009258227.008


5.7. Complete Knowledge Assumption 211

Example 5.28 Suppose the purchasing agent is investigating purchasing hol-
idays. A resort may be adjacent to a beach or away from a beach. This is
not symmetric; if the resort were adjacent to a beach, the knowledge provider
would specify this. Thus, it is reasonable to have the clause

away from beach ← ∼on beach.

This clause enables an agent to infer that a resort is away from the beach if the
agent is not told it is on a beach.

A cooperative system tries to not mislead. If we are told the resort is on
the beach, we would expect that resort users would have access to the beach.
If they have access to a beach, we would expect them to be able to swim at the
beach. Thus, we would expect the following defaults:

beach access ← on beach∧∼ab beach access.
swim at beach ← beach access∧∼ab swim at beach.

A cooperative system would tell us if a resort on the beach has no beach access
or if there is no swimming. We could also specify that, if there is an enclosed
bay and a big city, then there is no swimming, by default:

ab swim at beach ← enclosed bay∧ big city∧∼ab no swimming near city.

We could say that British Columbia (BC) is abnormal with respect to swimming
near cities:

ab no swimming near city ← in BC∧∼ab BC beaches.

Given only the preceding rules, an agent infers away from beach. If it is then told
on beach, it can no longer infer away from beach, but it can now infer beach access
and swim at beach. If it is also told enclosed bay and big city, it can no longer infer
swim at beach. However, if it is then told in BC, it can then infer swim at beach.

By having defaults of what is normal, a user can interact with the system
by telling it what is abnormal, which allows for economy in communication.
The user does not have to state the obvious.

One way to think about non-monotonic reasoning is in terms of arguments.
The rules can be used as components of arguments, in which the negated ab-
normality gives a way to undermine arguments. Note that, in the language
presented, only positive arguments exist, so these are the only ones that can
be undermined. In more general theories, there can be positive and negative
arguments that attack each other.

5.7.2 Proof Procedures for Negation as Failure

Bottom-Up Procedure

The bottom-up proof procedure for negation as failure is a modification of the
bottom-up procedure for definite clauses (page 189). The difference is that it
can add literals of the form ∼p to the set C of consequences that have been
derived; ∼p is added to C when it can determine that p must fail.
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Failure can be defined recursively: p fails when every body of a clause with
p as the head fails. A body fails if one of the literals in the body fails. An atom
bi in a body fails if ∼bi can be derived. A negation ∼bi in a body fails if bi can
be derived.

Figure 5.11 gives a bottom-up negation-as-failure interpreter for computing
consequents of a ground KB. Note that this includes the case of a clause with
an empty body (in which case m = 0 and the atom at the head is added to
C) and the case of an atom that does not appear in the head of any clause (in
which case its negation is added to C).

Example 5.29 Consider the following clauses:

p ← q∧∼r.
p ← s.
q ← ∼s.
r ← ∼t.
t.
s ← w.

1: procedure Prove NAF BU(KB)
2: Inputs
3: KB: a set of clauses that can include negation as failure
4: Output
5: set of literals that follow from the completion of KB
6: Local
7: C is a set of literals
8: C := {}
9: repeat

10: either
11: select r ∈ KB such that
12: r is “h ← b1 ∧ . . . ∧ bm”
13: bi ∈ C for all i, and
14: h /∈ C;
15: C := C∪ {h}
16: or
17: select h such that ∼h /∈ C and
18: where for every clause “h ← b1 ∧ . . . ∧ bm” ∈ KB
19: either for some bi,∼bi ∈ C
20: or some bi = ∼g and g ∈ C
21: C := C∪ {∼h}
22: until no more selections are possible

Figure 5.11: Bottom-up negation as failure proof procedure
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The following is a possible sequence of literals added to C:

t, ∼r, ∼w, ∼s, q, p

where t is derived trivially because it is given as an atomic clause;∼r is derived
because t ∈ C; ∼w is derived as there are no clauses for w, and so the “for every
clause” condition of line 18 of Figure 5.11 (page 212) trivially holds. Literal ∼s
is derived as ∼w ∈ C; and q and p are derived as the bodies are all proved.

Top-Down Negation-as-Failure Procedure

The top-down procedure for the complete knowledge assumption proceeds by
negation as failure. It is similar to the top-down definite-clause proof proce-
dure of Figure 5.4 (page 192). This is a non-deterministic procedure (see the
box on page 89) that can be implemented by searching over choices that suc-
ceed. When a negated atom ∼a is selected, a new proof for atom a is started. If
the proof for a fails, ∼a succeeds. If the proof for a succeeds, the algorithm fails
and must make other choices. The algorithm is shown in Figure 5.12.

Example 5.30 Consider the clauses from Example 5.29 (page 212). Suppose
the query is ask p.

1: non-deterministic procedure Prove NAF TD(KB, Query)
2: Inputs
3: KB: a set of clauses that can include negation as failure
4: Query: a set of literals to prove
5: Output
6: yes if completion of KB entails Query and fail otherwise
7: Local
8: G is a set of literals
9: G := Query

10: repeat
11: select literal l ∈ G
12: if l is of the form ∼a then
13: if Prove NAF TD(KB, a) fails then
14: G := G \ {l}
15: else
16: fail
17: else
18: choose clause “l ← B” in KB with l as head
19: G := G \ {l} ∪ B
20: until G = {}
21: return yes

Figure 5.12: Top-down negation as failure interpreter
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Initially, G = {p}.
Using the first rule for p, G becomes {q,∼r}.
Selecting q, and replacing it with the body of the third rule, G becomes

{∼s,∼r}.
It then selects ∼s and starts a proof for s. This proof for s fails, and thus G

becomes {∼r}.
It then selects ∼r and tries to prove r. In the proof for r, there is the subgoal

∼t, and so it tries to prove t. This proof for t succeeds. Thus, the proof for ∼t
fails and, because there are no more rules for r, the proof for r fails. Therefore,
the proof for ∼r succeeds.

G is empty and so it returns yes as the answer to the top-level query.

Note that this implements finite failure, because it makes no conclusion if
the proof procedure does not halt. For example, suppose there is just the rule
p ← p. The algorithm does not halt for the query ask p. The completion, p ↔ p,
gives no information. Even though there may be a way to conclude that there
will never be a proof for p, a sound proof procedure should not conclude ∼p,
as it does not follow from the completion.

5.8 Abduction

Abduction is a form of reasoning where assumptions are made to explain ob-
servations. For example, if an agent were to observe that some light was not
working, it hypothesizes what is happening in the world to explain why the
light was not working. A tutoring agent could try to explain why a student
gives some answer in terms of what the student understands and does not un-
derstand.

The term abduction was coined by Peirce (1839–1914) to differentiate this
type of reasoning from deduction, which involves determining what logically
follows from a set of axioms, and induction, which involves inferring general
relationships from examples.

In abduction, an agent hypothesizes what may be true about an observed
case. An agent determines what implies its observations – what could be true
to make the observations true. Observations are trivially implied by contradic-
tions (as a contradiction logically implies everything), so we want to exclude
contradictions from our explanation of the observations.

To formalize abduction, we use the language of Horn clauses and assum-
ables (page 201). The system is given:

• a knowledge base, KB, which is a set of of Horn clauses
• a set A of atoms, called the assumables, which are the building blocks of

hypotheses.

Instead of adding observations to the knowledge base, observations must be
explained.
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A scenario of 〈KB, A〉 is a subset H of A such that KB ∪ H is satisfiable.
KB ∪H is satisfiable if a model exists in which every element of KB and every
element H is true. This happens if no subset of H is a conflict of KB.

An explanation of proposition g from 〈KB, A〉 is a scenario that, together
with KB, implies g.

That is, an explanation of proposition g is a set H, H ⊆ A such that

KB∪H |= g
KB∪H �|= false.

A minimal explanation of g from 〈KB, A〉 is an explanation H of g from
〈KB, A〉 such that no strict subset of H is also an explanation of g from 〈KB, A〉.

Example 5.31 Consider the following simplistic knowledge base and assum-
ables for a diagnostic assistant:

bronchitis ← influenza.
bronchitis ← smokes.
coughing ← bronchitis.
wheezing ← bronchitis.
fever ← influenza.
fever ← infection.
sore throat ← influenza.
false ← smokes∧ nonsmoker.
assumable smokes, nonsmoker, influenza, infection.

If the agent observes wheezing, there are two minimal explanations:

{influenza} and {smokes}.

These explanations imply bronchitis and coughing.
If wheezing∧ fever is observed, the minimal explanations are

{influenza} and {smokes, infection}.

If wheezing∧ nonsmoker was observed, there is one minimal explanation:

{influenza, nonsmoker}.

The other explanation of wheezing is inconsistent with being a non-smoker.

Example 5.32 Consider the knowledge base

alarm ← tampering.
alarm ← fire.
smoke ← fire.
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If alarm is observed, there are two minimal explanations:

{tampering} and {fire}.

If alarm∧ smoke is observed, there is one minimal explanation:

{fire}.

Notice how, when smoke is observed, there is no need to hypothesize tampering
to explain alarm; it has been explained away by fire.

Determining what is going on inside a system based on observations about
the behavior is the problem of diagnosis or recognition. In abductive diagno-
sis, the agent hypothesizes diseases or malfunctions, as well as that some parts
are working normally, to explain the observed symptoms.

This differs from consistency-based diagnosis (page 202) (CBD) in the fol-
lowing ways:

• In CBD, only normal behavior needs to be represented, and the hypothe-
ses are assumptions of normal behavior. In abductive diagnosis, faulty
behavior as well as normal behavior needs to be represented, and the as-
sumables need to be for normal behavior and for each fault (or different
behavior).

• In abductive diagnosis, observations need to be explained. In CBD, ob-
servations are added to the knowledge base, and false is proved.

Abductive diagnosis requires more detailed modeling and gives more detailed
diagnoses, because the knowledge base has to be able to actually prove the ob-
servations from the knowledge base and the assumptions. Abductive diagno-
sis is also used to diagnose systems in which there is no normal behavior. For
example, in a tutoring agent, by observing what a student does, the agent can
hypothesize what the student understands and does not understand, which
can guide the tutoring agent’s actions.

Abduction can also be used for design, in which the query to be explained
is a design goal and the assumables are the building blocks of the designs. The
explanation is the design. Consistency means that the design is possible. The
implication of the design goal means that the design provably achieved the
design goal.

Example 5.33 Consider the electrical domain of Figure 5.2 (page 186). Similar
to the representation of the example for consistency-based diagnosis in Exam-
ple 5.21 (page 202), we axiomatize what follows from the assumptions of what
may be happening in the system. In abductive diagnosis, we must axiomatize
what follows both from faults and from normality assumptions. For each atom
that could be observed, we axiomatize how it could be produced.

A user could observe that l1 is lit or is dark. We must write rules that ax-
iomatize how the system must be to make these true. Light l1 is lit if it is ok and
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there is power coming in. The light is dark if it is broken or there is no power.
The system can assume l1 is ok or broken, but not both:

lit l1 ← live w0 ∧ ok l1.
dark l1 ← broken l1.
dark l1 ← dead w0.
assumable ok l1.
assumable broken l1.
false ← ok l1 ∧ broken l1.

You can then write rules on how live w0 and dead w0 depend on switch posi-
tions, the input to w0, and assumptions of the status of the wire. Observing
that some of the lights are lit gives explanations that can account for the obser-
vation.

Both the bottom-up and top-down implementations for assumption-based
reasoning with Horn clauses can be used for abduction. The bottom-up al-
gorithm of Figure 5.9 (page 205) computes the minimal explanations for each
atom; at the end of the repeat loop, C contains the minimal explanations of each
atom (as well as potentially some non-minimal explanations). The refinement
of pruning dominated explanations (page 204) can also be used. The top-down
algorithm (page 206) can be used to find the explanations of any g by first gen-
erating the conflicts and, using the same code and knowledge base, proving g
instead of false. The minimal explanations of g are the minimal sets of assum-
ables collected to prove g such that no subset is a conflict.

5.9 Causal Models

A primitive atom is an atom that is defined using facts. A derived atom is
an atom that is defined using rules. Typically, the designer writes axioms for
the derived atoms and then expects a user to specify which primitive atoms
are true. Thus, a derived atom will be inferred as necessary from the primitive
atoms and other atoms that can be derived.

The designer of an agent must make many decisions when designing a
knowledge base for a domain. For example, consider just two propositions,
a and b, both of which are true. There are multiple ways to write this. A de-
signer could

• state both a and b as atomic clauses, treating both as primitive
• state the atomic clause a and the rule b ← a, treating a as primitive and b

as derived
• state the atomic clause b and the rule a ← b, treating b as primitive and a

as derived.

These representations are logically equivalent; they cannot be distinguished
logically. However, they have different effects when the knowledge base is
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changed. Suppose a was no longer true for some reason. In the first and third
representations, b would still be true, and in the second representation, b would
no longer true.

A causal model, or a model of causality, is a representation of a domain
that predicts the results of interventions. An intervention is an action that
forces a variable to have a particular value. That is, an intervention on a vari-
able changes the value of the variable in some way other than as a side-effect
of manipulating other variables in the model. Other variables may be affected
by the change.

To predict the effect of interventions, a causal model represents how the
cause implies its effect. When the cause is changed, its effect should be changed.
An evidential model represents a domain in the other direction – from effect
to cause. Note that there is no assumption that there is “the cause” of an effect;
rather there are propositions, which together may cause the effect to become
true.

A structural causal model defines a causal mechanism for each atom that
is modeled. This causal mechanism specifies when the atom is true in terms
of other atoms. If the model is manipulated to make an atom true or false,
then the clauses for that atom are replaced by the appropriate assertion that
the atom is true or false. The model is designed so that it gives appropriate
answers for such interventions.

Example 5.34 In the electrical domain depicted in Figure 5.2 (page 186),
consider the relationship between switches s1 and s2 and light l1. Assume all
components are working properly. Light l1 is lit whenever both switches are
up or both switches are down. Thus,

lit l1 ↔ (up s1 ↔ up s2) (5.1)

which is logically equivalent to

up s1 ↔ (lit l1 ↔ up s2).

This formula is symmetric between the three propositions; it is true if and only
if an odd number of the propositions are true. However, in the world, the rela-
tionship between these propositions is not symmetric. Suppose both switches
were up and the light was lit. Putting s1 down does not make s2 go down to
preserve lit l1. Instead, putting s1 down makes lit l1 false, and up s2 remains
true. Thus, to predict the result of interventions, formula (5.1) is not enough. A
mechanism for each atom can make the relationship asymmetric, and account
for interventions.

Assuming that nothing internal to the model causes the switches to be up or
down, the state of Figure 5.2 (page 186) with s1 up and s2 down is represented
as

lit l1 ↔ (up s1 ↔ up s2)

up s1
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¬up s2

which can be written as a logic program using negation as failure as

lit l1 ← up s1 ∧ up s2.
lit l1 ← ∼up s1 ∧∼up s2.
up s1.

The representation makes reasonable predictions when one of the values is
changed. To intervene on the switch positions, assert or remove the proposi-
tions about the switch being up. This can change whether the light is lit. To
intervene to make light l1 unlit, replace the clauses defining lit l1. This does not
change the switch positions. Note that intervening to make the light off does
not mean that the agent turns the light off by moving the corresponding switch,
but rather by some other way, for example, removing the light bulb or breaking
it.

An evidential model is

up s1 ← lit l1 ∧ up s2.
up s1 ← ∼lit l1 ∧∼up s2.

This can be used to answer questions about whether s1 is up based on the posi-
tion of s2 and whether l1 is lit. Its completion is also equivalent to formula (5.1).
However, it does not accurately predict the effect of interventions.

For most purposes, it is preferable to use a causal model of the world as
it is more transparent, stable, and modular than an evidential model. Causal
models under uncertainty are explored in Chapter 11.

5.10 Social Impact

As society relies more and more on increasingly complex computational sys-
tems, the need for verifying the correctness of computer hardware and soft-
ware, especially in safety-critical applications, has grown rapidly. Even in a
computer chip that is not used in safety-critical applications, it is important
to verify that its design is correct to avoid the enormous cost of withdraw-
ing an incorrect design from the market and re-implementing it. In the early
Intel Pentium processors, the so-called FDIV bug in the hardware of its float-
ing point unit sometimes caused the processor to compute the wrong answer
when dividing two floating point numbers. This bug caused Intel to recall
the defective processors and take a US$475 million charge against earnings in
1994. Although simulating a design in software can catch some bugs, testing
all possible inputs for faulty outputs creates a space of possible behaviors sim-
ply too large to search exhaustively, as shown by the FDIV bug. As a result,
Intel and other hardware providers subsequently invested heavily in building
groups that developed formal verification techniques that are useful to prove
properties of hardware.
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The development of solvers for the propositional satisfiability problem (SAT)
has attracted very significant resources over the last few decades. Although
SAT may be worst-case exponential, instances that occur in real applications,
with millions of variables, can now be realistically solved. Some approaches
to proving hardware and software correctness can exploit the progress in SAT
solver performance. One method for doing that is to specify the range of de-
sired behaviors of a system in terms of a logical formula constraining the sys-
tem’s inputs and outputs. Given a description of the design of the system, the
problem then is to determine that the design always satisfies its formal specifi-
cation. A technique known as bounded model checking (BMC) is widely used
for hardware verification. BMC represents a bounded-length execution trace
that would violate a required property. Each execution trace symbolically rep-
resents a large set of possible actual traces, thereby overcoming the difficulty
of verifying the system by simulation on all possible inputs. The propositional
formula that results is tested with a SAT solver. If the formula can be satisfied
then the trace is feasible and the property has been violated. If not, then the
bound is increased, repeating the process. BMC has also been applied to soft-
ware verification, in a similar way, with some success. An alternative approach
to the formal specification and verification of software and hardware systems
is the TLA+ system, based on extensions to logic that include time (known as
temporal logic).

SAT has many other significant industrial applications. One family of such
applications is product configuration. A product line, such as a line of cars,
is a family of similar products. Various features are available to be reused
across the family. A product’s configuration is the set of features it uses. A
feature model characterizes the allowable configurations, specifying the con-
straints among the features that are used. A feature model, combined with
user-supplied constraints, can be translated to a SAT formula to enumerate the
set of acceptable legal configurations with a SAT solver. Formal methods were
applied to the task of managing all possible configurations of the Mercedes
lines of passenger cars and commercial vehicles. SAT solving was applied to
the task of maintaining consistency in the database of thousands of logical con-
straints, and keeping it consistent as it constantly changes with the phasing in
and out of models and parts.

Other important SAT applications include planning and scheduling for shift
workers, sports tournaments, exams, and air traffic control.

5.11 Review

The following are the main points you should have learned from this chapter:

• Representing constraints in terms of propositions often enables constraint
reasoning to be more efficient.

• A definite-clause knowledge base can be used to specify atomic clauses
and rules about a domain when there is no uncertainty or ambiguity.
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• Given a set of statements that are claimed to be true about a domain, the
logical consequences characterize what else must be true.

• A sound and complete proof procedure can be used to determine the
logical consequences of a knowledge base.

• Bottom-up and top-down proof procedures can be proven to be sound
and complete.

• Proof by contradiction can be used to make inference from a Horn clause
knowledge base.

• Negation as failure can be used to make conclusions assuming complete
knowledge.

• Abduction can be used to explain observations.
• Consistency-based diagnosis and abductive diagnosis are alternative meth-

ods for troubleshooting systems.
• A causal model predicts the effect of interventions.
• SAT solvers play a critical role in many important applications.

5.12 References and Further Reading

Propositional logic has a long history; the semantics for propositional logic
presented here is based on that of Tarski [1956].

The DPLL algorithm (page 184) is by Davis et al. [1962]. Levesque [1984]
describes the tell–ask protocol for knowledge bases. Consistency-based diag-
nosis was formalized by de Kleer et al. [1992].

Much of the foundation of definite and Horn clause reasoning was de-
veloped in the context of a richer first-order logic that is presented in Chap-
ter 15 and is studied under the umbrella of logic programming. Resolution
was developed by Robinson [1965]. SLD resolution was pioneered by Kowal-
ski [1974] and Colmerauer et al. [1973], building on previous work by Green
[1969], Hayes [1973], and Hewitt [1969]. The fixed-point semantics was devel-
oped by van Emden and Kowalski [1976]. For more detail on the semantics
and properties of logic programs, see Lloyd [1987].

The work on negation as failure (page 207) is based on the work of Clark
[1978]. Apt and Bol [1994] provide a survey of different techniques and seman-
tics for handling negation as failure. The bottom-up negation-as-failure proof
procedure is based on the truth maintenance system (TMS) of Doyle [1979],
who also considered incremental addition and removal of clauses; see Exercise
5.15 (page 229). The use of abnormality for default reasoning was advocated
by McCarthy [1986].

The abduction framework presented here is based on the assumption-based
truth maintenance system (ATMS) of de Kleer [1986] and on Theorist [Poole
et al., 1987]. Kakas and Denecker [2002] review abductive reasoning. For an
overview of the work of Peirce, who first characterized abduction, see Burch

https://doi.org/10.1017/9781009258227.008


222 5. Propositions and Inference

[2022]. The bottom-up Horn implementation for the ATMS is more sophisti-
cated in that it considers the problem of incremental addition of clauses and
assumables also; see Exercise 5.16 (page 229).

Dung [1995] presents an abstract framework for arguments that provides
a foundation for much of the work in this area. Chesnevar et al. [2000] and
Besnard and Hunter [2008] survey work on arguments.

Causal models are discussed by Pearl [2009] and Spirtes et al. [2001]. See
also Chapter 11.

The FDIV bug and the development of formal hardware verification at In-
tel is covered by Seger [2021]. Xu et al. [2008] and Biere et al. [2021] cover
SAT, modern SAT solvers, and the applications for hardware and software ver-
ification. Sundermann et al. [2021] surveys product configuration using SAT.
The application of formal methods to the Mercedes product lines is described
by Sinz et al. [2003]. The TLA+ system is described by Lamport [2002] and
Kuppe et al. [2019].

5.13 Exercises

Some of these exercises can use AIPython (aipython.org) or Prolog.

Exercise 5.1 Suppose we want to be able to reason about an electric kettle plugged
into one of the power outlets for the electrical domain of Figure 5.2 (page 186).
Suppose a kettle must be plugged into a working power outlet, it must be turned
on, and it must be filled with water, in order to heat. Write definite clauses that let
the system determine whether kettles are heating.

You must

• give the intended interpretation of all symbols used
• write the clauses so they can be loaded into AIPython or Prolog
• show that the resulting knowledge base runs in AIPython or Prolog

Exercise 5.2 Consider the domain of house plumbing shown in Figure 5.13.
In this diagram, p1, p2, and p3 are cold water pipes; t1, t2, and t3 are taps; d1,

d2, and d3 are drainage pipes.
Suppose you have the following atoms

• pressurized pi is true if pipe pi has mains pressure in it
• on ti is true if tap ti is on
• off ti is true if tap ti is off
• wet b is true if b is wet (b is either the sink, bath, or floor)
• flow pi is true if water is flowing through pi

• plugged sink is true if the sink has the plug in
• plugged bath is true if the bath has the plug in
• unplugged sink is true if the sink does not have the plug in
• unplugged bath is true if the bath does not have the plug in.
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A definite-clause axiomatization for how water can flow down drain d1 if taps
t1 and t2 are on and the bath is unplugged is

pressurized p1.
pressurized p2 ← on t1 ∧ pressurized p1.
flow shower ← on t2 ∧ pressurized p2.
wet bath ← flow shower.
flow d2 ← wet bath∧ unplugged bath.
flow d1 ← flow d2.
on t1.
on t2.
unplugged bath.

(a) Finish the axiomatization for the sink in the same manner as the axiomati-
zation for the bath. Test it in AIPython or Prolog.

(b) What information would you expect a resident of a house to be able to pro-
vide that the plumber who installed the system, who is not at the house,
cannot? Change the axiomatization so that questions about this information
are asked of the user.

(c) Axiomatize how the floor is wet if the sink overflows or the bath overflows.
They overflow if the plug is in and water is flowing in. You may invent
new atomic propositions as long as you give their intended interpretation.
(Assume that the taps and plugs have been in the same positions for one
hour; you do not have to axiomatize the dynamics of turning on the taps
and inserting and removing plugs.) Test it in AIPython or Prolog.

t3

p3

p1

p2

t2

t1d3 d2

d1

shower

bath
sink

floor

Figure 5.13: The plumbing domain
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(d) Suppose a hot-water system is installed to the left of tap t1. This has another
tap in the pipe leading into it and supplies hot water to the shower and the
sink (there are separate hot and cold water taps for each). Add this to your
axiomatization. Give the denotation for all propositions you invent. Test it
in AIPython or Prolog.

Exercise 5.3 Consider the knowledge base

a ← b∧ c. b ← d. d ← h.
a ← e∧ f . b ← f ∧ h. f ← g.
c ← e. e. g ← c.

(a) Give a model of the knowledge base.
(b) Give an interpretation that is not a model of the knowledge base.
(c) Give two atoms that are logical consequences of the knowledge base.
(d) Give two atoms that are not logical consequences of the knowledge base.

Exercise 5.4 Consider the knowledge base

a ← b∧ c. c. f ← g∧ b.
b ← d. d ← h. g ← c∧ k.
b ← e. e. j ← a∧ b.

(a) Show how the bottom-up proof procedure works for this example. Give all
logical consequences of KB.

(b) f is not a logical consequence of KB. Give a model of KB in which f is false.
(c) a is a logical consequence of KB. Give a top-down derivation for the query

ask a.

Exercise 5.5 A bottom-up proof procedure can incorporate an ask-the-user mech-
anism by asking the user about every askable atom. How can a bottom-up proof
procedure still guarantee proof of all (non-askable) atoms that are a logical conse-
quence of a definite-clause knowledge base without asking the user about every
askable atom?

Exercise 5.6 This question explores how having an explicit semantics can be used
to debug programs. The file elect_bug2 in the the book’s website is an axioma-
tization of the electrical wiring domain of Figure 5.2 (page 186), but it contains a
buggy clause (one that is false in the intended interpretation shown in the figure).
The aim of this exercise is to to find the buggy clause, given the denotation of the
symbols given in Example 5.8 (page 186). To find the buggy rule, you do not even
need to look at the knowledge base! (You can look at the knowledge base to find
the buggy clause if you like, but that will not help you in this exercise.) All you
must know is the meaning of the symbols in the program and what is true in the
intended interpretation.

The query lit l1 can be proved, but it is false in the intended interpretation. Use
the how questions of AIPython to find a clause whose head is false in the intended
interpretation and whose body is true. This is a buggy rule.
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Exercise 5.7 Consider the following knowledge base and assumables aimed to
explain why people are acting suspiciously:

goto forest ← walking.
get gun ← hunting.
goto forest ← hunting.
get gun ← robbing.
goto bank ← robbing.
goto bank ← banking.
fill withdrawal form ← banking.
false ← banking∧ robbing.
false ← wearing good shoes∧ goto forest.
assumable walking, hunting, robbing, banking.

(a) Suppose get gun is observed. What are all of the minimal explanations for
this observation?

(b) Suppose get gun ∧ goto bank is observed. What are all of the minimal expla-
nations for this observation?

(c) Is there something that could be observed to remove one of these as a mini-
mal explanation? What must be added to be able to explain this?

(d) What are the minimal explanations of goto bank?
(e) Give the minimal explanations of goto bank ∧ get gun∧ fill withdrawal form.

Exercise 5.8 Suppose there are four possible diseases a particular patient may
have: p, q, r, and s. p causes spots. q causes spots. Fever could be caused by one
(or more) of q, r, or s. The patient has spots and fever. Suppose you have decided
to use abduction to diagnose this patient based on the symptoms.

(a) Show how to represent this knowledge using Horn clauses and assumables.
(b) Show how to diagnose this patient using abduction. Show clearly the query

and the resulting answer(s).
(c) Suppose also that p and s cannot occur together. Show how that changes

your knowledge base from part (a). Show how to diagnose the patient using
abduction with the new knowledge base. Show clearly the query and the
resulting answer(s).

Exercise 5.9 Consider the following clauses and integrity constraints:

false ← a∧ b. a ← d. b ← d.
false ← c. a ← g. b ← e.
c ← h. a ← h.

Suppose the assumables are {d, e, f , g, h, i}. What are the minimal conflicts?

Exercise 5.10 Deep Space One (http://nmp.jpl.nasa.gov/ds1/) was a spacecraft
launched by NASA in October 1998 that used AI technology for its diagnosis and
control. For more details, see Muscettola et al. [1998] or http://ti.arc.nasa.gov/
tech/asr/planning-and-scheduling/remote-agent/ (although these references are not
necessary to complete this question).

http://nmp.jpl.nasa.gov/ds1/
http://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/
http://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/
https://doi.org/10.1017/9781009258227.008


226 5. Propositions and Inference

Figure 5.14 depicts a part of the actual DS1 engine design. To achieve thrust
in an engine, fuel and oxidizer must be injected. The whole design is highly re-
dundant to ensure its operation even in the presence of multiple failures (mainly
stuck or inoperative valves). Note that whether the valves are black or white, and
whether or not they have a bar, are irrelevant for this question.

Each valve can be ok (or not) and can be open (or not). The aim of this question
is to axiomatize the domain so that we can do two tasks.

(a) Given an observation of the lack of thrust in an engine and given which
valves are open, using consistency-based diagnosis, determine what could
be wrong.

(b) Given the goal of having thrust and given the knowledge that some valves
are ok, determine which valves should be opened.

For each of these tasks, you must think about what the clauses are in the knowl-
edge base and what is assumable.

The atoms should be of the following forms:

• open V is true if valve V is open. Thus the atoms should be open v1, open v2,
and so on.
• ok V is true if valve V is working properly.
• pressurized V is true if the output of valve V is pressurized with gas. You

should assume that pressurized t1 and pressurized t2 are true.
• thrust E is true if engine E has thrust.
• thrust is true if no thrust exists in either engine.

v5 v1

v2

v3

v4

v6

v7

v8

v9

v11

v10

v12

t1

t2

e1

e2

Engines
Tanks

fuel

oxydizer

v13

v14

v15

v16

Figure 5.14: Deep Space One engine design
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• nothrust is true if there is no thrust.

To make this manageable, only write rules for the input into engine e1. Test your
code using AIPython or Prolog on a number of examples.

Exercise 5.11 Consider using abductive diagnosis on the problem in the previous
question, with the following elaborations.

• Valves can be open or closed. Some valves may be specified as open or
closed.
• A valve can be ok, in which case the gas will flow if the valve is open and

not if it is closed; broken, in which case gas never flows; stuck, in which case
gas flows independently of whether the valve is open or closed; or leaking, in
which case gas flowing into the valve leaks out instead of flowing through.
• There are three gas sensors that can detect gas leaking (but not which gas);

the first gas sensor detects gas from the rightmost valves (v1, . . . , v4), the
second gas sensor detects gas from the center valves (v5, . . . , v12), and the
third gas sensor detects gas from the leftmost valves (v13, . . . , v16).

(a) Axiomatize the domain so the system can explain thrust or no thrust in en-
gine e1 and the presence of gas in one of the sensors. For example, it should
be able to explain why e1 is thrusting. It should be able to explain why e1 is
not thrusting and there is a gas detected by the third sensor.

(b) Test your axiomatization on some non-trivial examples.
(c) Some of the queries have many explanations. Suggest how the number of

explanations could be reduced or managed so that the abductive diagnoses
are more useful.

Exercise 5.12 You are tasked with axiomatizing the plumbing in your home and
you have an axiomatization similar to that of Exercise 5.2 (page 222). A new tenant
is going to sublet your home and may want to use your system to determine what
may be going wrong with the plumbing (before calling you or the plumber).

There are some atoms that you will know the rules for, some that the ten-
ant will know, and some that neither will know. Divide the atomic propositions
into these three categories, and suggest which should be made askable and which
should be assumable. Show what the resulting interaction will look like under
your division.

Exercise 5.13 This question explores how integrity constraints and consistency-
based diagnosis can be used in a purchasing agent that interacts with various in-
formation sources on the web. The purchasing agent will ask a number of the in-
formation sources for facts. However, information sources are sometimes wrong.
It is useful to be able to automatically determine which information sources may
be wrong when a user gets conflicting information.

This question uses meaningless symbols such as a, b, c, . . ., but in a real domain
there will be meaning associated with the symbols, such as a meaning “there is
skiing in Hawaii” and z meaning “there is no skiing in Hawaii” or a meaning
“butterflies do not eat anything” and z meaning “butterflies eat nectar”. We will
use meaningless symbols in this question because the computer does not have
access to the meanings and must simply treat them as meaningless symbols.
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Suppose the following information sources and associated information are
provided.

• Source s1 claims the following clauses are true:

a ← h. d ← c.

• Source s2 claims the following clauses are true:

e ← d. f ← k.
z ← g. j.

• Source s3 claims the following clause is true:

h ← d.

• Source s4 claims the following clauses are true:

a ← b∧ e. b ← c.

• Source s5 claims the following clause is true:

g ← f ∧ j.

• You know that the following clauses are true:

false ← a∧ z. c. k.

Not every source can be believed, because together they produce a contradiction.

(a) Code the knowledge provided by the users into AIPython using assumables.
To use a clause provided by one of the sources, you must assume that the
source is reliable.

(b) Use the program to find the conflicts about what sources are reliable. (To
find conflicts you can just ask false.)

(c) Suppose you would like to assume that as few sources as possible are unre-
liable. Which single source, if it was unreliable, could account for a contra-
diction (assuming all other sources were reliable)?

(d) Which pairs of sources could account for a contradiction (assuming all other
sources are reliable) such that no single one of them could account for the
contradiction?

Exercise 5.14 Suppose you have a job at a company that is building online teach-
ing tools. Because you have taken an AI course, your boss wants to know your
opinion on various options under consideration.

They are planning on building a tutoring system for teaching elementary physics
(e.g., mechanics and electromagnetism). One of the things that the system must
do is to diagnose errors that a student may be making.

For each of the following, answer the explicit questions and use proper En-
glish. Answering parts not asked or giving more than one answer when only one
is asked for will annoy the boss. The boss also does not like jargon, so please use
straightforward English.

The boss has heard of consistency-based diagnosis and abductive diagnosis
but wants to know what they involve in the context of building a tutoring system for
teaching elementary physics.
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(a) Explain what knowledge (about physics and about students) is required for
consistency-based diagnosis.

(b) Explain what knowledge (about physics and about students) is required for
abductive diagnosis.

(c) What is the main advantage of using abductive diagnosis over consistency-
based diagnosis in this domain?

(d) What is the main advantage of consistency-based diagnosis over abductive
diagnosis in this domain?

Exercise 5.15 Consider the bottom-up negation-as-failure proof procedure of
Figure 5.11 (page 212). Suppose we want to allow for incremental addition and
deletion of clauses. How does C change as a clause is added? How does C change
if a clause is removed?

Exercise 5.16 Suppose you are implementing a bottom-up Horn clause explana-
tion reasoner and you want to incrementally add clauses or assumables. When a
clause is added, how are the minimal explanations affected? When an assumable
is added, how are the minimal explanations affected?

Exercise 5.17 Figure 5.15 (page 230) shows a simplified redundant communi-
cation network between an unmanned spacecraft (sc) and a ground control cen-
ter (gc). There are two indirect high-bandwidth (high-gain) links that are relayed
through satellites (s1, s2) to different ground antennae (a1, a2). Furthermore, there
is a direct, low-bandwidth (low-gain) link between the ground control center’s an-
tenna (a3) and the spacecraft. The low-gain link is affected by atmospheric distur-
bances – it works if there are no disturbances (no dist) – and the spacecraft’s low-
gain transmitter (sc lg) and antenna 3 are ok. The high-gain links always work
if the spacecraft’s high-gain transmitter (sc hg), the satellites’ antennae (s1 ant,
s2 ant), the satellites’ transmitters (s1 trans, s2 trans), and the ground antennae (a1,
a2) are ok.

To keep matters simple, consider only messages from the spacecraft going
through these channels to the ground control center.

The following knowledge base formalizes the part of the communication net-
work we are interested in:

send signal lg sc ← ok sc lg∧ alive sc.
send signal hg sc ← ok sc hg∧ alive sc.
get signal s1 ← send signal hg sc∧ ok s1 ant.
get signal s2 ← send signal hg sc∧ ok s2 ant.
send signal s1 ← get signal s1 ∧ ok s1 trans.
send signal s2 ← get signal s2 ∧ ok s2 trans.
get signal gc ← send signal s1 ∧ ok a1.
get signal gc ← send signal s2 ∧ ok a2.
get signal gc ← send signal lg sc∧ ok a3 ∧ no dist.

Ground control is worried, because it has not received a signal from the spacecraft
(no signal gc). It knows for sure that all ground antennae are ok (i.e., ok a1, ok a2,
and ok a3) and satellite s1’s transmitter is ok (ok s1 trans). It is not sure about the
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state of the spacecraft, its transmitters, the satellites’ antennae, s2’s transmitter, and
atmospheric disturbances.

(a) Specify a set of assumables and an integrity constraint that model the situa-
tion.

(b) Using the assumables and the integrity constraints from part (a), what is the
set of minimal conflicts?

(c) What is the consistency-based diagnosis for the given situation? In other
words, what are the possible combinations of violated assumptions that
could account for why the control center cannot receive a signal from the
spacecraft?

Exercise 5.18

(a) Explain why NASA may want to use abduction rather than consistency-
based diagnosis for the domain of Exercise 5.17 (page 229).

(b) Suppose that an atmospheric disturbance dist could produce static or no sig-
nal in the low-bandwidth signal. To receive the static, antenna a3 and the
spacecraft’s low-bandwidth transmitter sc lg must be working. If a3 or sc lg
are not working or sc is dead, there is no signal. What rules and assumables
must be added to the knowledge base of Exercise 5.17 so that we can explain
the possible observations no signal gc, get signal gc, or static gc? You may
ignore the high-bandwidth links. You may invent any symbols you need.

s1

gc

sc

s2

a1 a2

a3

Figure 5.15: A space communication network
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Chapter 6

Deterministic Planning

. . . our Homo sapiens ancestors: their newly acquired causal imagination
enabled them to do many things more efficiently through a tricky process
we call “planning.” Imagine a tribe preparing for a mammoth hunt. What
would it take for them to succeed? My mammoth-hunting skills are rusty,
I must admit, but as a student of thinking machines, I have learned one
thing: a thinking entity (computer, caveman, or professor) can only ac-
complish a task of such magnitude by planning in advance – by deciding
how many hunters to recruit; by gauging, given wind conditions, the di-
rection from which to approach the mammoth; in short, by imagining and
comparing the consequences of several hunting strategies. To do this, the
thinking entity must possess, consult, and manipulate a mental model of
its reality.

– Pearl and Mackenzie [2018, p. 25]

Deterministic planning is the process of finding a sequence of actions to achieve
a goal. Because an agent does not usually achieve its goals in one step, what it
should do at any time depends on what it will do in the future. What it will do
in the future depends on the state it is in, which, in turn, depends on what it
has done in the past. This chapter presents representations of actions and their
effects, and some offline algorithms for an agent to find a plan to achieve its
goals from a given state.

This chapter makes the following simplifying assumptions:

• There is a single agent.
• The agent’s actions are deterministic and the agent can predict the conse-

quences of its actions.
• There are no exogenous events beyond the control of the agent that change

the state of the environment.

231
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232 6. Deterministic Planning

• The environment is fully observable; thus, the agent can observe the cur-
rent state of the environment.

• Time progresses discretely from one state to the next.
• Goals are predicates of states that must be achieved.

Some of these assumptions are relaxed in the following chapters.

6.1 Representing States, Actions, and Goals

To reason about what to do, assume an agent has goals, a model of the envi-
ronment, and a model of its actions.

A deterministic action is a partial function from states to states. It is partial
because not every action is able to be carried out in every state. For example,
a robot cannot pick up a particular object if it is nowhere near the object. The
precondition of an action specifies when the action can be carried out. The
effect of an action specifies the resulting state.

Example 6.1 Consider a delivery robot (page 16) with mail and coffee to
deliver. Assume a simplified problem domain with four locations as shown in
Figure 6.1. The robot, called Rob, can buy coffee at the coffee shop, pick up
mail in the mail room, move, and deliver coffee and/or mail. Delivering the
coffee to Sam’s office will stop Sam from wanting coffee. There could be mail

Coffee 
Shop
(cs)

Mail 
Room
(mr )

Lab
(lab)

Sam's
Office
(off )

Features to describe states

RLoc – Rob’s location
RHC – Rob has coffee
SWC – Sam wants coffee
MW – Mail is waiting
RHM – Rob has mail

Actions

mc – move clockwise
mcc – move counterclockwise
puc – pick up coffee
dc – deliver coffee
pum – pick up mail
dm – deliver mail

Figure 6.1: The delivery robot domain
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waiting at the mail room to be delivered to Sam’s office. This domain is quite
simple, yet it is rich enough to demonstrate many of the issues in representing
actions and in planning.

The state is described in terms of the following features:

• RLoc, the robot’s location, which is one of the coffee shop (cs), Sam’s office
(off ), the mail room (mr), or the laboratory (lab).

• RHC, whether the robot has coffee. The atom rhc means Rob has coffee
(i.e., RHC= true) and¬rhc means Rob does not have coffee (i.e., RHC= false).

• SWC, whether Sam wants coffee. The atom swc means Sam wants coffee
and ¬swc means Sam does not want coffee.

• MW, whether mail is waiting at the mail room. The atom mw means there
is mail waiting and ¬mw means there is no mail waiting.

• RHM, whether the robot is carrying the mail. The atom rhm means Rob
has mail, and ¬rhm means Rob does not have mail.

Rob has six actions:

• Rob can move clockwise (mc).
• Rob can move counterclockwise (mcc).
• Rob can pick up coffee if Rob is at the coffee shop. Let puc mean that Rob

picks up coffee. The precondition of puc is ¬rhc ∧ RLoc= cs; that is, Rob
can pick up coffee in any state where its location is cs, and it is not already
holding coffee. The effect of this action is to make RHC true. It does not
affect the other features.

• Rob can deliver coffee if Rob is carrying coffee and is at Sam’s office. Let
dc mean that Rob delivers coffee. The precondition of dc is rhc∧RLoc= off .
The effect of this action is to make RHC false and make SWC false. Rob
can deliver coffee whether or not Sam wants it.

• Rob can pick up mail if Rob is at the mail room and there is mail waiting
there. Let pum mean Rob picks up the mail.

• Rob can deliver mail if Rob is carrying mail and at Sam’s office. Let dm
mean Rob delivers mail.

Assume that it is only possible for Rob to do one action at a time. We assume
that a lower-level controller is able to implement these actions, as described in
Chapter 2.

6.1.1 Explicit State-Space Representation

One possible representation of the effect and precondition of actions is to ex-
plicitly enumerate the states and, for each state, specify the actions that are
possible in that state and, for each state–action pair, specify the state that re-
sults from carrying out the action in that state. This would require a table such
as the following:
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State Action Resulting State
s7 act47 s94
s7 act14 s83
s94 act5 s33
. . . . . . . . .

The first tuple in this relation specifies that it is possible to carry out action act47
in state s7 and, if it were to be carried out in state s7, the resulting state would
be s94.

Thus, this is the explicit representation of a graph, where the nodes are
states and the acts are actions. This is a state-space graph (page 85). This is the
sort of graph that was used in Chapter 3. Any of the algorithms of Chapter 3
can be used to search the space.

Example 6.2 In Example 6.1 (page 232), the states are the quintuples spec-
ifying the robot’s location, whether the robot has coffee, whether Sam wants
coffee, whether mail is waiting, and whether the robot is carrying the mail. For
example, the tuple

〈lab,¬rhc, swc,¬mw, rhm〉

represents the state where Rob is at the lab, Rob does not have coffee, Sam
wants coffee, there is no mail waiting, and Sam has mail. The tuple

〈lab, rhc, swc, mw,¬rhm〉

represents the state where Rob is at the lab carrying coffee, Sam wants coffee,
there is mail waiting, and Rob is not holding any mail.

In this example, there are 4× 2× 2× 2× 2 = 64 states. Intuitively, all of
them are possible, even if one would not expect that some of them would be
reached by an intelligent robot.

There are six actions, not all of which are applicable in each state.
The actions are defined in terms of the state transitions:

State Action Resulting State
〈lab,¬rhc, swc,¬mw, rhm〉 mc 〈mr,¬rhc, swc,¬mw, rhm〉
〈lab,¬rhc, swc,¬mw, rhm〉 mcc 〈off ,¬rhc, swc,¬mw, rhm〉
〈off ,¬rhc, swc,¬mw, rhm〉 dm 〈off ,¬rhc, swc,¬mw,¬rhm〉
〈off ,¬rhc, swc,¬mw, rhm〉 mcc 〈cs,¬rhc, swc,¬mw, rhm〉
〈off ,¬rhc, swc,¬mw, rhm〉 mc 〈lab,¬rhc, swc,¬mw, rhm〉
. . . . . . . . .

This table shows the transitions for two of the states. The complete representa-
tion includes the transitions for the other 62 states.

This is not a good representation for three main reasons:

• There are usually too many states to represent, to acquire, and to reason
with.
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• Small changes to the model mean a large change to the representation.
Adding another feature means changing the whole representation. For
example, to model the level of power in the robot, so that it can recharge
itself in the lab, every state has to change.

• It does not represent the structure of states; there is much structure and
regularity in the effects of actions that is not reflected in the state transi-
tions. For example, most actions do not affect whether Sam wants coffee,
but this cannot be specified directly.

An alternative is to model how the actions affect the features.

6.1.2 The STRIPS Representation

The STRIPS representation is an action-centric representation which, for each
action, specifies when the action can occur and the effects of the action. STRIPS,
which stands for “STanford Research Institute Problem Solver,” was the plan-
ner used in Shakey, one of the first robots built using AI technology.

To represent a planning problem in STRIPS, first divide the features that
describe the state of the world into primitive and derived features. The STRIPS
representation is used to specify the values of primitive features in a state based
on the previous state and the action taken by the agent. Definite clauses are
used to determine the value of derived features from the values of the primitive
features in any given state.

The STRIPS representation for an action consists of:

• the precondition, a set of assignments of values to features that must
hold for the action to occur

• the effect, a set of assignments of values to primitive features that speci-
fies the features that change, and the values they change to, as the result
of the action.

The precondition of an action is a proposition – the conjunction of the ele-
ments of the set – that must be true before the action is able to be carried out.
In terms of constraints, the robot is constrained so it can only choose an action
for which the precondition holds.

Example 6.3 In Example 6.1 (page 232), the action of Rob to pick up coffee
(puc) has precondition {cs,¬rhc}. That is, Rob must be at the coffee shop (cs),
not carrying coffee (¬rhc), to carry out the puc action. As a constraint, this
means that puc is not available for any other location or when rhc is true.

The action to move clockwise is always possible. Its precondition is the
empty set, {}, which represents the proposition true.

The STRIPS representation is based on the idea that most things are not
affected by a single action. The semantics relies on the STRIPS assumption:
the values of all of the primitive features not mentioned in the effects of the
action are unchanged by the action.
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Primitive feature X has value v after action act if action act is possible (its
preconditions hold) and either

• X= v is in the effect of act or

• X is not mentioned in the effect of act and X has value v immediately
before act.

The values of non-primitive features can be derived from the values of the
primitive features for each time.

Example 6.4 In Example 6.1 (page 232), the action of Rob to pick up coffee
(puc) has the following STRIPS representation:

precondition {cs,¬rhc}
effect {rhc}
That is, in order to be able to pick up coffee, the robot must be at the coffee
shop and not have coffee. After the action, rhc holds (i.e., RHC= true). All
other feature values are unaffected by this action.

Example 6.5 The action of delivering coffee (dc) can be defined by

precondition {off , rhc}
effect {¬rhc,¬swc}
The robot can deliver coffee when it is in the office and has coffee. The robot
does not have coffee after the action, and Sam does not want coffee after the
action. Thus, the effects are to make RHC= false and SWC= false. According
to this model, the robot can deliver coffee whether or not Sam wants coffee. In
either case, Sam does not want coffee immediately after the action.

STRIPS cannot directly define conditional effects, where the effect of an
action depends on what is true initially. However, conditional effects can be
modeled by introducing new actions, as shown in the following example.

Example 6.6 Consider representing the action mc to move clockwise. The
effect of mc, where the robot ends up, depends on the robot’s location before
mc was carried out.

To represent this in the STRIPS representation, we can construct multi-
ple actions that differ in what is true initially. For example, the action mc cs
(move clockwise from coffee shop) has a precondition {RLoc= cs} and effect
{RLoc= off}. The action mc off (move clockwise from office) has a precondition
{RLoc= off} and effect {RLoc= lab}. STRIPS thus requires four move clockwise
actions (one for each location) and four move counterclockwise actions.
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6.1.3 Feature-Based Representation of Actions

Whereas STRIPS is an action-centric representation, a feature-centric represen-
tation is more flexible, as it allows for conditional effects, and non-local effects.

A feature-based representation of actions models:

• the precondition of each action
• for each feature, the feature values in the next state as a function of the

feature values of the previous state and the action.

The feature-based representation of actions uses definite clauses to specify
the value of each variable in the state resulting from an action. The bodies of
these rules can include propositions about the action carried out and proposi-
tions about values of features in the previous state. We assume these proposi-
tions can be equalities and inequalities between features and values.

The rules have two forms:

• A causal rule specifies when a feature gets a new value.
• A frame rule specifies when a feature keeps its value.

It is useful to think of these as two separate cases: what makes the feature
change its value, and what makes it keep its value.

Example 6.7 In Example 6.1 (page 232), Rob’s location depends on its pre-
vious location and where it moved. Let RLoc′ be the variable that specifies the
location in the resulting state. The following rules specify the conditions under
which Rob is at the coffee shop:

RLoc′= cs ← RLoc= off ∧Act=mcc.
RLoc′= cs ← RLoc=mr∧Act=mc.
RLoc′= cs ← RLoc= cs∧Act �=mcc∧Act �=mc.

The first two rules are causal rules and the last rule is a frame rule.
Whether the robot has coffee in the resulting state depends on whether it

has coffee in the previous state and its action. A causal rule specifies that pick-
ing up the coffee causes the robot to have coffee in the next time step:

rhc′ ← Act= puc.

A frame rule specifies that the robot having coffee persists unless the robot
delivers the coffee:

rhc′ ← rhc∧Act �= dc.

The rule implicitly implies that the robot cannot drop the coffee, drink it or lose
it, and the coffee cannot be stolen.

The feature-based representation is more powerful than the STRIPS repre-
sentation; it can represent anything representable in STRIPS, but can also rep-
resent conditional effects. It may be more verbose because it requires explicit
frame axioms, which are implicit in the STRIPS representation.

https://doi.org/10.1017/9781009258227.009


238 6. Deterministic Planning

The mapping from STRIPS to the feature-based representation for Boolean
features is as follows. If the effect of an action act is {e1, . . . , ek}, then the STRIPS
representation is equivalent to the causal rules

e′i ← act.

for each ei that is made true by the action and the frame rules

c′ ← c∧ act.

for each condition c that does not involve a variable on the effects list. Thus
each ei that assigns a feature to be false does not result in a rule. The precondi-
tion of each action is the same in both representations. Non-Boolean features
may require multiple rules for the different values of the feature.

A conditional effect of an action depends on the value of other features.
The feature-based representation is able to specify conditional effects, whereas
STRIPS cannot represent these directly. Example 6.6 (page 236) shows how to
represent in STRIPS the action moving clockwise, where the effect depends on
the previous state, by inventing new actions. Example 6.7 (page 237) shows
how the feature-based representation can represent actions without needing to
invent those new actions by adding conditions to the rules. The feature-based
representation also allows for non-local effects, as in the following example.

Example 6.8 Suppose that all of the actions make the robot dirty, except for
the wash action that makes the robot clean. In STRIPS this would entail having
dirty as an effect of every action. In the feature-based representation, we could
add a rule that the robot is dirty after every action that is not wash:

robot dirty′ ← Act �=wash.

6.1.4 Initial States and Goals

In a typical planning problem, where the world is fully observable and deter-
ministic, the initial state is defined by specifying the value for each feature for
the initial state.

There are several different kinds of goals:

• An achievement goal is a proposition that must be true in the final state.
• A maintenance goal is a proposition that must be true in every state

through which the agent passes. These are often safety goals – the goal
of staying away from bad states.

• A transient goal is a proposition that must be achieved somewhere in the
plan.

• A resource goal is the goal of minimizing some resource in the plan. For
example, the goal may be to minimize fuel consumption or the time re-
quired to execute the plan.

In the rest of this chapter, we concentrate on achievement goals, where the goal
is a set of assigned values to features, all of which must hold in the final state.
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6.2 Forward Planning

A deterministic plan is a sequence of actions to achieve a goal from a given
starting state. A deterministic planner produces a plan given an initial world
description, a specification of the actions available to the agent, and a goal
description.

A forward planner treats the planning problem as a path planning prob-
lem in the state-space graph (page 85), which can be explored. In a state-space
graph, nodes are states and arcs correspond to actions from one state to an-
other. The arcs coming out of state s correspond to all of the legal actions that
can be carried out in that state. That is, for each state, there is an arc for each
action a whose precondition holds in state s. A plan is a path from the initial
state to a state that satisfies the achievement goal.

A forward planner searches the state-space graph from the initial state
looking for a state that satisfies a goal description. It can use any of the search
strategies described in Chapter 3.

The search graph is defined as follows:

• The nodes are states of the world, where a state is a total assignment of a
value to each feature.

• The arcs correspond to actions. In particular, an arc from node s to s′,
labeled with action act, means act is possible in s and carrying out act in
state s results in state s′.

• The start node is the initial state.
• The goal condition for the search, goal(s), is true if state s satisfies the

achievement goal.
• A path corresponds to a plan that achieves the goal.

Example 6.9 For the running example, a state can be represented as a quin-
tuple

〈Loc, RHC, SWC, MW, RHM〉
of values for the respective variables.

Figure 6.2 (page 240) shows part of the search space (without showing the
loops) starting from the state where Rob is at the coffee shop, Rob does not
have coffee, Sam wants coffee, there is mail waiting, and Rob does not have
mail. The search space is the same irrespective of the goal state.

Using a forward planner is not the same as making an explicit state-based rep-
resentation of the actions (page 233), because the relevant parts of the graph
are created dynamically from the representations of the actions.

A complete search strategy, such as A∗ with multiple-path pruning or depth-
first branch and bound, is guaranteed to find a solution. The complexity of the
search space is defined by the forward branching factor (page 84) of the graph.
The branching factor is the set of all possible actions at any state, which may
be quite large. For the simple robot delivery domain, the branching factor is
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three for the initial situation and is up to four for other situations. This com-
plexity may be reduced by finding good heuristics, so that not all of the space
is searched if there is a solution.

For a forward planner, a heuristic function for a state is an estimate of the
cost of solving the goal from the state.

Example 6.10 For the delivery robot plan, if all actions have a cost of 1, a
possible admissible heuristic function (page 101) given a particular goal, is the
maximum of:

• the distance from the robot location in the state s to the goal location, if
there is one

• the distance from the robot’s location in state s to the coffee shop plus three
(because the robot has to, at least, get to the coffee shop, pick up the coffee
and get to the office to deliver the coffee) if the goal includes SWC= false
and state s has SWC= true and RHC= false.

A state can be represented as either

(a) a complete world description, in terms of an assignment of a value to each
primitive proposition, or

(b) a path from an initial state; that is, by the sequence of actions that were used
to reach that state from the initial state. In this case, what holds in a state
is computed from the axioms that specify the effects of actions.

mc

mcc

mcc

mcc

mcc

mc

mcmc

puc
〈cs, ¬rhc, swc, mw, ¬rhm〉

〈cs, rhc, swc, mw, ¬rhm〉

〈off, ¬rhc, swc, mw, ¬rhm〉

〈mr, ¬rhc, swc, mw, ¬rhm〉

〈off, rhc, swc, mw, ¬rhm〉

〈mr, rhc, swc, mw, ¬rhm〉

〈lab, ¬rhc, swc, mw, ¬rhm〉

〈cs, ¬rhc, swc, mw, ¬rhm〉

dc

〈off, ¬rhc, ¬swc, mw, ¬rhm〉

〈lab, rhc, swc, mw, ¬rhm〉

〈cs, rhc, swc, mw, ¬rhm〉

Figure 6.2: Part of the search space for a state-space planner
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Choice (a) involves computing a whole new world description for each world
created, whereas (b) involves computing what holds in a state as needed. Al-
ternative (b) may save on space (particularly if there is a complex world de-
scription) and may allow faster creation of a new node, however it is slower
to determine what actually holds in any given world. Each representation re-
quires a way to determine whether two states are the same if cycle pruning or
multiple-path pruning are used.

State-space searching has been presented as a forward search method, but it
is also possible to search backward (page 115) from the set of states that satisfy
the goal. Typically, the goal does not fully specify a state, so there may be many
goal states that satisfy the goal. If there are multiple states, create a node, goal,
that has, as neighbors, all of the goal states, and use this as the start node for
backward search. Once goal is expanded, the frontier has as many elements as
there are goal states, which can be very large, making backward search in the
state space impractical for non-trivial domains.

6.3 Regression Planning

Regression planning involves searching backwards from a goal, asking the
question: what does the agent need to do to achieve this goal, and what needs
to hold to enable this action to solve the goal? What needs to hold before the
action becomes a subgoal, which either holds initially or becomes a new goal
to solve.

Example 6.11 If the goal is for the robot to hold coffee, and the robot isn’t
already holding coffee, then the action that achieves this is to pick up coffee.
This action requires the robot to be in the coffee shop, which becomes a new
subgoal.

If the goal, instead, is for the robot to be holding coffee in the office, then the
actions to achieve that involve moving to the office from a neighboring location,
while holding coffee. This results in the subgoal of being in a neighboring loca-
tion holding coffee. Picking up coffee cannot achieve the goal of holding coffee
in the office, because picking up coffee can only be done in the coffee shop, and
so the result of picking up coffee is that the robot is in the coffee shop, not the
office.

Regression planning is searching in the graph defined by the following:

• The nodes are subgoals, where a subgoal is an assignment to some of the
features.

• The arcs correspond to actions. In particular, an arc from node g to g′,
labeled with action act, means

• act is the last action that is carried out before subgoal g is achieved

• node g′ is a subgoal that must be true immediately before act so that
g is true immediately after act.
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• The start node is the planning goal to be achieved.
• The goal condition for the search, goal(g), is true if g is true of the initial

state.

Given a node that represents subgoal g, a neighbor of g exists for every
action act such that:

• act is possible, it is possible for act to be carried out and for g to be true
immediately after act

• act is useful, act achieves part of g.

Consider the subgoal g = {X1 = v1, . . . , Xn = vn}. In terms of the STRIPS
representation, act is useful for solving g if, for some i, Xi = vi is an effect of ac-
tion act. Immediately before act, the preconditions of act, as well as any Xk = vk
not achieved by act, must hold. Thus, the neighbor of subgoal g on the arc
labeled act is the subgoal precondition(act) ∪ (g \ effects(act)), as long as act is
possible. Action act is possible if:

• for each Xj = vj in g, there is no effect Xj = vj of act where v′j �= vj

• precondition(act) ∪ (g \ effects(act)) does not include two different assign-
ments to any feature.

Example 6.12 Suppose the goal is to ensure that Sam does not want coffee,
which is ¬swc. Therefore, the start node is {¬swc}. If this is true in the initial
state, the planner stops. If not, it chooses an action that achieves ¬swc. In this
case, there is only one such action: dc (deliver coffee). The precondition of dc is
{off , rhc}. Thus, there is one arc:

〈{¬swc}, {off , rhc}〉 labeled with dc.

Consider the node {off , rhc}. There are two actions that can achieve off , namely
mc from cs and mcc from lab. There is one action that can achieve rhc, namely
puc. However, puc has as precondition {cs,¬rhc}, but cs and off are inconsistent
(because they involve different assignments to the variable RLoc). Therefore,
puc is not a possible last action; it is not possible that, immediately after puc, the
condition {off , rhc} holds.

Figure 6.3 (page 243) shows the first three levels of the search space (with-
out cycle pruning or multiple-path pruning). Note that the search space is the
same no matter what the initial state is. The starting state has two roles: to
serve as a stopping criterion and as a source of heuristics.

If a subgoal contains a number of assignments, regression can often deter-
mine which of the assignments to achieve last, as in the following example.

Example 6.13 Suppose the goal is for Sam to not want coffee and for the
robot to have coffee: {¬swc, rhc}. The last action cannot be dc to achieve ¬swc,
because this achieves ¬rhc. The only last action must be puc to achieve rhc.
Thus, the resulting subgoal is {¬swc, cs}. Again, the last action before this sub-
goal cannot be to achieve ¬swc because this has as a precondition off , which is
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inconsistent with cs. Therefore, the second-to-last action must be a move action
to achieve cs.

In terms of the feature-based representation of actions, an action act is use-
ful if there is a causal rule that achieves Xi = vi for some i, using action act. The
neighbor of this node along the arc labeled with action act is the proposition

precondition(act) ∧ body(X1 = v1, act) ∧ · · · ∧ body(Xn = vn, act)

where body(Xi = vi, act) is the set of assignments of variables in the body of a
rule that specifies when Xi = vi is true immediately after act. There is no such
neighbor if there is no corresponding rule for some i, or if the proposition is
inconsistent (i.e., assigns different values to a variable). Note that, if multiple
rules are applicable for the same action, there will be multiple neighbors.

Search algorithms such as A∗ and branch and bound can make use of heuris-
tic knowledge. For a regression planner, the heuristic value of a node is an esti-
mate of the cost to achieve the subgoal represented by the node from the initial
state. This form of heuristic as an estimate of the cost of achieving a subgoal
from a state is the same as used in a forward planner. So, for example, the
heuristic of Example 6.10 (page 240) could also be used for a regression plan-
ner. However, an effective heuristic for a regression planner may not be very
useful for a forward planner, and vice versa (see Exercise 6.4 (page 255)).

One problem that arises in regression planning is that a subgoal may not be
achievable. Deciding whether a subgoal is achievable is often difficult to infer
from the definitions of the actions. For example, consider the restriction that an
object cannot be at two different places at the same time; sometimes this is not
explicitly represented and is only implicit in the effects of an action, and the
fact that the object is only in one position initially. It is possible to have domain
knowledge to prune nodes that can be shown to be inconsistent.

Cycle pruning and multiple-path pruning may be incorporated into a re-
gression planner. The regression planner does not have to visit exactly the

mcc

dc

mc

mccmc mcc
mcpuc

{¬swc}

{off,rhc}

{cs,rhc} {lab,rhc}

{mr,rhc} {off,rhc}

{off,rhc}

{mr,rhc}

{cs,¬rhc}

Figure 6.3: Part of the search space for a regression planner
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same node to prune the search. If the subgoal represented by a node n is a
superset of a subgoal on the path to n, node n can be pruned. Similarly for
multiple-path pruning, see Exercise 6.9 (page 256).

6.4 Planning as a CSP

In forward planning, the search is constrained by the initial state and only uses
the goal as a stopping criterion and as a source for heuristics. In regression
planning, the search is constrained by the goal and only uses the start state as
a stopping criterion and as a source for heuristics. By converting the problem
to a constraint satisfaction problem (CSP), the initial state can be used to prune
what is not reachable and the goal to prune what is not useful. The CSP will
be defined for a finite number of steps; the number of steps can be adjusted to
find the shortest plan. Any of the CSP methods from Chapter 4 can then be
used to solve the CSP and thus find a plan.

To construct a CSP from a planning problem, first choose a fixed planning
horizon, which is the number of time steps over which to plan. Suppose the
horizon is k. The CSP has the following variables:

• A state variable for each feature and each time from 0 to k. If there are
n features for a horizon of k, there are n ∗ (k + 1) state variables. The
domain of the state variable is the domain of the corresponding feature.

• An action variable, Actiont, for each time t in the range 0 to k− 1. The
domain of Actiont is the set of all possible actions. The value of Actiont
represents the action that takes the agent from the state at time t to the
state at time t + 1.

There are several types of constraints:

• A precondition constraint between a state variable at time t and the vari-
able Actiont constrains what actions are legal at time t.

• An effect constraint between Actiont and a state variable at time t + 1
constrains the values of a state variable that is a direct effect of the action.

• A frame constraint among a state variable at time t, the variable Actiont,
and the corresponding state variable at time t+ 1 specifies when the vari-
able that does not change as a result of an action has the same value be-
fore and after the action.

• An initial-state constraint constrains a variable on the initial state (at
time 0). The initial state is represented as a set of domain constraints on
the state variables at time 0.

• A goal constraint constrains the final state to be a state that satisfies the
achievement goal. These are domain constraints on the variables that
appear in the goal.

• A state constraint is a constraint among variables at the same time step.
These can include physical constraints on the state or can ensure that
states that violate maintenance goals (page 238) are forbidden. This is
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extra knowledge beyond the power of the feature-based or STRIPS rep-
resentations of the action.

The STRIPS representation gives precondition, effect, and frame constraints
for each time t as follows:

• For each Var= v in the precondition of action A, there is a precondition
constraint

Vart = v ← Actiont =A

that specifies that if the action is to be A, Vart must have value v imme-
diately before. This constraint is violated when Actiont =A and Vart �= v,
and thus is equivalent to ¬(Vart �= v∧Actiont =A).

• For each Var= v in the effect of action A, there is an effect constraint

Vart+1 = v ← Actiont =A

which is violated when Vart+1 �= v ∧ Actiont =A, and thus is equivalent
to ¬(Vart+1 �= v∧Actiont =A).

• For each Var, there is a frame constraint, where As is the set of actions
that include Var in the effect of the action:

Vart+1 =Vart ← Actiont /∈ As

which specifies that the feature Var has the same value before and after
any action that does not affect Var.

RLoc0

RHC0

SWC0

MW0

RHM0

Action0

RLoc1

RHC1

SWC1

MW1

RHM1

Action1

RLoc2

RHC2

SWC2

MW2

RHM2

State0 Action0 State1 Action1 State2

RLoci – Rob’s location
RHCi – Rob has coffee
SWCi – Sam wants coffee

MWi – Mail is waiting
RHMi – Rob has mail
Actioni – Rob’s action

Figure 6.4: The delivery robot CSP planner for a planning horizon of k = 2
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Example 6.14 Figure 6.4 (page 245) shows a CSP representation of the deliv-
ery robot example, with a planning horizon of k = 2. There are three copies of
the state variables: one at time 0, the initial state; one at time 1; and one at time
2, the final state. There are action variables for times 0 and 1.

Precondition constraints: The constraints to the left of the action variable
for each time are the precondition constraints. There is a separate constraint for
each element of the precondition of the action.

The precondition for the action deliver coffee, dc, is {RLoc= off , rhc}; the
robot has to be in the office and it must have coffee. Thus there are two precon-
dition constraints for delivers coffee:

RLoct = office ← Actiont = dc
RHCt = true ← Actiont = dc.

Effect constraints: The effect of delivering coffee (dc) is {¬rhc,¬swc}. There-
fore there are two effect constraints:

RHCt+1 = false ← Actiont = dc
SWCt+1 = false ← Actiont = dc.

Frame constraints: Rob has mail (rhm) is not one of the effects of delivering
coffee (dc). Thus there is a frame constraint:

RHMt+1 =RHMt ← Actt = dc

which is violated when RHMt+1 �=RHMt ∧Actt = dc.

Example 6.15 Consider finding a plan to get Sam coffee, where initially, Sam
wants coffee but the robot does not have coffee. This can be represented as
initial-state constraints: SWC0 = true and RHC0 = false.

With a planning horizon of 2, the goal is represented as the domain con-
straint SWC2 = false, and there is no solution.

With a planning horizon of 3, the goal is represented as the domain con-
straint SWC3 = false. This has many solutions, all with RLoc0 = cs (the robot has
to start in the coffee shop), Action0 = puc (the robot has to pick up coffee ini-
tially), Action1 =mc (the robot has to move to the office), and Action2 = dc (the
robot has to deliver coffee at time 2).

The CSP representation assumes a fixed planning horizon (i.e., a fixed num-
ber of steps). To find a plan over any number of steps, the algorithm can be run
for a horizon of k = 0, 1, 2, . . . until a solution is found. For the stochastic local
search algorithm, it is possible to search multiple horizons at once, searching
for all horizons, k from 0 to n, and allowing n to vary slowly. When solving
the CSP using arc consistency and domain splitting, it is sometimes possible to
determine that trying a longer plan will not help. That is, by analyzing why no
solution exists for a horizon of n steps, it may be possible to show that there
can be no plan for any length greater than n. This will enable the planner to
halt when there is no plan. See Exercise 6.10 (page 257).

https://doi.org/10.1017/9781009258227.009


6.4. Planning as a CSP 247

6.4.1 Action Features

So far we have assumed that actions are atomic and that an agent can only do
one action at any time. For the CSP representation, it can be useful to describe
the actions in terms of features – to have a factored representation of actions
as well as a factored representation of states. The features representing actions
are called action features and the features representing states are called state
features. The action features can be considered as actions in themselves that
are carried out in the same time step.

In this case, there can be an extra set of constraints called action constraints
to specify which action features cannot co-occur. These are sometimes called
mutual exclusion or mutex constraints.

Example 6.16 Another way to model the actions of Example 6.1 (page 232) is
that, at each step, Rob gets to choose

• whether it will pick up coffee – let PUC be a Boolean variable that is true
when Rob picks up coffee

• whether it will deliver coffee – let DelC be a Boolean variable that is true
when Rob delivers coffee

• whether it will pick up mail – let PUM be a Boolean variable that is true
when Rob picks up mail

• whether it will deliver mail – let DelM be a Boolean variable that is true
when Rob delivers mail

• whether it moves. Let Move be a variable with domain {mc, mcc, nm} that
specifies whether Rob moves clockwise, moves counterclockwise, or does
not move (nm means “not move”).

Thus the agent can be seen as doing more than one action in a single stage. For
some of the actions at the same stage, the robot can do them in any order, such
as delivering coffee and delivering mail. Some of the actions at the same stage
need to be carried out in a particular order, for example, the agent must move
after the other actions.

Example 6.17 Consider finding a plan to get Sam coffee, where initially,
Sam wants coffee but the robot does not have coffee. The initial state can be
represented as two domain constraints: SWC0 = true and RHC0 = false. The
goal is that Sam no longer wants coffee, SWCk = false.

With a planning horizon of 2, the CSP is shown in Figure 6.5 (page 248). The
goal is represented as the domain constraint SWC2 = false, there is a solution
RLoc0 = cs (the robot has to start in the coffee shop), PUC0 = true (the robot has
to pick up coffee initially), Move0 =mc (the robot has to move to the office), and
DC1 = true (the robot has to deliver coffee at time 1).

Note that in the representation without factored actions, the problem can-
not be solved with a horizon of 2; it requires a horizon of 3, as there are no
concurrent actions.
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6.5 Partial-Order Planning

The forward and regression planners enforce a total ordering on actions at all
stages of the planning process. The CSP planner commits to the particular
time that the action will be carried out. This means that those planners have to
commit to an ordering of actions when adding them to a partial plan, even if
there is no particular reason to put one action before another.

A partial-order planner maintains a partial ordering between actions and
only commits to an ordering between actions when forced. This is sometimes
also called a nonlinear planner, which is a misnomer because such planners
often produce a linear plan.

Because the same action may be used a number of times in the same plan,
for example, the robot may need to move clockwise a number of times, the
partial ordering will be between action instances, where an action instance is
just a pair of an action and an integer, which we will write as act#i. By the
preconditions and effects of the action instance, we mean the precondition and
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RLoci – Rob’s location
RHCi – Rob has coffee
SWCi – Sam wants coffee
MWi – Mail is waiting
RHMi – Rob has mail

Movei – Rob’s move action
PUCi – Rob picks up coffee
DelC – Rob delivers coffee
PUMi – Rob picks up mail
DelMi – Rob delivers mail

Figure 6.5: The delivery robot CSP planner with factored actions
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the effects of the action.
A partial ordering is a binary relation that is transitive and asymmetric.

A partial-order plan is a set of action instances together with a partial order-
ing between them, representing a “before” relation on action instances. Write
act0 < act1 if action instance act0 is before action instance act1 in the partial or-
der. This means that the action of act0 must occur before the action of act1. The
aim of the planner is to produce a partial ordering of the action instances so
that any total ordering that is consistent with the partial ordering will solve the
goal from the initial state.

There are two special action instances, start, that achieves the relations that
are true in the initial state, and finish, whose precondition is the goal to be
solved. Every other action instance is after start and before finish in the partial
ordering. The use of these as action instances means that the algorithm does
not require special cases for the initial situation and for the goals. When the
preconditions of finish are achieved, the goal is solved.

Any action instance, other than start or finish, will be in a partial-order plan
to achieve a precondition of an action instance in the plan. Each precondition
P of an action instance act1 in the plan is either true in the initial state, and
so achieved by start, or there will be an action instance act0 in the plan that
achieves P. The action instance act0 that achieves P must be before act1; that is,
act0 < act1. To be correct, the algorithm must also ensure that nothing makes P
false in between act0 and act1.

A causal link is a triple 〈act0, P, act1〉, where act0 and act1 are action in-
stances and P is a Var= val assignment that is in the precondition of act1, and
in the effect of act0. This means that act0 makes P hold for act1. With this causal
link, any other action instance that makes P false must either be before act0 or
after act1.

Informally, a partial-order planner works as follows. Begin with the action
instances start and finish and the partial order start < finish. The planner main-
tains an agenda that is a set of 〈P, A〉 pairs, where A is an action instance in
the plan and P is a variable-value assignment that is a precondition of A that
remains to be achieved. Initially, the agenda contains pairs 〈G, finish〉, where G
is an assignment that must be true in the goal state.

At each stage in the planning process, a pair 〈G, act1〉 is chosen from the
agenda, where P is in the precondition for action instance act1. Then an action
instance, act0, is chosen to achieve P. That action instance is either already in
the plan – it could be the start action, for example – or it is a new action instance
that is added to the plan. Action instance act0 must happen before act1 in the
partial order. The planner adds a causal link that records that act0 achieves P
for action act1. Any action in the plan that makes P false must happen either
before act0 or after act1. If act0 is a new action, its preconditions are added to
the agenda, and the process continues until the agenda is empty.

The algorithm Partial order planner is given in Figure 6.6 (page 251). This
is a non-deterministic procedure. The “choose” and the “either . . . or . . . ” form
choices that must be searched over. There are two choices that require search:
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• which action is chosen to achieve P
• whether an action instance that deletes P happens before act0 or after act1.

The function add const(A0 < A1, Constraints) returns the constraints formed
by adding the constraint A0 < A1 to Constraints, and it fails if A0 < A1 is in-
compatible with Constraints. There are many ways this function can be imple-
mented. See Exercise 6.11.

The function protect(〈A0, G, A1〉 , A) checks whether A �= A0, A �= A1, and
the effect of A is inconsistent with G. If so, either A < A0 is added to the
set of constraints or A1 < A is added to the set of constraints. This is a non-
deterministic choice that is searched over.

Example 6.18 Consider the goal of Sam not wanting coffee and no mail wait-
ing (i.e., ¬swc ∧ ¬mw), where in the initial state Rob is in the lab, Sam wants
coffee, Rob does not have coffee, there is mail waiting, and Rob does not have
mail, i.e., RLoc= lab, swc, ¬rhc, mw, ¬rhm.

In the following, instances of action Act are written as Act#n, where n is a
unique integer.

Initially, the agenda is

{〈¬swc, finish〉 , 〈¬mw, finish〉}.

Suppose 〈¬swc, finish〉 is chosen and removed from the agenda. One action
can achieve ¬swc, namely deliver coffee, dc, with preconditions off and rhc. So
it inserts an instance, say dc#6, into the plan. After the first time through the
repeat loop, Agenda contains

{〈off , dc#6〉 , 〈rhc, dc#6〉 , 〈¬mw, finish〉}.

At this stage, the value of Constraints is {start < finish, start < dc#6, dc#6 <
finish}. There is one causal link, 〈dc#6,¬swc, finish〉. This causal link means that
no action that undoes ¬swc is allowed to happen between dc#6 and finish.

Suppose 〈¬mw, finish〉 is chosen from the agenda. One action can achieve
this, pum, with precondition {mw, RLoc=mr}. The algorithm constructs a new
action instance, say pum#7. The causal link 〈pum#7,¬mw, finish〉 is added to the
set of causal links; 〈mw, pum#7〉 and 〈mr, pum#7〉 are added to the agenda.

Suppose 〈mw, pum#7〉 is chosen from the agenda. The action start achieves
mw, because mw is true initially. The causal link 〈start, mw, pum#7〉 is added to
the set of causal links. Nothing is added to the agenda.

At this stage, there is no ordering imposed between dc#6 and pum#7.
Suppose 〈off , dc#6〉 is removed from the agenda. There are two actions that

can achieve off : mc cs with preconditions cs, and mcc lab with preconditions
lab. The algorithm searches over these choices. Suppose it chooses the action
instance mc cs#9. The causal link 〈mc cs#9, off , dc#6〉 is added.

The first violation of a causal link occurs when a move action is used to
achieve 〈mr, pum#7〉. This action violates the causal link 〈mc cs#9, off , dc#6〉, and
so must happen after dc#6 (the robot goes to the mail room after delivering
coffee) or before mc cs#9.

https://doi.org/10.1017/9781009258227.009


6.5. Partial-Order Planning 251

1: non-deterministic procedure Partial order planner(As, Gs)
2: Inputs
3: As: possible actions
4: Gs: goal, a set of variable-value assignments to achieve
5: Output
6: linear plan to achieve Gs
7: Local
8: Agenda: set of 〈P, A〉 pairs where P is an atom and A an action in-

stance
9: Actions: set of action instances in the current plan

10: Constraints: set of temporal constraints on action instances
11: CausalLinks: set of 〈act0, P, act1〉 triples
12: Agenda := {〈G, finish〉 : G ∈ Gs}
13: Actions := {start, finish}
14: Constraints := {start < finish}
15: CausalLinks := {}
16: repeat
17: select and remove 〈G, act1#i〉 from Agenda
18: either
19: choose act0#j ∈ Actions such that act0 achieves G
20: Or
21: choose act0 ∈ As such that act0 achieves G
22: select unique integer j
23: Actions := Actions∪ {act0#j}
24: Constraints := add const(start < act0#j, Constraints)
25: for each CL ∈ CausalLinks do
26: Constraints := protect(CL, act0#j, Constraints)
27: Agenda := Agenda∪ {〈P, act0#j〉 : P is a precondition of act0}
28: Constraints := add const(act0#j < act1#i, Constraints)
29: new cl := 〈acto#j, G, act1#i〉
30: CausalLinks := CausalLinks∪ {new cl}
31: for each A ∈ Actions do
32: Constraints := protect(new cl, A, Constraints)
33: until Agenda = {}
34: return total ordering of Actions consistent with Constraints

Figure 6.6: Partial-order planner
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Eventually, it finds a plan of action instances, such as

start; mc lab#15; pum#7; mc mr#40; puc#11; mc cs#9; dc#6; finish.

This is the only total ordering consistent with the partial ordering.

A partial-order planner works particularly well when no ordering of ac-
tions can achieve a goal, as it does not need to search over all permutations
of the actions. It also works well when many orderings can solve the goal, in
which case it can find a flexible plan for the robot.

6.6 Social Impact

The spectacular growth of the video game sector has major economic, techno-
logical, social, and psychological impacts. The commercial video game indus-
try generates more revenue than the movie industry and the music industry
combined. In 2022, the revenue from video games was estimated to be about
$200 billion. In commercial video games, the non-player characters (NPCs)
have to generate and execute a wide variety of believable behaviors respond-
ing to other agents’ behaviors and changes in the environment. The simplest
form of planning is path planning in a spatial environment. A∗ (page 102)
for path planning was widely adopted in video games. Autonomous NPCs
have used a variety of representations of the set of possible behaviors. Early
video games typically used finite state machines (page 58) with explicitly pro-
grammed belief-state transition functions and command functions. Behavior
trees specify complex behaviors as tree structures of tasks with interior nodes
represent the agent’s higher-level tasks and leaf nodes corresponding to prim-
itive actions, implementing a form of hierarchical control (page 58). Behavior
trees allow for more expressive representations but they require pre-specifying
all possible behavior explicitly.

Planners are now increasingly being used in video games instead of finite
state machines or behavior trees. The advantage of planners is that they al-
low the agent to look further ahead in time, and they also allow much richer
behavioral repertoires. F.E.A.R., published in 2005, was one of the first games
to use planning successfully. Its planner used a simplified STRIPS approach,
known as goal-oriented action planning, GOAP. The successful use of GOAP
in F.E.A.R. inspired the use of STRIPS-like planners in many other games, such
as Tomb Raider (2013) and Middle-Earth: Shadow of Mordor (2014).

Another successful AI planning approach is the hierarchical task network
(HTN). The HTN model is a generalization of the STRIPS approach. An HTN
provides a set of tasks, made up of primitive tasks (similar to the actions of
STRIPS), compound tasks composed of simpler tasks, and goal tasks (general-
izations of STRIPS goals). Killzone 2, published in 2009, was the first commer-
cial video game built using the HTN approach to planning. Other games built
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subsequently using HTN include Transformers: Fall of Cybertron (2012, 2016)
and Dying Light (2015).

The planners described here assume deterministic actions and complete
knowledge of the world. Relaxing those restrictions requires the approaches
to planning and acting with uncertainty described in Chapters 12, 13, and 14.
Many of those techniques are used in modern video games.

6.7 Review

The following are the main points you should have learned from this chapter:

• Planning is the process of choosing a sequence of actions to achieve a
goal.

• An action is a partial function from a state to a state. Two representations
for actions that exploit structure in states are the STRIPS representation,
which is an action-centric representation, and the feature-based represen-
tation of actions, which is a feature-centric representation.

• Planning algorithms can be used to convert a planning problem into a
search problem.

• A forward planner searches in the state space from the initial state to a
goal state.

• A regression planner searches backwards from the goal, where each node
in the search space is a subgoal to be achieved.

• A planning problem for a fixed horizon can be represented as a CSP, and
any of the CSP algorithms can be used to solve it. The planner may need
to search over horizons to find a plan.

• A partial-order planner does not enforce an ordering between actions un-
less there is a reason to make such an ordering.

• The video game industry has successfully exploited AI planning tech-
niques.

6.8 References and Further Reading

There is much ongoing research into how to plan sequences of actions. Geffner
and Bonet [2013] and Yang [1997] present overviews of automated planning.

The STRIPS representation was developed by Fikes and Nilsson [1971].
The Planning Domain Definition Language (PDDL) [Haslum et al., 2019] is
a language that extends STRIPS in various ways, including conditional effects
(when the effect only occurs when some condition holds), constraints on inter-
mediate states, and explicit time durations. PDDL and its extensions have been
used for international planning competitions.

Forward planning with good heuristics [Bacchus and Kabanza, 1996] is the
basis for the most efficient algorithms [Geffner and Bonet, 2013]. (See Exercise
6.4 (page 255).)
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Regression planning was pioneered by Waldinger [1977]. The use of weak-
est preconditions is based on the work of Dijkstra [1976], where it was used to
define the semantics of imperative programming languages. This should not
be too surprising because the commands of an imperative language are actions
that change the state of the computer.

Planning as CSP is based on Graphplan [Blum and Furst, 1997] and Satplan
[Kautz and Selman, 1996] and is also investigated by Lopez and Bacchus [2003]
and van Beek and Chen [1999]. Bryce and Kambhampati [2007] survey the
field.

Partial-order planning was introduced in Sacerdoti’s [1975] NOAH and fol-
lowed up in Tate’s [1977] NONLIN system, Chapman’s [1987] TWEAK algo-
rithm, and McAllester and Rosenblitt’s [1991] systematic nonlinear planning
(SNLP) algorithm. See Weld [1994] for an overview of partial-order planning
and Kambhampati et al. [1995] for a comparison of the algorithms. The version
presented here is based on SNLP.

Wilkins [1988] discusses practical issues in planning. Weld [1999], Mc-
Dermott and Hendler [1995], and Nau [2007] and associated papers provide
overviews.

Neufeld et al. [2019] provide a comprehensive survey of the use of planners
in video games. Orkin [2006] describes the GOAP model and its use in F.E.A.R.
The HTN approach is described by Ghallab et al. [2004]. Yannakakis and To-
gelius [2018] provide an overview of the roles of AI in game development, in-
cluding planning. Colledanchise and Ögren [2018] describe behavior trees and
their relationship to the subsumption architecture developed by Brooks [1986].

Planning research is published at general AI journals and conferences and
specialized conferences, most notably the International Conference on Plan-
ning and Scheduling (ICAPS); https://www.icaps-conference.org.

6.9 Exercises

Exercise 6.1 Consider the planning domain in Figure 6.1 (page 232).

(a) Give the STRIPS representations for the pick up mail (pum) and deliver mail
(dm) actions.

(b) Give the feature-based representation of the MW and RHM features.

Exercise 6.2 Change the representation of the delivery robot world of Example
6.1 (page 232) so that the robot cannot carry both mail and coffee at the same time.
Test it on an example that gives a different solution than the original representa-
tion.

Exercise 6.3 Suppose the robot cannot carry both mail and coffee at the same time,
but the robot can carry a box in which it can place objects (so it can carry the box
and the box can hold the mail and the coffee). Suppose boxes can be picked up
and dropped off at any location. Give the STRIPS representation for the resulting
problem and test it on the problem of starting from the lab with mail waiting; the
robot must deliver coffee and the mail to Sam’s office.

https://www.icaps-conference.org
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Exercise 6.4 This exercise involves designing a heuristic function that is better
than the heuristic of Example 6.10 (page 240).

(a) For each of the forward and regression planners, test how effective each of
the individual parts of the heuristic for Example 6.10 is, as well as the maxi-
mum. Explain why the results you observed occurred.

(b) Give an admissible heuristic function for the forward planner that expands
fewer nodes than the forward planner does with that heuristic.

(c) Give an admissible heuristic function for the regression planner that ex-
pands fewer nodes than the regression planner does with that heuristic.

AIPython (aipython.org) has an an implementation of the heuristic that can be
modified.

Exercise 6.5 Suppose you must solve planning problems for cleaning a house.
Various rooms can be dusted (making the room dust-free) or swept (making the
room have a clean floor), but the robot can only sweep or dust a room if it is in that
room. Sweeping causes a room to become dusty (i.e., not dust-free). The robot can
only dust a room if the dustcloth is clean; but dusting rooms that are extra-dusty,
like the garage, cause the dustcloth to become dirty. The robot can move directly
from any room to any other room.

Assume there are only two rooms, the garage – which, if it is dusty, is extra-
dusty – and the living room – which is not extra-dusty. Assume the following
features:

• Lr dusty is true when the living room is dusty.
• Gar dusty is true when the garage is dusty.
• Lr dirty floor is true when the living room floor is dirty.
• Gar dirty floor is true when the garage floor is dirty.
• Dustcloth clean is true when the dust cloth is clean.
• Rob loc is the location of the robot, with values {garage, lr}.

Suppose the robot can do one of the following actions at any time:

• move: move to the other room
• dust: dust the room the robot is in, as long as the room is dusty and the

dustcloth is clean
• sweep: sweep the floor the robot is in.

(a) Give the STRIPS representation for dust. [Hint: Because STRIPS cannot rep-
resent conditional effects, you may need to use two separate actions that
depend on the robot’s location.]

(b) Give the feature-based representation for lr dusty.
(c) Suppose that the initial state is that the robot is in the garage, both rooms

are dusty but have clean floors and the goal is to have both rooms not dusty.
Draw the first two levels (with two actions, so the root has children and
grandchildren) of a forward planner with multiple-path pruning, showing
the actions (but do not give the state descriptions). Show explicitly what
nodes are pruned through multiple-path pruning.

(d) Pick two of the states at the second level (after two actions) and show what
is true in those states.
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(e) Suppose that the initial state is that the robot is in the garage, both rooms are
dusty but have clean floors, and the goal is to have both rooms not dusty.
Draw the first two levels (with two actions, so the root has children and
grandchildren) of a regression planner, showing the actions but do not show
what the nodes represent.

(f) Pick two of the nodes at the second level (after two actions) and show what
the subgoal is at those nodes.

(g) Draw the CSP for a planning horizon of two. Describe each constraint in
English by specifying which values are (in)consistent.

(h) In designing the actions, the above description made one choice of what to
include as preconditions of the actions. Consider the choices of whether to
have the room is dusty as a precondition for cleaning the room, and whether
to have the floor is dirty as a precondition for sweeping. Do these choices
make a difference to (i) the shortest plan, (ii) the size of the search space for a
forward planner, or (iii) the size of the search space for a regression planner?

Exercise 6.6 Given a STRIPS representation for actions a1 and a2, define the
STRIPS representation for the composite action a1; a2, which means that the agent
does a1 then does a2.

(a) What are the effects for this composite action?
(b) When is the composite action impossible? (That is, when is it impossible for

a2 to be immediately after a1?)
(c) Assuming the action is not impossible, what are the preconditions for this

composite action?
(d) Using the delivery robot domain of Example 6.1 (page 232), give the STRIPS

representation for the composite action puc; mc.
(e) Give the STRIPS representation for the composite action puc; mc; dc made up

of three primitive actions.
(f) Give the STRIPS representation for the composite action mcc; puc; mc; dc made

up of four primitive actions.

Exercise 6.7 In a forward planner, a state can be represented in terms of the
sequence of actions that lead to that state.

(a) Explain how to check whether the precondition of an action is satisfied,
given such a representation.

(b) Explain how to do cycle pruning (page 109) in such a representation. You
can assume that all of the states are legal. (Some other program has ensured
that the preconditions hold.)

[Hint: Consider the composite action (Exercise 6.6) consisting of the first k or the
last k actions at any stage.]

Exercise 6.8 For the delivery robot domain, give a non-trivial admissible heuristic
function for the regression planner. A non-trivial heuristic function is non-zero for
some nodes, and always non-negative. Does it satisfy the monotone restriction?

Exercise 6.9 Explain how multiple-path pruning can be incorporated into a re-
gression planner. When can a node be pruned? See the discussion, page 244.
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Exercise 6.10 Give a condition for the CSP planner that, when arc consistency
with search fails at some horizon, implies there can be no solutions for any longer
horizon. [Hint: Think about a very long horizon where the forward search and the
backward search do not influence each other.] Implement it.

Exercise 6.11 To implement the function add constraint(A0 < A1, Constraints)
used in the partial-order planner, you have to choose a representation for a par-
tial ordering. Implement the following as different representations for a partial
ordering:

(a) Represent a partial ordering as a set of less-than relations that entail the or-
dering – for example, as the list [1 < 2, 2 < 4, 1 < 3, 3 < 4, 4 < 5].

(b) Represent a partial ordering as the set of all the less-than relations entailed
by the ordering – for example, as the list [1 < 2, 2 < 4, 1 < 4, 1 < 3, 3 <
4, 1 < 5, 2 < 5, 3 < 5, 4 < 5].

(c) Represent a partial ordering as a set of pairs 〈E, L〉, where E is an element
in the partial ordering and L is the list of all elements that are after E in the
partial ordering. For every E, there exists a unique term of the form 〈E, L〉.
An example of such a representation is [〈1, [2, 3, 4, 5]〉, 〈2, [4, 5]〉, 〈3, [4, 5]〉,
〈4, [5]〉, 〈5, [ ])〉.

For each of these representations, how big can the partial ordering be? How easy
is it to check for consistency of a new ordering? How easy is it to add a new
less-than ordering constraint? Which do you think would be the most efficient
representation? Can you think of a better representation?
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Part III

Learning and Reasoning
with Uncertainty

How can an agent learn and reason, relaxing the assumption that it
knows what is in the world?
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Chapter 7

Supervised Machine Learning

Who so neglects learning in his youth, loses the past and is dead for the
future.

– Euripides (484 BCE – 406 BCE), Phrixus, Frag. 927

From 2016 to 2020, the entire machine learning and data science industry
has been dominated by two approaches: deep learning and gradient boosted
trees. Specifically, gradient boosted trees is used for problems where struc-
tured data is available, whereas deep learning is used for perceptual prob-
lems such as image classification. . . . These are the two techniques you
should be most familiar with in order to be successful in applied machine
learning today.

– Chollet [2021, pp. 19,20]

Learning is the ability of an agent to improve its behavior based on experience.
This could mean the following:

• The range of behaviors is expanded; the agent can do more.
• The accuracy on tasks is improved; the agent can do things better.
• The speed is improved; the agent can do things faster.

The most common goal of machine learning is for an agent to understand
the world using data. The aim is not to model the data, but to model the world
that generates the data. Having better models of the world allows the agent to
make better decisions and to carry out better actions.

Learning is an important aspect of acting intelligently (page 4). As Euripi-
des pointed out, learning involves an agent remembering its past in a way that
is useful for its future. Learning is one of the fundamental skills of an intel-
ligent agent; however, it is usually not an end in itself. For example, a bank
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may learn from who has defaulted on a loan, in order to make decisions about
who to give a loan to, but the bank may not want future decisions to be based
purely on the inequities of the past. A self-driving car may learn to recognize
people and faces in order to drive safely and recognize its owners, but the cost
of being wrong – running over a person or opening for the wrong person – can
be very high. For a smart watch predicting the activity, location, or health of
a person, if it is just suggesting measuring activity or tracking a run, a good
guess might be adequate; however, if it is calling an ambulance, it needs to be
accurate and reliable.

This chapter considers general issues of learning and the problem of mak-
ing a prediction as supervised learning: given a collection of training examples
made up of input–output pairs, predict the output of a new example where
only the inputs are given. What we call examples are sometimes called sam-
ples. The output – what is being predicted – is often called the target. Two
predominant base algorithms from which other more sophisticated algorithms
are built are presented. Section 7.5 presents more sophisticated models based
on these, including one of the dominant approaches in Chollet’s quote above.
The other dominant approach is presented in the next chapter. Future chapters
include other learning paradigms, as well as how to reason and make decisions
with learned models.

7.1 Learning Issues

The following components are part of any learning problem:

Task The behavior or task that is being improved.
Data The experiences that are used to improve performance in the task, either

as a bag of examples or as a temporal sequence of examples. A bag is a
set that allows for repeated elements, also known as a multiset. A bag is
used when the order of the examples conveys no information.

Measure of improvement How the improvement is measured – for example,
new skills that were not present initially, increasing accuracy in predic-
tion, or improved speed.

Consider the agent internals of Figure 2.10 (page 68). The problem of learn-
ing is to take in prior knowledge and data (including the experiences of the
agent) and to create an internal representation (a model) that is used by the
agent as it acts.

Learning techniques face the following issues:

Task Virtually any task for which an agent can get data or experiences might
be learned. The most commonly studied learning task is supervised
learning: given some input features, some target output features, and
a set of training examples where values of the input features and tar-
get features are specified, predict the value of each target feature for new
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examples given their values on the input features. This is called classi-
fication when the target features are discrete and regression when the
target features are continuous. Other variants include structured pre-
diction where the target is a more complex data structure, such as the
constituents and shape of a molecule.

Other learning tasks include learning when the examples do not have
targets defined (unsupervised learning), learning what to do based on
rewards and punishments (reinforcement learning), and learning richer
representations such as graphs (graph learning) or programs (inductive
programming). These are considered in later chapters.

Feedback Learning tasks can be characterized by the feedback given to the
learner. In supervised learning, the value of what should be learned is
specified for each training example. Unsupervised learning occurs when
no targets are given and the learner must discover clusters and regular-
ities in the data. Feedback often falls between these extremes, such as
in reinforcement learning, where the feedback in terms of rewards and
punishments can occur after a sequence of actions.

Measuring success Learning is defined in terms of improving performance
based on some measure. To know whether an agent has learned, you
need a measure of success. The measure is usually not how well the
agent performs on the training data, but how well the agent performs for
new data.

In classification, being able to correctly classify all training examples
is not the goal. For example, consider predicting a Boolean (true/false)
feature based on a set of examples. Suppose that there were two agents P
and N. Agent P claims that all of the negative examples seen are the only
negative examples and that every other instance is positive. Agent N
claims that the positive examples in the training set are the only positive
examples and that every other instance is negative. Both agents correctly
classify every example in the training set but disagree on every other ex-
ample. Success in learning should not be judged on correctly classifying
the training set but on being able to correctly classify unseen examples.
Thus, the learner must generalize: go beyond the specific given examples
to classify unseen examples.

To measure a prediction, a loss (or error) function specifies how close
the prediction is to the correct answer; utility (page 518) provides a mea-
sure of preferences, often in terms of rewards (page 552), when there is
no correct answer.

A standard way to evaluate a learning method is to divide the given
examples into training examples and test examples. A predictive model
is built using the training examples, and the predictions of the model are
measured on the test examples. To evaluate the method properly, the test
cases should not be used in any way for the training. Using a test set
is only an approximation of what is wanted; the real measure is its per-
formance on future tasks. In deployment of a model in an application –
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using a prediction to make decisions – an explicit test set is not usually
required. A learned model is applied to new examples, and when the
ground truth of these is eventually determined, the model can be evalu-
ated using those examples in an ongoing manner. It is typical to relearn
on all of the data, including the old data and the new data. In some appli-
cations, it is appropriate to remove old data, particularly when the world
is changing or the quality of data is improving.

Bias The tendency to prefer one hypothesis over another is called a bias. Con-
sider the agents N and P introduced earlier. Saying that a hypothesis is
better than the hypotheses of N or P is not something that is obtained
from the data – both N and P accurately predict all of the data given – but
is something external to the data. Without a bias, an agent cannot make
any predictions on unseen examples (see Section 7.6, page 315).

The set of all assumptions that enable generalization to unseen ex-
amples is called the inductive bias. What constitutes a good bias is an
empirical question about which biases work best in practice; we do not
imagine that either P’s or N’s biases work well in practice.

Representation For an agent to use its experiences, the experiences must af-
fect the agent’s internal representation. This internal representation could
be the raw experiences themselves, but it is typically a model, a compact
representation that generalizes the data. The choice of the possible repre-
sentations for models provides a representation bias – only models that
can be represented are considered. The preference for one model over
another is called a preference bias.

There are two principles that are at odds in choosing a representation:

• The richer the representation, the more useful it is for subsequent problem
solving. For an agent to learn a way to solve a task, the representation
must be rich enough to express a way to solve the task.

• The richer the representation, the more difficult it is to learn. A very rich
representation is difficult to learn because it requires a great deal of
data, and often many different hypotheses are consistent with the
data.

The representations required for intelligence are a compromise among
many desiderata. The ability to learn the representation is one of them,
but it is not the only one.

Much of machine learning is studied in the context of particular rep-
resentations such as decision trees, linear models, or neural networks.

Learning as search Given a class of representations and a bias, the problem
of learning can be reduced to one of search. Learning becomes a search
through the space of possible models, trying to find a model or mod-
els that best fit the data given the bias. The search spaces are typically
prohibitively large for systematic search, except for the simplest of cases.
Nearly all of the search techniques used in machine learning can be seen
as forms of local search (page 146) through a space of representations.
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The definition of the learning algorithm then becomes one of defining the
search space, the evaluation function, and the search method. A search
bias occurs when the search only returns one of the many possible mod-
els that could be found.

Imperfect data In most real-world situations, data are not perfect. There can
be noise where the observed features are not adequate to predict the clas-
sification or when the process generating the data is inherently noisy,
missing data where the observations of some of the features for some
or all of the examples are missing, and errors where some of the features
have been assigned wrong values. One of the important properties of a
learning algorithm is its ability to handle imperfect data in all of its forms.

Interpolation and extrapolation For domains with a natural interpretation of
“between,” such as where the features are about time or space, interpo-
lation involves making a prediction between cases for which there are
examples. Extrapolation involves making a prediction that goes beyond
the seen examples. Extrapolation is usually less accurate than interpola-
tion. For example, in ancient astronomy, the Ptolemaic system developed
about 150 CE made detailed models of the movement of the solar system
in terms of epicycles (cycles within cycles). The parameters for the mod-
els could be made to fit the data very well and they were very good at
interpolation; however, the models were very poor at extrapolation. As
another example, it is often easy to predict a stock price on a certain day
given data about the prices on the days before and the days after that day.
It is very difficult to predict the price that a stock will be tomorrow given
historical data, although it would be very profitable to do so. An agent
must be careful if its test cases mostly involve interpolating between data
points, but the learned model is used for extrapolation.

Curse of dimensionality When examples are described in terms of features,
each feature can be seen as a dimension. As the dimensionality increases,
the number of possible examples grows exponentially, and even large
datasets can be very sparse in large dimensions. For example, a single
frame in a 4k video has about 8 million pixels, where each pixel value can
be considered a dimension. The space is so large that it is extremely un-
likely that any example is between the other examples in all dimensions
of the multidimensional space. Any one of the dimensions is often not
important; for example, changing just one of the pixels in an image does
not change what the image is. In predicting diseases based on electronic
health records, with images, text, laboratory results, and other informa-
tion, the number of dimensions varies for different patients and can be
enormous.

Online and offline In offline learning, all of the training examples are avail-
able to an agent before it needs to act. In online learning, training ex-
amples arrive as the agent is acting. An agent that learns online requires
some representation of its previously seen examples before it has seen
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all of its examples. As new examples are observed, the agent must up-
date its representation. Typically, an agent never sees all of the examples
it could possibly see, and often cannot store all of the examples seen.
Active learning is a form of online learning in which the agent acts to
acquire new useful examples from which to learn. In active learning, the
agent reasons about which examples would be most useful to learn from
and acts to collect those examples.

7.2 Supervised Learning Foundations

A common learning task is supervised learning, where there is a set of exam-
ples, described by features, which are partitioned into input features and target
features. The aim is to predict the values of the target features from the values
of the input features for each possible example.

A feature is a function from examples into a value. If e is an example, and F
is a feature, F(e) is the value of feature F for example e. The domain of a feature
is the set of values it can return. Note that this is the range of the function
defining the feature, but becomes the domain of a function that takes features
and makes predictions. A Boolean feature is one with domain {false, true}.

A feature has exactly one value for each example. Suppose an example is
a news article. The topic of an article can be a feature, with domain the set of
possible topics (perhaps including “none” if it is possible there is no topic), if
each article has a unique topic. If each article can have multiple topics, topic
would not be a feature. Instead, there could be a Boolean feature for each
possible topic. Alternatively, there could be a feature that maps each news
article to the set of topics it covers.

In a supervised learning task, the learner is given

• a set of input features, X1, . . . , Xm

• a set of target features, Y1, . . . , Yk

• a bag (page 262) of training examples, where each example e is a pair
(xe, ye), where xe = (X1(e), . . . , Xm(e)) is a tuple of a value for each input
feature and ye = (Y1(e), . . . , Yk(e)) is a tuple of a value for each target
feature.

The output is a predictor, a function that predicts Ys from Xs. The aim is to
predict the values of the target features for examples that the learner has not
seen. For this book, consider only a single target feature, except where explic-
itly noted.

Supervised learning is called regression when the domain of the target is
(a subset of) the real numbers. It is called classification when the domain
of the target is a fixed finite set, for example, the domain could be Boolean
{false, true}, clothing sizes {XS, S, M, L, XL, . . . }, or countries of birth (coun-
tries, or None for those people who were born outside of any country). Other
forms of supervised learning include relational learning, such as predicting
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a person’s birth mother when test examples might be from a different popu-
lation of people from training examples, and structured prediction, such as
predicting the shape of a molecule.

Some examples of applications of supervised learning are

• a smart watch predicting the activity of the wearer (e.g., sleeping, sitting,
walking, running, driving) from their heart rate and movement

• predicting how likely a location will be to flood in the next decade or
century, based on the local topography, climate, geology, and land use,
which might be used for insurance or for a decision about whether to
build in the location

• predicting the words that someone may have hand-written in a phone or
tablet based on their writing, perhaps taking the order of the strokes into
account

• in a machine translation system, predicting Indonesian text that corre-
sponds to some Swahili text (where the training examples might include
text in other languages).

Before tackling sophisticated applications such as these, you need to under-
stand the basics.

Example 7.1 Figure 7.1 (page 268) shows training examples typical of a clas-
sification task. The aim is to predict whether a person reads an article posted
to a threaded discussion website given properties of the article. The input fea-
tures are Author, Thread, Length, and Where read. There is one target feature,
User action. The domain of Author is {known, unknown}, the domain of Thread
is {new, followup}, and so on.

There are eighteen training examples, each of which has a value for all of
the features. In this dataset, Author(e11) = unknown, Thread(e11) = followup, and
User action(e11) = skips.

There are two new cases, e19 and e20, for which the model needs to predict
the user action.

Example 7.2 Figure 7.2 (page 268) shows some data for a regression task,
where the aim is to predict the value of feature Y on examples for which the
value of feature X is provided. This is a regression task because Y is a real-
valued feature. Predicting a value of Y for example e8 is an interpolation prob-
lem, as its value for the input feature is between two of the values of the training
examples. Predicting a value of Y for example e9 is an extrapolation problem,
because its X value is outside the range of the training examples.
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Example Author Thread Length Where read User action
e1 known new long home skips
e2 unknown new short work reads
e3 unknown followup long work skips
e4 known followup long home skips
e5 known new short home reads
e6 known followup long work skips
e7 unknown followup short work skips
e8 unknown new short work reads
e9 known followup long home skips
e10 known new long work skips
e11 unknown followup short home skips
e12 known new long work skips
e13 known followup short home reads
e14 known new short work reads
e15 known new short home reads
e16 known followup short work reads
e17 known new short home reads
e18 unknown new short work reads
e19 unknown new long work ?
e20 unknown followup short home ?

Figure 7.1: Example data of a user’s behavior. These are fictitious examples ob-
tained from observing a user deciding whether to read articles posted to a threaded
discussion website depending on whether the author is known or not, whether the
article started a new thread or was a follow-up, the length of the article, and
whether it is read at home or at work. e1, . . . , e18 are the training examples. The
aim is to make a prediction for the user action on e19, e20, and other, currently
unseen, examples

Example X Y
e1 0.7 1.7
e2 1.1 2.4
e3 1.3 2.5
e4 1.9 1.7
e5 2.6 2.1
e6 3.1 2.3
e7 3.9 7
e8 2.9 ?
e9 5.0 ?

Figure 7.2: Examples for a toy regression task
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7.2.1 Evaluating Predictions

Suppose Es is a bag of examples and Y is a target feature. Given example
e ∈ Es, the actual value of Y for e, the ground truth, is Y(e). |Es| is the number
of examples in Es.

A predictor for target feature Y is a function from the domains of the input
features into the domain of Y. A predictor for Y is written as Ŷ, so Ŷ(e) is the
predicted value for target feature Y on example e. Ŷ can only use the input
features of an example for its prediction. Ŷ is built using examples in Es, but
should be applicable for all possible examples.

A point estimate for target feature Y on example e is a prediction of Ŷ(e)
that is a number if Y is real or Boolean, or can be a vector if Y has a finite set of
possible values or is vector-valued. For example, if Y is Boolean, or has domain
{0, 1}, a point prediction could be 1 or 0.7 or even 1.3 (although 1.3 would never
be a good prediction). An example of a prediction that is not a point estimate
is the prediction that the value of real-valued variable Y lies between 1.7 and
1.8. If Y is discrete with values red, yellow, and green, the prediction can be a
vector containing a number for each of the three values.

The loss for example e on feature Y is a measure of how close the prediction
Ŷ(e) is to the actual value Y(e). The measures below define a nonnegative real-
valued function loss(p, a) that gives the loss for prediction p on an example
when the actual value is a.

A common error function on a dataset is the mean loss, which for predictor
Ŷ on a dataset Es is

1
|Es| ∑

e∈Es
loss(Ŷ(e), Y(e))

where |Es| is the number of examples in Es. An alternative error is the sum
of losses (without 1/|Es|). When finding a predictor to minimize the error,
either the mean or sum can be used, because they are a minimum for the same
predictors. When implementing an algorithm, it is important to check whether
the mean or the sum is used, particularly when this value is added to another
one. The mean loss is typically reported as the error for a dataset because it can
be interpreted without knowing the number of examples.

Real-valued Target Features

Real-valued features are used when the values are totally ordered, and the dif-
ferences are meaningful. This covers cases where the values are all integers as
well as cases where the values can be arbitrary reals. For example, height in
centimeters, student marks, and number of children could all be real-valued
features. Clothing sizes, when mapped to numbers, could also be considered
real-valued.

For regression, when the target feature Y is real-valued, when both the ac-
tual and the prediction are numbers, the following losses are common:
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• The 0–1 loss, or L0 loss, has

loss(p, a) =
{

1 if p �= a
0 if p = a

This is sometimes written as 1(p �= a), where 1 is a function from Booleans
into {0, 1}, defined by 1(true) = 1 and 1(false) = 0.

The mean 0–1 loss of a dataset is the average number of predictions
that are wrong. It does not take into account how wrong the predictions
are, just whether they are correct or not. The accuracy of a predictor on
a dataset is one minus the mean 0–1 loss, which is the number of correct
predictions divided by the number of examples. Accuracy is maximized
when 0–1 loss is minimized.

Testing equality for real or floating-point numbers is unreliable. This
means that 0–1 loss may not be appropriate for the prediction of the
mean, but is still applicable for predicting the mode or the median.

• The absolute loss, or L1 loss, is

loss(p, a) = |p− a|

the absolute difference between the predicted and actual value. This is
always nonnegative. The mean absolute loss of a dataset is only zero
when the predictions exactly fit the observed values. Unlike for the 0–1
loss, close predictions are better than far-away predictions.

• The squared loss, or L2 loss, is

loss(p, a) = (p− a)2.

This measure treats large losses as much worse than small losses. For
example, a loss of 2 on an example is as bad as 4 losses of 1, and a loss of
10 on one example is as bad as 100 losses of 1. Minimizing mean squared
loss is equivalent to minimizing the root-mean-square (RMS) error, the
square root of the mean squared loss, because the square root function is
a monotonically increasing function on nonnegative values.

Sometimes you might see squared loss as 1
2 (p− a)2. The 1

2 does not
affect the minimization, but makes some calculations simpler (in partic-
ular, when taking derivatives).

• The worst-case loss, or L∞ loss, on examples Es is the maximum absolute
difference

max
e∈Es

∣∣∣Ŷ(e)− Y(e)
∣∣∣ .

In this case, the learner is evaluated by its worst prediction. This is the
only error covered that is not a mean or sum.
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Example 7.3 Consider the data of Figure 7.2 (page 268). Figure 7.3 shows
a plot of the training data (filled circles) and three lines, L1, L2, and L∞, that
predict the Y-value for all X points. L1 minimizes the mean absolute loss, L2
minimizes the mean squared loss, and L∞ minimizes the mean worst-case loss
of the training examples.

As no three points are collinear, any line through any pair of the points
minimizes the 0–1, L0, loss.

Lines L1 and L2 give similar predictions for X= 1.1; namely, L1 predicts
1.805 and L2 predicts 1.709, whereas the data contain a data point (1.1, 2.4). L∞
predicts 0.7. They give predictions within 1.5 of each other when interpolating
in the range [1, 3]. Their predictions diverge when extrapolating from the data.
L1 and L∞ give very different predictions for X= 5.

An outlier is an example that does not follow the pattern of the other exam-
ples. The difference between the lines that minimize the various error measures
is most pronounced in how they handle outliers. The point (3.9, 7) can be seen
as an outlier as the other points are approximately in a line.

The prediction with the lowest worse-case loss for this example, L∞, only
depends on three data points, (1.1, 2.4), (3.1, 2.3), and (3.9, 7), each of which
has the same worst-case loss for prediction L∞. The other data points could be
at different locations, as long as they are not farther away from L∞ than these
three points.

A prediction that minimizes the absolute loss, L1, does not change as a
function of the actual Y-value of the training examples, as long as the points
above the line stay above the line, and those below the line stay below. For
example, the prediction that minimizes the absolute loss would be the same,
even if the last data point was (3.9, 107) instead of (3.9, 7).

Prediction L2 is sensitive to all of the data points; if the Y-value for any
point changes, the line that minimizes the squared loss will change. Changes

0 1 2 3 4 5
0
1
2
3
4
5
6
7
8

L1

L2
L∞

Figure 7.3: Linear regression predictions for a simple prediction example. Filled
circles are the training examples. L1 is the prediction that minimizes the mean
absolute loss of the training examples. L2 is the prediction that minimizes the
mean squared loss of the training examples. L∞ is the prediction that minimizes
the worst-case loss of the training examples. See Example 7.3
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to outliers will have more effect on the line than changes to points close to the
line.

Categorical Features

A categorical feature is one where the domain is a fixed finite set. Examples
include the main topic of a news article (when each news article only has one
main topic), the species of an animal, the country of birth of a person (perhaps
with the extra value for those who were not born in a country), or the letter of
the alphabet for a hand-written letter.

Suppose target variable Y is categorical with domain D = {v1, . . . , vk}. A
point estimate is one of the following two forms:

• A definitive prediction where the prediction is one of v1, . . . , vk.

• A probabilistic prediction p, a function or dictionary that maps the do-
main into nonnegative real numbers such that ∑v∈D p[v] = 1, where p[v]
is the value that prediction p makes for value v. Thus a probabilistic pre-
diction makes a nonnegative prediction for each value in the domain, and
the sum of the predictions is 1.

A definitive prediction of vj is equivalent to the probabilistic prediction
with p[vj] = 1 and the other numbers in the probabilistic prediction are all
0.

Whether a variable is real-valued or categorical is often a matter of data
design – how the data is represented.

Example 7.4 A trading agent wants to learn a person’s preference for the
length of holidays. The holiday can be for 1, 2, 3, 4, 5, or 6 days. See Figure 7.4
for example data. Note that there are no input features, and one output feature
in this example.

One representation is to treat the target as a real-valued variable Y that is
the number of days in the holiday. A prediction for a new example e can be any
real number, such as Ŷ(e) = 3.2.

Example Y
e1 1
e2 6
e3 6
e4 2
e5 1

Figure 7.4: Fictitious data of the number of days of a holiday
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The target could also be treated as categorical with domain {1, 2, 3, 4, 5, 6}.
A definitive prediction for example e might be the prediction Ŷ(e) = 1. A prob-
abilistic prediction for example e might be the prediction Ŷ(e) represented by
the dictionary p with

p[1] = 0.25 p[2] = 0.2 p[3] = 0.1
p[4] = 0.1 p[5] = 0.1 p[6] = 0.25

which means that it is predicting the holiday is of length 1 with probability 0.25,
length 2 with probability 0.2, and so on.

The losses used for real-valued target features can be applied to categorical
features by using loss(p[a], 1) for an actual a. For example, if the actual is a, the
squared loss of probabilistic prediction is (1− p[a])2.

It is common to report mean accuracy. Accuracy for a definitive prediction
is 1 if the prediction is correct, and 0 otherwise. For probabilistic predictions,
the accuracy is 1 when there is a unique mode (the v with the highest corre-
sponding p[v]) that corresponds to the actual value. Accuracy is a crude mea-
sure of how accurate probabilistic predictions are, as it only depends on the
mode.

A probabilistic prediction p is typically optimized with categorical log loss
or categorical cross entropy, often just known as log loss, where the loss for
prediction p for actual a is

logloss(p, a) = − log p[a].

That is, when the actual is a, log loss selects the corresponding prediction, p[a],
and returns its negative logarithm.

The log loss is always greater than or equal to 0. It is only 0 when p[a] = 1
and all other probabilities are 0.

For categorical Y and dataset Es, predictor Ŷ has mean log loss

− 1
|Es| ∑e

log Ŷ(e)[Y(e)]

where Ŷ(e)[Y(e)] is the value of the prediction Ŷ(e) evaluated for the actual
Y(e) for example e.

Example 7.5 The probabilistic prediction from Example 7.4 (page 272) for the
dataset of Figure 7.4 (page 272), with four data points (e1, e2, e3, and e5) having
the prediction 0.25, and one (e4) having the prediction 0.2 has mean log loss
(where the logarithm is base 2):

−4 ∗ log2 0.25 + log2 0.2
5

≈ 2.064.

The log loss of the prediction with p[1] = p[6] = 0.4 and p[2] = 0.2, with
the others 0, has mean log loss (base 2)

−4 ∗ log2 0.4 + log2 0.2
5

≈ 1.522.
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Thus, the second prediction, which is using the proportion of the data for each
value, is better than the other prediction.

There are two main justifications for log loss; one is in terms of probability,
and one in terms of decision making.

• You might want the model that best predicts the data; this is the model
where the data is most likely given the model. The likelihood of the ex-
amples Es given model Ŷ, assuming that the examples are independent,
is the product of the prediction for each example:

∏
e∈Es

Ŷ(e)[Y(e)].

Taking the logarithm gives the log-likelihood

∑
e∈Es

log Ŷ(e)[Y(e)].

The mean log loss is negative of the log-likelihood divided by the number
of examples. Thus, log loss is minimized when the log likelihood – and
so also the likelihood – is maximized.

• Mean log loss is appropriate when the prediction is used as a probability
for gambling and other reasoning under uncertainty (see Chapter 9). For
example, under squared loss, 10−7 and 10−6 are very close; a prediction
of 10−7 will have a very similar error to a prediction of 10−6. However,
as probabilities they are very different. An insurance company making
its decisions based on a probability of 10−7 will lose a lot of money if
the correct probability is 10−6; the event will occur 10 times as much as
expected. This difference is reflected in the log loss, but not in the losses
that only use the differences between the actual and predicted.

The logarithm of 0 is undefined. As ε > 0 gets closer to 0, − log ε gets
larger. For this reason, log loss of the prediction of 0 is usually treated as in-
finity. Averaging infinity with any finite set of numbers is infinity. Log loss
discourages any probabilistic prediction of 0 for a value that is possible.

Log loss is closely related to the notion of entropy (page 275). The log loss
(when the base of the logarithm is 2) can be seen as the mean number of bits
it will take to encode the data given a code that is based on Ŷ treated as a
probability. The base of the logarithm provides a constant difference, which
doesn’t matter when the goal is to minimize the loss. However, when reporting
results it is important to specify the base of the logarithm, where both 2 and e
(the base of the natural logarithm) are common.
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Information Theory

A bit is a binary digit. Because a bit has two possible values (0 and 1), it can
be used to distinguish two items. Two bits can distinguish four items, each
associated with either 00, 01, 10, or 11. In general, n bits can distinguish 2n

items. Thus, n items can be distinguished with log2 n bits (or the smallest
integer greater than or equal to this value). It may be surprising, but you can
do better than this using probabilities.

Consider this code to distinguish the elements of the set {a, b, c, d}, with
P(a) = 1

2 , P(b) = 1
4 , P(c) = 1

8 , and P(d) = 1
8 :

a 0 c 110
b 10 d 111

This code sometimes uses one bit, sometimes two bits and sometimes three
bits. On average, it uses

P(a) ∗ 1 + P(b) ∗ 2 + P(c) ∗ 3 + P(d) ∗ 3 =
1
2
+

2
4
+

3
8
+

3
8
= 1

3
4

bits.

For example, the string aacabbda with 8 characters has code 00110010101110,
which uses 14 bits.

With this code, − log2 P(a) = 1 bit is required to distinguish a from the
other symbols. Distinguishing b uses− log2 P(b) = 2 bits. Distinguishing c or
d requires − log2 P(c) = 3 bits.

It is possible to build a code that, to identify x, requires− log2 P(x) bits (or
the smallest integer greater than this). Suppose there is a sequence of symbols
you want to transmit or store and you know the probability distribution over
the symbols. A symbol x with probability P(x) can use − log2 P(x) bits. To
transmit a sequence, each symbol requires, on average,

∑
x
−P(x) ∗ log2 P(x)

bits to send, where the sum is over each value x in a domain. This is called
the information content or entropy of the distribution.

Suppose P and Q are both probability distributions. The expected number
of bits to describe Q using a code optimized for P is

∑
x
−Q(x) ∗ log2 P(x).

This is the cross entropy of distribution P relative to Q. For a fixed Q, cross
entropy is minimized when P = Q. In machine learning, P is typically the
learned model and Q the distribution of the data. Log loss (page 273) allows
for a separate prediction for each example.
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Boolean and Other Binary Features

When the domain of Y is binary, one value can be associated with 0, the other
value with 1. For Boolean features, with domain {false, true}, it is traditional to
associate 0 with false and 1 with true. Boolean variables are very common; for
example, predicting the topics of a news article that can have multiple topics
can be modeled using a Boolean variable for each topic.

A Boolean target variable can be treated either as a real-valued prediction
or as a categorical prediction. The real-valued prediction p for variable Y is
equivalent to the categorical prediction where the prediction for 1 is p and the
prediction for 0 is 1− p.

The binary log loss, or binary cross-entropy loss, for prediction p and ac-
tual value a is defined by

logloss(p, a) = −a log p− (1− a) log(1− p)

and by convention, logloss(1, 1) = logloss(0, 0) = 0, even though log 0 is unde-
fined (or infinity). Log loss is log p when a = 1 and log(1− p) when a = 0, and
so is the same as categorical log loss where the prediction for value 1 is p and
the prediction for value 0 is 1− p. The term log loss includes both categorical
log loss and binary log loss; which is meant should be clear from the context.

A binary point prediction could be any real number or could be restricted
to be 0 or 1. Here we assume that the prediction can be any real number, except
where explicitly noted.

7.2.2 Point Estimates with No Input Features

The simplest case for learning is when there is a single target feature and the in-
put features are ignored (or there are no input features). In this case, a learning
algorithm predicts a single value for the target feature for all of the examples.
This forms a naive baseline that any more sophisticated algorithm should be
able to beat. It is also the base case for some of the learning algorithms.

Suppose Es is a bag of n examples, Y is a numeric feature, and the learner
makes a point estimate, p, for all examples.

The optimal prediction depends on the optimality criterion. Figure 7.5
(page 277) gives the optimal prediction for various optimality criteria for the
case with no input features and a single real-valued feature Y, where the train-
ing set consisting of n examples, namely the numbers Y(e1), . . . , Y(em). The
mode is the value that occurs most often. The median is the middle value after
sorting the values; if there are two middle values, either of them, or any value
between them, will minimize the absolute error. The mean is the sum of the
values divided by the number of values. The best worst-case error is the mean
of the minimum value and the maximum value. Exercise 7.1 (page 320) asks
about the proofs.

When the target feature has domain {0, 1}, the n training examples can be
summarized in two numbers: n1, the number of examples with value 1 and n0,

https://doi.org/10.1017/9781009258227.011


7.2. Supervised Learning Foundations 277

the number of examples with value 0 (n0 = n− n1). The mean is the empirical
frequency: the proportion of 1s in the training data, namely n1/n. This is also
the maximum likelihood estimate, and the prediction with the minimum log
loss. The 0–1 error and the absolute error are minimized by predicting which
of 0 or 1 occurs more often.

When the target feature is categorical with domain {v1, . . . , vk}, a dataset
can be summarized by k numbers n1, . . . , nk, where ni is the number of occur-
rences of vi in the dataset. In this case, the prediction that minimizes log loss
on the training set is the empirical frequency. The prediction that minimizes
0–1 error and maximizes accuracy is to predict the mode; a value that appears
most often.

Example 7.6 Consider the length of holiday data of Example 7.4 (page 272).
Suppose only the target is given, and there are no input features, so all of the
examples get the same prediction.

In the first representation, the prediction of 1 and the prediction of 6 both
minimize 0–1 error and so maximize accuracy on the training data. The pre-
diction that minimizes the absolute loss is 2, with an total absolute loss of 10,
and a mean absolute loss of 2. The prediction that minimizes the squared error
on the training data is 3.2. The prediction the minimizes the worst-case error is
3.5.

Treating the feature as categorical, the prediction that minimizes log loss
in training error is (0.4, 0.2, 0, 0, 0.4), which is the empirical distribution of the
training data.

Thus, which prediction is preferred depends on how the prediction is repre-
sented and how it will be evaluated.

Loss Error for prediction p Optimal prediction
for training data for training data

mean 0–1 loss 1
n ∑e 1(Y(e) �= p) mode

mean absolute loss 1
n ∑e |Y(e)− p| median

mean squared loss 1
n ∑e(Y(e)− p)2 mean

worst case maxe |Y(e)− p| (min + max)/2

Special case for domain of Y is {0, 1}, n1 = ∑e(Y(e)), n0 = n− n1.

mean log loss − n1
n ∗ log p− n0

n ∗ log(1− p) n1
n

For categorical Y with domain {v1, . . . , vk}, value vi occurs ni times in
training data, and prediction p has p[vi] = pi.
mean log loss −∑i

ni
n ∗ log pi p[vi] =

ni
n

Figure 7.5: Optimal predictions on training data with no input features. The
training data consist of n examples e1, . . . , en with single real-valued feature Y
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This analysis does not specify the optimal prediction for unseen examples.
You should not expect the empirical frequency of the training data to be the
optimal prediction for new examples when maximizing the likelihood or min-
imizing the log loss. If one ni = 0, the corresponding vi does not appear in
the training data. However, if just one test example has value vi, the likeli-
hood would be 0 (its lowest possible value) and the log loss would be infinite
(or undefined). This is an example of overfitting (page 297). See Exercise 7.1
(page 320).

Figure 7.6 provides mean losses that any method for binary target domains
should beat, as a function of the optimality criterion. The naive prediction is a
prediction that can be made before seeing any data. These losses act as a quick
check for determining if a method is not working. For example, if the mean
squared loss of a predictor for 0/1 variable is greater than 0.25, the method is
not working.

Given a dataset, for the optimality criterion used, you should compute the
average loss for the optimal prediction on the training set – ignoring the input
features – as a baseline to beat. Often you will find such a baseline is difficult
to beat by a lot.

7.2.3 Types of Errors

Not all errors are equal; the consequences of some errors may be much worse
than others. For example, it may be much worse to predict a patient does
not have a disease that they actually have, so that the patient does not get
appropriate treatment, than it is to predict that a patient has a disease they do
not actually have, which will force the patient to undergo further tests, but may
result in more anxiety.

Consider a simple case where the domain of the target feature is Boolean
(which you can consider as “positive” and “negative”) and the predictions are
restricted to be Boolean. One way to evaluate a prediction independently of
the decision is to consider the four cases between the predicted value and the
actual value:

Optimality Criterion Naive Prediction Mean Loss
mean 0–1 loss 1 ≤ 1
mean absolute loss 0.5 0.5
mean squared loss 0.5 0.25
worst case error 0.5 0.5
mean log loss (base 2) 0.5 1
mean log loss (base e) 0.5 0.693...

Figure 7.6: Baseline errors any method should beat, for target domain {0, 1}
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actual positive (ap) actual negative (an)
predict positive (pp) true positive (tp) false positive (fp)
predict negative (pn) false negative (fn) true negative (tn)

A false-positive error or type I error is a positive prediction that is wrong
(i.e., the predicted value is positive and the actual value is negative). A false-
negative error or type II error is a negative prediction that is wrong (i.e., the
predicted value is negative and the actual value is positive). For a given pre-
dictor for a given set of examples, suppose tp is the number of true positives,
fp is the number of false positives, fn is the number of false negatives, and tn is
the number of true negatives.

Different choices of learning algorithm or parameters can affect the number
of false positives and false negatives. Suppose false positives are c times as bad
as false negatives. c < 1 means false negatives are worse than false positives,
c = 1 means they are equally as bad, and c > 1 means false positives are worse
than false negatives. Assuming the costs of errors can be added, the cost of a
prediction is proportional to

c ∗ fp + fn.

One would then select the predictor with the lowest cost.
Sometimes you want to evaluate a predictor without knowing anything

about the relative costs of different types of errors.
The following measures are often used:

• The recall or true-positive rate is tp
tp+fn , the proportion of actual positives

that are predicted to be positive.

• The false-positive rate is fp
fp+tn , the proportion of actual negatives pre-

dicted to be positive.

An agent should try to maximize the true-positive rate and minimize the
false-positive rate; however, these goals are incompatible. An agent can maxi-
mize the true-positive rate by making positive predictions about all cases it is
sure about (assuming it is correct about these). However, this choice maximizes
the false-positive rate because more of the positives will be wrong.

Predictor A dominates B if A has a higher true-positive rate and a lower
false-positive rate than B. If A dominates B then A has a lower cost (and so
is better) than B for all cost functions that depend only on the number of false
positives and false negatives (assuming the costs to be minimized are additive
and nonnegative). See Exercise 7.3 (page 321).

For a given set of examples where both the prediction and the actual are
given, a receiver operating characteristic space, or an ROC space, plots the
false-positive rate against the true-positive rate for various predictors. Each
predictor becomes a point in the space.
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Example 7.7 Consider a case where there are 100 examples that are actu-
ally positive (ap) and 1000 examples that are actually negative (an). Figure 7.7
shows the performance of six possible predictors for these 1100 examples. Pre-
dictor (a) predicts 70 of the positive examples correctly and 850 of the negative
examples correctly. Predictor (e) predicts every example as positive, and (f)
predicts all examples as negative.

In the ROC space, any predictor lower and to the right of another predictor
is dominated by the other predictor. For example, (d) is dominated by (c); there
would be no reason to choose (d) if (c) were available as a predictor.

Consider predictions (a) and (c) in Figure 7.7. The true-positive rate of (a)
is 0.7 and the false-positive rate is 0.15. Predictor (c) has a true-positive rate of
0.98 and a false-positive rate of 0.2. If false positives were much more important
than false negatives, then (a) would be better than (c), as it has fewer false
positives. If false negatives were much more important (much worse) than
false positives, then (c) would be better than (a), as it has fewer false negatives.
Neither dominates the other in the ROC space.

Any predictor that is below the upper envelope of predictors (shown with
line segments in Figure 7.7) is dominated by the other predictors. For example,
although (a) is not dominated by (b) or by (c), it is dominated by the random-
ized predictor: with probability 0.5 use the prediction of (b), else use the predic-
tion of (c). This randomized predictor would expect to have 26 false negatives
and 112.5 false positives. The line between (b) and (c) reflects all probabilistic
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(a) ap an
pp 70 150
pn 30 850

(b) ap an
pp 50 25
pn 50 975

(c) ap an
pp 98 200
pn 2 800

(d) ap an
pp 90 500
pn 10 500

(e) ap an
pp 100 1000
pn 0 0

(f) ap an
pp 0 0
pn 100 1000

Figure 7.7: Six predictors in the ROC space
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mixes of (b) and (c).

For some algorithms, there is a parameter which, when varied, results in
predictors with different false-positive and true-positive rates. For example, a
model that returns a real value can predict true if the output value is greater
than a threshold, and false if the output value is less than the threshold. As
the threshold varies, so do the predictions. In such cases, a single algorithm
can provide a curve in the ROC space. One algorithm is better than another
algorithm if its curve is above and to the left of the other. Often two algorithms
have different parts of the curve where they dominate, in which case the pre-
ferred algorithm depends on the relative costs of the two types of errors. The
area under the ROC curve (AUROC) is a single number that can be used to
compare algorithms across the whole parameter space. One predictor having
a larger AUROC than another means it is better for some cost functions, but
does not imply it is better for all cost functions.

Another common measure is precision, which is tp
tp+fp , the proportion of

positive predictions that are actual positives. Some have suggested comparing
algorithms just using precision and recall. However, it is possible that one
algorithm might have a better (higher) recall and a better (higher) precision
than another but be a worse algorithm for some cost functions. See Exercise 7.3
(page 321).

7.3 Basic Models for Supervised Learning

Supervised learning methods take the input features, the target features, and
the training data and return predictors, functions on input features that predict
values for the target features. Learning methods are often characterized by
how the predictors are represented. This section considers some basic methods
from which other methods are built. Initially assume a single target feature and
the learner returns a predictor on this target.

7.3.1 Learning Decision Trees

A decision tree is a simple representation for classifying examples. Decision
tree learning is one of the simplest useful techniques for supervised classifica-
tion learning.

A decision tree is a tree in which

• each internal (non-leaf) node is labeled with a condition, a Boolean func-
tion of examples

• each internal node has two branches, one labeled true and the other false

• each leaf of the tree is labeled with a point estimate (page 269).
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Decision trees are also called classification trees when the target (leaf) is a clas-
sification, and regression trees when the target is real-valued.

To classify an example, filter it down the tree, as follows. Each condition
encountered in the tree is evaluated and the arc corresponding to the result is
followed. When a leaf is reached, the classification corresponding to that leaf
is returned. A decision tree corresponds to a nested if–then–else structure in a
programming language.

Example 7.8 Figure 7.8 shows two possible decision trees for the examples
of Figure 7.1 (page 268). Each decision tree can be used to classify examples
according to the user’s action. To classify a new example using the tree on the
left, first determine the length. If it is long, predict skips. Otherwise, check
the thread. If the thread is new, predict reads. Otherwise, check the author
and predict reads only if the author is known. This decision tree can correctly
classify all examples in Figure 7.1 (page 268).

The left tree corresponds to the program defining ̂UserAction(e):

define ̂UserAction(e):
if long(e): return skips
else if new(e): return reads
else if unknown(e): return skips
else: return reads

The tree on the right returns a numerical prediction for reads:

define ̂UserAction(e):
if long(e): return 0
else new(e): return 0.82

To use decision trees as a target representation, there are a number of ques-
tions that arise.

falsetrue

falsetrue

falsetrue

long

new

unknown

skips

reads

skips reads

falsetrue

long

reads with 
probability 0.82

reads with
probability 0

Figure 7.8: Two decision trees
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• Given some training examples, what decision tree should be generated?
Because a decision tree can represent any function of discrete input fea-
tures, the bias that is necessary is incorporated into the preference of one
decision tree over another. One proposal is to prefer the smallest tree
that is consistent with the data, which could mean the tree with the least
depth or the tree with the fewest nodes. Which decision trees are the best
predictors of unseen data is an empirical question.

• How should an agent go about building a decision tree? One way is to
search the space of decision trees for the smallest decision tree that fits the
data. Unfortunately, the space of decision trees is enormous (see Exercise
7.7 (page 323)). A practical solution is to carry out a greedy search on the
space of decision trees, with the goal of minimizing the error. This is the
idea behind the algorithm described below.

Searching for a Good Decision Tree

A decision tree can be seen as a branching program, that takes an example and
returns a prediction for that example. The program is either

• a function that ignores its argument and returns a point prediction for all
of the examples that reach this point (which corresponds to a leaf), or

• of the form “if c(e) then t1(e) else t0(e)” where c is a Boolean condition,
and t1 and t0 are decision trees; t1 is the tree that is used when the condi-
tion c is true of example e, and t0 is the tree used when c(e) is false.

The algorithm Decision tree learner of Figure 7.9 (page 284) mirrors the re-
cursive decomposition of a tree. It builds a decision tree from the top down
as follows. The input to the algorithm is a set of input conditions (Boolean
functions of examples that use only input features), the target feature, a set
of training examples, and a real-valued parameter, γ, discussed below. If the
input features are Boolean, they can be used directly as the conditions.

A greedy optimal split is a condition that results in the lowest error if the
learner were allowed only one split and it splits on that condition. sum loss(Es)
gives the sum of losses of training examples Es for the loss function assumed,
given that the optimal prediction is used for that loss function, as given in
Figure 7.5 (page 277). The procedure select split returns a greedy optimal split
if the sum of losses after the split improves the sum of losses before the split by
at least the threshold γ. If there is no such condition, select split returns None.

Adding a split increases the size of the tree by 1. The threshold γ can be
seen as a penalty for increasing the size of the tree by 1. If positive, γ is also
useful to prevent val < best val holding solely due to rounding error.

If select split returns None, the decision tree learning algorithm creates a leaf.
The function leaf value(Es) returns the value that is used as a prediction of
the target for examples Es that reach this node. It ignores the input features
for these examples and returns a point estimate (page 269), which is the case
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considered in Section 7.2.2 (page 276). The decision tree algorithm returns a
function that takes an example and returns that point estimate.

If select split returns condition c, the learner splits on condition c by parti-
tioning the training examples into those examples e with c(e) true and those
examples with c(e) false. It recursively builds a subtree for each of these bags
of examples. It returns a function that, given an example, tests whether c is true
of the example, and then uses the prediction from the appropriate subtree.

Example 7.9 Consider applying Decision tree learner to the classification data
of Figure 7.1 (page 268), with γ = 0. The initial call is

decisionTreeLearner({known, new, long, home}, User action,
{e1, e2, . . . , e18}, 0)

1: procedure Decision tree learner(Cs, Y, Es, γ)
2: Inputs
3: Cs: set of possible conditions
4: Y: target feature
5: Es: set of training examples
6: γ: minimum improvement needed to expand a node (γ ≥ 0)
7: Output
8: function to predict a value of Y for an example
9: c := select split(Es, Cs, γ)

10: if c = None then � stopping criterion is true
11: v := leaf value(Es)
12: define T(e) = v
13: return T
14: else
15: true examples := {e ∈ Es : c(e)}
16: t1 := Decision tree learner(Cs \ {c}, Y, true examples, γ)
17: false examples := {e ∈ Es : ¬c(e)}
18: t0 := Decision tree learner(Cs \ {c}, Y, false examples, γ)
19: define T(e) = if c(e) then t1(e) else t0(e)
20: return T
21: procedure select split(Es, Cs, γ)
22: best val := sum loss(Es)− γ
23: best split := None
24: for c ∈ Cs do
25: val := sum loss({e ∈ Es | c(e)}) + sum loss({e ∈ Es | ¬c(e)})
26: if val < best val then
27: best val := val
28: best split := c

return best split � best split=None means stopping criterion is true

Figure 7.9: Decision tree learner; returns a predicting function
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where known is true when Author= known, and similarly for the other condi-
tions.

Suppose the stopping criterion is not true and the algorithm selects the con-
dition long to split on. It then calls

decisionTreeLearner({known, new, home}, User action,
{e1, e3, e4, e6, e9, e10, e12}, 0)

where {e1, e3, e4, e6, e9, e10, e12} is the set of training examples with Length= long.
All of these examples agree on the user action; therefore, the algorithm

returns the prediction skips. The second step of the recursive call is

decisionTreeLearner({known, new, home}, User action,
{e2, e5, e7, e8, e11, e13, e14, e15, e16, e17, e18}, 0).

Not all of the examples agree on the user action, so assuming the stopping
criterion is false, the algorithm selects a condition to split on. Suppose it selects
new. Eventually, this recursive call returns the function on example e in the case
when Length is short:

if new(e) then reads
else if unknown(e) then skips else reads.

The final result is the first predictor of Example 7.8 (page 282).

When the loss is log loss (page 276) with base 2, the mean of the losses,
sum losses(Es)/|Es|, is the entropy (page 275) of the empirical distribution of
|Es|. The number of bits to describe Es after testing the condition c is val, de-
fined on line 25 of Figure 7.9 (page 284). The entropy of the distribution created
by the split is val/|Es|. The difference of these two is the information gain of
the split. Sometimes information gain is used even when the optimality crite-
rion is some other error measure, for example, when maximizing accuracy it
is possible to select a split to optimize log loss, but return the mode as the leaf
value. See Exercise 7.6 (page 323).

The following example shows details of the split choice for the case where
the split is chosen using log loss, and the empirical distribution is used as the
leaf value.

Example 7.10 In the running example of learning the user action from the
data of Figure 7.1 (page 268), suppose the aim is to minimize the log loss. The
algorithm greedily chooses a split that minimizes the log loss. Suppose γ is 0.

Without any splits, the optimal prediction on the training set is the empiri-
cal frequency (page 277). There are nine examples with User action= reads and
nine examples with User action= skips, and so known is predicted with proba-
bility 0.5. The mean log loss is equal to (−18 ∗ log2 0.5)/18 = 1.

Consider splitting on Author. This partitions the examples into [e1, e4, e5,
e6, e9, e10, e12, e13, e14, e15, e16, e17] with Author= known and [e2, e3, e7, e8, e11,
e18] with Author= unknown, each of which is evenly split between the different
user actions. The optimal prediction for each partition is again 0.5, and so the
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log loss after the split is again 1. In this case, finding out whether the author is
known, by itself, provides no information about what the user action will be.

Splitting on Thread partitions the examples into [e1, e2, e5, e8, e10, e12, e14, e15,
e17, e18] with Thread= new and [e3, e4, e6, e7, e9, e11, e13, e16] with Thread= followup.
The examples with Thread= new contains three examples with User action= skips
and seven examples with User action= reads, thus the optimal prediction for
these is to predict reads with probability 7/10. The examples with Thread =
followup have two reads and six skips. Thus, the best prediction for these is to
predict reads with probability 2/8. The mean log loss after the split is

− (3 ∗ log2(3/10) + 7 ∗ log2(7/10) + 2 ∗ log2(2/8) + 6 ∗ log2(6/8))/18
≈ 15.3/18 ≈ 0.85.

Splitting on Length divides the examples into [e1, e3, e4, e6, e9, e10, e12] and
[e2, e5, e7, e8, e11, e13, e14, e15, e16, e17, e18]. The former all agree on the value of
User action and predict with probability 1. The user action divides the second
set 9 : 2, and so the mean log loss is

−(7 ∗ log2 1 + 9 ∗ log2 9/11 + 2 ∗ log2 2/11)/18 ≈ 7.5/18 ≈ 0.417.

Therefore, splitting on Length is better than splitting on Thread or Author,
when greedily optimizing the log loss.

Constructing Conditions

In the decision tree learning algorithm (Figure 7.9), Boolean input features can
be used directly as the conditions. Non-Boolean input features are handled in
a number of ways.

• Suppose input variable X is categorical, with domain {v1, . . . , vk}. A bi-
nary indicator variable (page 182), Xi, can be associated with each value
vi, where Xi(e) = 1 if X(e) = vi and Xi(e) = 0 otherwise. For each exam-
ple e, exactly one of X1(e), . . . , Xk(e) is 1 and the others are 0.

• When the domain of a feature is totally ordered, the feature is called an
ordinal feature. This includes real-valued features as a special case, but
might also include other features such as clothing sizes (S, M, L, XL, etc.),
and highest level of education (none, primary, secondary, bachelor, etc.).

For an ordinal input feature X and for a given value v, a Boolean
feature can be constructed as a cut: a new feature that has value 1 when
X > v and 0 otherwise. Combining cuts allows for features that are true
for intervals; for example, a branch might include the conditions X > 9
is true and X > 17 is false, which corresponds to the interval 9 < X ≤ 17.

Suppose the domain of input variable X is totally ordered. To select
the optimal value for the cut value v, sort the examples on the value of X
and sweep through the examples to consider each split value and select
the best. See Exercise 7.8 (page 323).
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• For ordinal features (including real-valued features), binning involves
choosing a set of thresholds, creating a feature for each interval between
the thresholds. The thresholds α1 < α2 < · · · < αk, make k + 1 Boolean
features, one that is true for X when X ≤ α1, one for αk < X, and one for
αi < X ≤ αi+1 for each i ≤ i < k. A bin of the form αi < X ≤ αi+1 would
require two splits to represent using cuts. The αi can be chosen upfront,
for example, using percentiles of the training data, or chosen depending
on the target.

• For categorical feature X, there might be a better split of the form X ∈ S
where S is a set of values, rather than only splitting on a single value, as
is done with indicator variables. When the target Y is Boolean, to find an
appropriate set S, sort the values of X by the proportion of Y that are true;
a greedy optimal split will be between values in this sorted list.

• It is possible to expand the algorithm to allow multiway splits. To split on
a multivalued variable, there would be a child for each value in the do-
main of the variable. This means that the representation of the decision
tree becomes more complicated than the simple if–then–else form used
for binary features. There are two main problems with this approach. The
first is what to do with values of a feature for which there are no training
examples. The second is that for most greedy splitting heuristics, includ-
ing information gain, it is generally better to split on a variable with a
larger domain because it produces more children and so can fit the data
better than splitting on a feature with a smaller domain. However, split-
ting on a feature with a smaller domain keeps the representation more
compact. A four-way split, for example, is equivalent to three binary
splits; they both result in four leaves.

Alternative Design Choices

The algorithm does not split when select split returns None. This occurs when
there are no examples, when there are no conditions remaining, when all ex-
amples have the same value on each condition, when all of the examples have
the same target value, and when the improvement of the evaluation is less than
the parameter γ. A number of other criteria have been suggested for stopping
earlier.

• Minimum child size: do not split more if one of the children will have
fewer examples than a threshold.

• Maximum depth: do not split more if the depth reaches a maximum.

It is possible that one condition may only work well in conjunction with
other conditions, and the greedy method may not work when this occurs. One
particularly tricky case is a parity function of k Boolean variables that is true
if an odd (or even) number of variables are true; knowing the values of fewer
than k of the variables gives no information about the value of the parity func-
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tion. The simplest parity functions (for k = 2) are exclusive-or and equivalence.
Parity functions have complicated decision trees.

In some cases, greedy splitting does not find a simplest decision tree and it
is often useful to simplify the tree resulting from the top-down algorithm, as
shown in the following example.

Example 7.11 Consider a dataset with inputs x, y, and z and target t. The
target is true if x is true and y is true, or x is false and z is true. Figure 7.10
(a) shows a tree representation of this function. This tree can generate the data
in the center (b). Although the simplest tree first splits on x, splitting on x
provides no information; there is the same proportion of t true when x is true
as when x is false. Instead, the algorithm can split on y. When y is true, there is
a larger proportion of t true than when y is false. For the case where y is true,
splitting on x perfectly predicts the target when x is true. The resulting tree is
given in Figure 7.10(c). Following the paths to t= 1, this tree corresponds to t
being true when (x∧ y) ∨ (y∧ ¬x∧ z) ∨ (¬y∧ ¬x∧ z), which can be simplified
to (x∧ y) ∨ (¬x∧ z). This is essentially the original tree.

7.3.2 Linear Regression and Classification

Linear functions provide a basis for many learning algorithms. This section
first covers regression, then considers classification.

Linear regression is the problem of fitting a linear function to a set of train-
ing examples, in which the input and target features are real numbers.

Suppose the input features, X1, . . . , Xm, are all real numbers (which includes
the {0, 1} case) and there is a single target feature Y. A linear function of the
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y z

1 0 1 0

x y z t
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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1 0z
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(a) (b) (c)

Figure 7.10: Generator, training data, and learned tree for “if x then t= y else
t= z”. In the decision trees, the left branches correspond to “true” and the right
branches to “false”. The prediction for t is at the leaves
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input features is a function of the form

Ŷw(e) = w0 + w1 ∗X1(e) + · · ·+ wm ∗Xm(e)

=
m

∑
i=0

wi ∗Xi(e)

where w = 〈w0, w1, . . . , wn〉 is a vector (tuple) of weights, and X0 is a special
feature whose value is always 1.

Suppose Es is a set of examples. The mean squared loss (page 270) on ex-
amples Es for target Y is the error

error(Es, w) =
1
|Es| ∑

e∈Es
(Ŷw(e)− Y(e))2

=
1
|Es| ∑

e∈Es

(
m

∑
i=0

wi ∗Xi(e)− Y(e)

)2

. (7.1)

Consider minimizing the mean squared loss. There is a unique minimum,
which occurs when the partial derivatives with respect to the weights are all
zero. The partial derivative of the error in Equation (7.1) with respect to weight
wi is

∂

∂wi
error(Es, w) =

1
|Es| ∑

e∈Es
2 ∗ δ(e) ∗Xi(e) (7.2)

where δ(e) = Ŷw(e)− Y(e), a linear function of the weights. The weights that
minimize the error can be computed analytically by setting the partial deriva-
tives to zero and solving the resulting linear equations in the weights (see Ex-
ercise 7.11 (page 324)).

Squashed Linear Functions

Consider binary classification, where the domain of the target variable is {0, 1}.
A linear function does not work well for such classification tasks; a learner

should never make a prediction greater than 1 or less than 0. However, a linear
function could make a prediction of, say, 3 for one example just to fit other
examples better.

A squashed linear function is of the form

Ŷw(e) = φ(w0 + w1 ∗X1(e) + · · ·+ wm ∗Xm(e))

= φ(∑
i

wi ∗Xi(e))

where φ, an activation function, is a function from the real line [−∞, ∞] into
some subset of the real line, such as [0, 1].

A prediction based on a squashed linear function is a linear classifier.
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One differentiable activation function is the sigmoid or logistic function:

sigmoid(x) =
1

1 + exp(−x)

where exp(v) = ev, where e is Euler’s number (approximately 2.718). The sig-
moid function, depicted in Figure 7.11, squashes the real line into the interval
(0, 1), which is appropriate for classification because you would never want to
make a prediction of greater than 1 or less than 0. The sigmoid function can
be justified in terms of probabilities (page 400). It is also differentiable, with
derivative

d
dx

sigmoid(x) = sigmoid(x) ∗ (1− sigmoid(x)).

The problem of determining weights for the sigmoid of a linear function
that minimize an error on a set of examples is called logistic regression.

The mean log loss (page 276) for logistic regression is

LL(E, w) = − 1
|Es| ∗ ∑

e∈Es

(
Y(e) ∗ log Ŷ(e) + (1− Y(e)) ∗ log(1− Ŷ(e))

)
where Ŷ(e) = sigmoid (∑m

i=0 wi ∗Xi(e)). To minimize this, consider weight wi.
The partial derivative with respect to weight wi is

∂

∂wi
LL(E, w) =

1
|Es| ∑

e∈E
δ(e) ∗Xi(e) (7.3)

where δ(e) = Ŷw(e) − Y(e). This is very similar to Equation (7.2) (page 289),
the main difference is the definition of the predicted value. Unlike Equation
(7.2) (page 289), this is not a linear function of the parameters (because Ŷw(e) is
not linear in the parameters) and is difficult to solve analytically.
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Figure 7.11: The sigmoid or logistic function
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Stochastic Gradient Descent

The problem of finding a set of parameters to minimize errors is an optimiza-
tion problem; see Section 4.8 (page 161).

Gradient descent (page 169) is an iterative method to find a local minimum
of a function. To find a set of weights to minimize an error, it starts with an
initial set of weights. In each step, it decreases each weight in proportion to its
partial derivative:

wi := wi − η ∗ ∂

∂wi
error(Es, w)

where η, the gradient descent step size, is called the learning rate. The learning
rate, as well as the features and the data, is given as input to the learning algo-
rithm. The partial derivative specifies how much a small change in the weight
would change the error.

For linear regression with squared error and logistic regression with log
loss, the derivatives, given in Equation (7.2) (page 289) and Equation (7.3)
(page 290). For each of these (ignoring the constant factor of 2), gradient de-
scent has the update

wi := wi − η ∗ 1
|Es| ∗ ∑

e∈Es
δ(e) ∗Xi(e) (7.4)

where δ(e) = Ŷw(e)− Y(e).
A direct implementation of gradient descent does not update any weights

until all examples have been considered. This can be very wasteful for large
datasets. It is possible to make progress with a subset of the data. This gradient
descent step takes a mean value. Often you can compute means approximately
by using a random sample of examples. For example, you can get a good es-
timate of the mean height of a large population of people by selecting 100 or
1000 people at random and using their mean height.

Instead of using all of the data for an update, stochastic gradient descent
uses a random sample of examples to update the weights. It is called stochas-
tic because of the random sampling. Random sampling is explored more in
Section 9.7 (page 436). The set of b examples used in each update is called a
minibatch or a batch.

The stochastic gradient descent algorithm for logistic regression is shown
in Figure 7.12 (page 292). This returns a function, pred, that can be used for pre-
dictions on new examples. The algorithm collects the update for each weight
wi for a batch in a corresponding di, and updates the weights after each batch.
The learning rate η is assumed to be per example, and so the update needs to
be divided by the batch size.

An epoch is �|Es|/b� batches, which corresponds to one pass through all
of the data, on average. Epochs are useful when reporting results, particularly
with different batch sizes.
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Example 7.12 Consider learning a squashed linear function for classifying the
data of Figure 7.1 (page 268). One function that correctly classifies the examples
is

̂Reads(e) = sigmoid(−8 + 7 ∗ Short(e) + 3 ∗New(e) + 3 ∗ Known(e)) ,

where f is the sigmoid function. A function similar to this can be found with
about 3000 iterations of stochastic gradient descent with a learning rate η =

0.05. According to this function, ̂Reads(e) is true (the predicted value for ex-
ample e is closer to 1 than 0) if and only if Short(e) is true and either New(e) or
Known(e) is true. Thus, in this case, the linear classifier learns the same function
as the decision tree learner.

Smaller batch sizes tend to learn faster as fewer examples are required for

1: procedure Linear learner(Xs, Y, Es, η, m)
2: Inputs
3: Xs: set of input features, Xs = {X1, . . . , Xm}. Assume X0 = 1
4: Y: target feature
5: Es: set of training examples
6: η: learning rate
7: b: batch size
8: Output
9: function to make prediction on examples

10: Local
11: w0, . . . , wm: real numbers
12: d0, . . . , dm: real numbers
13: initialize w0, . . . , wm randomly
14: define pred(e) = φ(∑i wi ∗Xi(e))
15: repeat
16: for each i ∈ [0, n] do
17: di := 0
18: select batch B ⊆ Es of size b
19: for each example e in B do
20: error := pred(e)− Y(e)
21: for each i ∈ [0, n] do
22: di := di + error ∗Xi(e)
23: for each i ∈ [0, n] do
24: wi := wi − η ∗ di/b
25: until termination
26: return pred

Figure 7.12: Stochastic gradient descent for linear and logistic regression. For
linear regression, φ is the identity function. For logistic regression, φ is sigmoid
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an update. However, smaller batches may not converge to a local optimum so-
lution, whereas more data, up to all of the data, will. To see this, consider being
at an optimum. A batch containing all of the examples would end up with all
of the di being zero. However, for smaller batches, the weights will vary and
later batches will be using non-optimal parameter settings and so use incorrect
derivatives. It is common to start with small batch size and increase the batch
size until convergence, or good enough performance has been obtained.

Incremental gradient descent, or online gradient descent, is a special case
of stochastic gradient descent using minibatches of size 1. In this case, there is
no need to store the intermediate values in di, but the weights can be directly
updated. This is sometimes used for streaming data where each example is
used once and then discarded. If the examples are not selected at random, it
can suffer from catastrophic forgetting, where it fits the later data and forgets
about earlier examples.

Linear Separability

Each input feature can be seen as a dimension; m features results in an m-
dimensional space. A hyperplane in an m-dimensional space is a set of points
that all satisfy a constraint that some linear function of the variables is zero.
The hyperplane forms an (m− 1)-dimensional space. For example, in a (two-
dimensional) plane, a hyperplane is a line, and in a three-dimensional space, a
hyperplane is a plane. A Boolean classification is linearly separable if there ex-
ists a hyperplane where the classification is true on one side of the hyperplane
and false on the other side.

The Logistic regression learner algorithm can learn any linearly separable bi-
nary classification. The error can be made arbitrarily small for arbitrary sets
of examples if, and only if, the target classification is linearly separable. The
hyperplane is the set of points where ∑i wi ∗Xi = 0 for the learned weights w.
On one side of this hyperplane, the prediction is greater than 0.5; on the other
side, the prediction is less than 0.5.
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Figure 7.13: Linear separators for Boolean functions
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Example 7.13 Figure 7.13 (page 293) shows linear separators for “or” (a) and
“and” (b). The dashed line separates the positive (true) cases from the neg-
ative (false) cases. One simple function that is not linearly separable is the
exclusive-or (xor) function (c). There is no straight line that separates the posi-
tive examples from the negative examples. As a result, a linear classifier cannot
represent, and therefore cannot learn, the exclusive-or function.

Suppose there are three input features x, y, and z, each with domain {0, 1},
and the ground truth is the function “if x then y else z” (represented by t in
Figure 7.10 (page 288)). This function is depicted by the cube in Figure 7.13(d)
with the origin (x, y, z all zero) at the bottom left and the ground truth for t
labelled with + and −. This function is not linearly separable.

The following example shows what happens in gradient descent for logistic
regression when the data is not linearly separable.

Example 7.14 Consider target t from the previous example that is true if x is
true and y is true, or x is false and z is true. The prediction of t is not linearly
separable, as shown in Figure 7.13(d) – there is no hyperplane that separates
the positive and negative cases of t.

After 1000 epochs of gradient descent with a learning rate of 0.05, one run
found the following weights (to two decimal points):

lin(e) = − 0.12 ∗ x(e) + 4.06 ∗ y(e) + 4.06 ∗ z(e)− 3.98

t̂(e) = sigmoid(lin(e)) .

The linear function lin and the prediction for each example are shown in Figure
7.14(b). Four examples are predicted reasonably well, and the other four are
predicted with a value of approximately 0.5. This function is quite stable with
different initializations. Increasing the number of iterations makes the predic-
tions approach 0, 1, or 0.5.

x y z t lin t̂
0 0 0 0 −3.98 0.02
0 0 1 1 0.08 0.52
0 1 0 0 0.08 0.52
0 1 1 1 4.14 0.98
1 0 0 0 −4.10 0.02
1 0 1 0 −0.04 0.49
1 1 0 1 −0.04 0.49
1 1 1 1 4.14 0.98

(a) (b)

Figure 7.14: Logistic regression for conditional; target t is “if x then t= y else
t= z” (a) training data (b) prediction
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Categorical Target Features

When the domain of the target variable is categorical with more than two val-
ues, indicator variables (page 286) can be used to convert the classification to
binary variables. These binary variables could be learned separately. Because
exactly one of the values must be true for each example, the predicted proba-
bilities should add to 1. One way to handle this is to learn for all-but-one value,
and predict the remaining value as 1 minus the sum of the other values. This
is effectively how the binary case works. However, this introduces an asym-
metry in the values by treating one value differently from the other values.
This is problematic because the errors for the other values accumulate, making
for a poor prediction on the value treated specially; it’s even possible that the
prediction for the remaining value is negative if the others sum to more than 1.

The standard alternative is to learn a linear function for each value of the
target variable, exponentiate, and normalize. This has more parameters than
necessary to represent the function (it is said to be over-parametrized) but
treats all of the values in the same way. Suppose the target Y is categorical
with domain represented by the tuple of values (v1, . . . , vk). The softmax func-
tion takes a vector (tuple) of real numbers, (α1, . . . , αk), and returns a vector of
the same size, where the ith component of the result is

softmax((α1, . . . , αk))i =
exp(αi)

∑k
j=1 exp(αj)

.

This ensures that the resulting values are all positive and sum to 1, and so can
be considered as a probability distribution.

Sigmoid and softmax are closely related:

sigmoid(x) =
1

exp(−x) + 1

=
exp(x)

exp(0) + exp(x)
= softmax((0, x))2

where (0, x) corresponds to the values (false, true) and softmax((0, x))2 is the
second component of the pair that results from the softmax. The second equal-
ity follows from multiplying the numerator and the denominator by exp(x),
and noticing that exp(x) ∗ exp(−x) = exp(0) = 1. Thus, sigmoid is equivalent to
softmax where the false component is fixed to be 0.

A softmax, like a sigmoid, cannot represent zero probabilities.
The generalization of logistic regression to predicting a categorical feature

is called softmax regression, multinomial logistic regression, or multinomial
logit. It involves a linear equation for each value in the domain of the target
variable, Y. Suppose Y has domain (vi, . . . , vk). The prediction for example e is
a tuple of k values, softmax((u1(e), . . . , uk(e))), where the jth component is the
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prediction for Y = vj and

uj(e) = w0,j + X1(e) ∗w1,j ∗+ · · ·+ Xm(e) ∗wm,j.

This is typically optimized with categorical log loss (page 273).
Consider weight wij that is used for input Xi for output value vj, and exam-

ple e that has Y(e) = vq:

∂

∂wij
logloss(softmax((u1(e), . . . , uk(e))), vq)

=
∂

∂wij
− log

(
exp(uq(e))

∑j exp(uj(e))

)

=
∂

∂wij
(log(∑

j
exp(uj(e)))− uq(e))

= ((Ŷ(e))j − 1(j = q)) ∗Xi

where 1(j = q) is 1 if j is the index of the observed value, vq, and (Ŷ(e))j is the
jth component of the prediction. This is the predicted value minus the actual
value.

To implement this effectively, you need to consider how computers repre-
sent numbers. Taking the exponential of a large number can result in a number
larger than the largest number able to be represented on the computer, result-
ing in overflow. For example, exp(800) will overflow for most modern CPUs.
Taking exponentials of a large negative number can result in a number that is
represented as zero, resulting in underflow. For example, exp(−800) results
in zero on many CPUs. Adding a constant to each αi in a softmax does not
change the value of the softmax. To prevent overflow and prevent all values
from underflowing, the maximum value can be subtracted from each value, so
there is always a zero, and the rest are negative. On GPUs and similar parallel
hardware, often lower precision is used to represent weights, and so it becomes
more important to correct for underflow and overflow.

When there is a large number of possible values, the computation of the
denominator can be expensive, as it requires summing over all values. For ex-
ample, in natural language, we may want to predict the next word in a text, in
which case the number of values could be up to a million or more (particularly
when phrases and names such as “Mahatma Gandhi” are included). In this
case, it is possible to represent the prediction in terms of a binary tree of the
values, forming hierarchical softmax. This implements the same function as
softmax, just more efficiently for large domains.

Creating Input Features

The definitions of linear and logistic regression assume that the input features
are numerical.
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Categorical features can be converted into features with domain {0, 1} by
using indicator variables, as was done for decision tree learning (page 286).
This is known as a one-hot encoding.

A real-valued feature can be used directly as long as the target is a linear
function of that input feature, when the other input features are fixed. If the
target is not a linear function, often some transformation of the feature is used
to create new features.

For ordinal features, including real-valued features, cuts (page 286) can be
used to define a Boolean feature from a real feature. For input feature x, choose
a value v and use a feature that is true if x > v, or equivalently x − v > 0.
It is also common to use binning (page 287). Binning involves choosing a set
of thresholds, α1 < α2 < · · · < αk, and using a feature with domain {0, 1}
for each interval between αi and αi+1. Binning allows for a piecewise constant
function. Constructing a feature using max(x − v, 0) allows for a connected
piecewise linear approximation; this is the basis of the rectified linear unit
(ReLU), further investigated in the next chapter (page 330).

Designing appropriate features is called feature engineering. It is often dif-
ficult to design good features. Gradient-boosted trees (page 311) use conjunc-
tions of input features. Learning features is part of representation learning;
see Chapter 8.

7.4 Overfitting

Overfitting occurs when the learner makes predictions based on regularities
that appear in the training examples but do not appear in the test examples or
in the world from which the data is taken. It typically happens when the model
tries to find signal in randomness – spurious correlations in the training data
that are not reflected in the problem domain as a whole – or when the learner
becomes overconfident in its model. This section outlines methods to detect
and avoid overfitting.

The following example shows a practical example of overfitting.

Example 7.15 Consider a website where people submit ratings for restaurants
from 1 to 5 stars. Suppose the website designers would like to display the
best restaurants, which are those restaurants that future patrons would like the
most. It is tempting to return the restaurants with the highest mean rating, but
that does not work.

It is extremely unlikely that a restaurant that has many ratings, no matter
how outstanding it is, will have a mean of 5 stars, because that would require
all of the ratings to be 5 stars. However, given that 5-star ratings are not that
uncommon, it would be quite likely that a restaurant with just one rating will
have 5 stars. If the designers used the mean rating, the top-rated restaurants
will be ones with very few ratings, and these are unlikely to be the best restau-
rants. Similarly, restaurants with few ratings but all low are unlikely to be as
bad as the ratings indicate.
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The phenomenon that extreme predictions will not perform as well on test
cases is analogous to regression to the mean. Regression to the mean was
discovered by Galton [1886], who called it regression to mediocrity, after discov-
ering that the offspring of plants with larger than average seeds are more like
average seeds than their parents are. In both the restaurant and the seed cases,
this occurs because ratings, or the size, will be a mix of quality and luck (e.g.,
who gave the rating or what genes the seeds had). Restaurants that have a very
high rating will have to be high in quality and be lucky (and be very lucky if
the quality is not very high). More data averages out the luck; it is very un-
likely that someone’s luck does not run out. Similarly, the seed offspring do
not inherit the part of the size of the seed that was due to random fluctuations.

Overfitting can also be caused by model complexity: a more complex model,
with more parameters, can almost always fit data better than a simple model.

Example 7.16 A polynomial of degree k is of the form

y = w0 + w1 ∗ x + w2 ∗ x2 + · · ·+ wk ∗ xk.

Linear regression can be used unchanged to learn the weights of the polynomial
that minimize the squared error, simply by using 1, x, x2, . . . , xk as the input
features to predict y.
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Figure 7.15: Fitting polynomials to the data of Figure 7.2 (page 268)
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Figure 7.15 (page 298) shows polynomials up to degree 4 for the data of
Figure 7.2 (page 268). Higher-order polynomials can fit the data better than
lower-order polynomials, but that does not make them better on the test set.

Notice how the higher-order polynomials get more extreme in extrapola-
tion. All of the polynomials, except the degree 0 polynomials, go to plus or mi-
nus infinity as x gets bigger or smaller, which is almost never what you want.
Moreover, if the maximum value of k for which wk �= 0 is even, then as x ap-
proaches plus or minus infinity, the predictions will have the same sign, going
to either plus infinity or minus infinity. The degree-4 polynomial in the figure
approaches ∞ as x approaches −∞, which does not seem reasonable given the
data. If the maximum value of k for which wk �= 0 is odd, then as x approaches
plus or minus infinity, the predictions will have opposite signs.

Example 7.15 (page 297) shows how more data can allow for better predic-
tions. Example 7.16 (page 298) shows how complex models can lead to over-
fitting the data. Given a fixed dataset, the problem arises as to how to make
predictions that make good predictions on test sets.

The test set error is caused by bias, variance, and/or noise:

• Bias, the error due to the algorithm finding an imperfect model. The bias
is low when the model learned is close to the ground truth, the process
in the world that generated the data. The bias can be divided into repre-
sentation bias caused by the representation not containing a hypothesis
close to the ground truth, and a search bias caused by the algorithm not
searching enough of the space of hypotheses to find the best hypothe-
sis. For example, with discrete features, a decision tree can represent any
function, and so has a low representation bias. With a large number of
features, there are too many decision trees to search systematically, and
decision tree learning can have a large search bias. Linear regression, if
solved directly using the analytic solution, has a large representation bias
and zero search bias. There would also be a search bias if the gradient de-
scent algorithm was used.

• Variance, the error due to a lack of data. A more complicated model,
with more parameters to tune, will require more data. Thus, with a fixed
amount of data, there is a bias–variance trade-off; you can have a compli-
cated model which could be accurate, but you do not have enough data
to estimate it appropriately (with low bias and high variance), or a sim-
pler model that cannot be accurate, but you can estimate the parameters
reasonably well given the data (with high bias and low variance).

• Noise, the inherent error due to the data depending on features not mod-
eled or because the process generating the data is inherently stochastic.

Overfitting results in overconfidence, where the learner is more confident
in its prediction than the data warrants. For example, in the predictions in
Figure 7.14 (page 294), trained on eight examples, the probabilities are much
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more extreme than could be justified by eight examples. The first prediction,
that there is approximately 2% chance of t being true when x, y, and z are
false, does not seem to be reasonable given only one example of this case. As
the search proceeds, it becomes even more confident. This overconfidence is
reflected in test error, as in the following example.

Example 7.17 Figure 7.16 shows a typical plot of how the training and test
errors change with the number of iterations of gradient descent. The error on
the training set decreases as the number of iterations increases. For the test set,
the error reaches a minimum and then increases as the number of iterations
increases. As it overfits to the training examples, errors in the test set become
bigger because it becomes more confident in its imperfect model.

The following sections discuss three ways to avoid overfitting. The first,
pseudocounts, explicitly allows for regression to the mean, and can be used for
cases where the representations are simple. The second, regularization, pro-

Figure 7.16: Training and test set error as a function of number of steps. On the
x-axis is the step count of a run of a learner using gradient descent. On the y-axis
is the mean squared error (the squared error divided by the number of examples)
for the training set (solid line) and the test set (dashed line)
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vides an explicit trade-off between model complexity and fitting the data. The
third, cross validation, is to use some of the training data to detect overfitting.

7.4.1 Pseudocounts

For many of the prediction measures, the optimal prediction on the training
data is the mean. In the case of Boolean data (assuming true is represented as
1, and false as 0), the mean can be interpreted as a probability. However, the
empirical mean, the mean of the training set, is typically not a good estimate of
the probability of new cases, as was shown in Example 7.15 (page 297).

A simple way both to solve the zero-probability problem and to take prior
knowledge into account is to use pseudo-examples, which are added to the
given examples. The number of pseudo-examples used is a nonnegative pseu-
docount or prior count, which is not necessarily an integer.

Suppose the examples are values v1, . . . , vn and you want to make a pre-
diction for the next v, written as v̂. When n = 0, assume you use prediction
a0 (which you cannot get from data as there are no data for this case). For the
other cases, use

v̂ =
c ∗ a0 + ∑i vi

c + n

where c is a nonnegative real-value constant, which is the number of assumed
fictional data points. This is assuming there are c pseudo-examples, each with
a value of a0. The count c does not have to be an integer, but can be any nonneg-
ative real value. If c = 0, the prediction is the mean value, but that prediction
cannot be used when there is no data (when n = 0). The value of c controls the
relative importance of the initial hypothesis (the prior) and the data.

Example 7.18 Consider how to better estimate the ratings of restaurants in
Example 7.15 (page 297). The aim is to predict the mean rating over the test
data, not the mean rating of the seen ratings.

You can use the existing data about other restaurants to make estimates
about the new cases, assuming that the new cases are like the old. Before seeing
anything, it may be reasonable to use the mean rating of the restaurants as
the value for a0. This would be like assuming that a new restaurant is like an
average restaurant (which may or may not be a good assumption). Suppose
you are most interested in being accurate for top-rated restaurants. To estimate
c, consider a restaurant with a single 5-star rating. You could expect this rating
to be like other 5-star ratings. Let a′ be the mean rating of the restaurants with
5-star ratings (where the mean is weighted by the number of 5-star ratings each
restaurant has). This is an estimate of the restaurant quality for a random 5-star
rating by a user, and so may be reasonable for the restaurant with a single
5-star rating. In the equation above, with n = 1 and ∑i vi = 5, this gives
a′ = (c ∗ a0 + 5)/(c + 1). Solving for c gives c = (5− a′)/(a′ − a0).

Suppose the mean rating for all restaurants (a0) is 3, and the mean rating
for the restaurants with a 5-star rating a′ is 4.5. Then c = 1/3. If the mean for
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restaurants with 5-star ratings was instead 3.5, then c would be 3. See Exercise
7.13 (page 324).

Section 17.2.1 (page 734) shows how to do better than this by taking into
account the other ratings of the person giving the rating.

Consider the following thought experiment (or, better yet, implement it):

• Select a number p at random uniformly from the range [0, 1]. Suppose
this is the ground truth for the probability that Y = 1 for a variable Y
with domain {0, 1}.

• Generate n training examples with P(Y= 1) = p. To do this, for each
example, generate by a random number uniformly in range [0, 1), and
record Y= 1 if the random number is less than p, and Y= 0 otherwise.
Let n1 be the number of examples with Y= 1 and so there are n0 = n− n1
samples with Y= 0.

• Generate some (e.g., 10) test cases with the same p.

The learning problem for this scenario is: from n0 and n1 create the estimator p̂
with the smallest error on the test cases. If you try this for a number of values
of n, such as 1, 2, 3, 4, 5, 10, 20, 100, 1000 and repeat this 1000 times, you will get
a good idea of what is going on.

With squared error or log loss, you will find that the empirical mean p̂ =
n1/(n0 + n1), which has the smallest error on the training set, works poorly on
the test set, with the log loss typically being infinity. The log loss is infinity
when one of 0 or 1 does not appear in the training set (so the corresponding ni
is zero) but appears in the test set.

Laplace smoothing, defined by p̂ = (n1 + 1)/(n0 + n1 + 2), has the smallest
log loss and squared error of all estimators on the test set. This is equivalent
to two pseudo-examples: one of 0 and one of 1. A theoretical justification for
Laplace smoothing is presented in Section 10.2 (page 460). If p were selected
from some distribution other than the uniform distribution, Laplace smoothing
may not result in the best predictor.

7.4.2 Regularization

Ockham’s razor specifies that you should prefer simpler hypotheses over more
complex ones. William of Ockham was an English philosopher who was born
in about 1285 and died, apparently of the plague, in 1349. (Note that “Occam”
is the French spelling of the English town “Ockham” and is often used.) He
argued for economy of explanation: “What can be done with fewer [assump-
tions] is done in vain with more.”

An alternative to optimizing fit-to-data is to optimize fit-to-data plus a term
that rewards model simplicity and penalizes complexity. The penalty term is a
regularizer.
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The typical form for a regularizer is to find a predictor Ŷ to minimize(
∑

e
loss(Ŷ(e), Y(e))

)
+ λ ∗ regularizer(Ŷ) (7.5)

where loss(Ŷ(e), Y(e)) is the loss of example e for predictor Ŷ, which specifies
how well Ŷ fits example e, and regularizer(Ŷ) is a penalty term that penalizes
complexity. The regularization parameter, λ, trades off fit-to-data and model
simplicity. As the number of examples increases, the leftmost sum tends to
dominate and the regularizer has little effect. The regularizer has most effect
when there are few examples. The regularization parameter is needed because
the error and complexity terms are typically in different units.

A hyperparameter is a parameter used to define what is being optimized,
or how it is optimized. It can be chosen by prior knowledge, past experience
with similar problems, or hyperparameter tuning to choose the best values
using cross validation (page 304).

The regularization parameter, λ above, is a hyperparameter. In learning a
decision tree one complexity measure is the number of leaves in a decision tree
(which is one more than the number of splits for a binary decision tree). When
building a decision tree, you could optimize the sum of a loss plus a function
of the size of the decision tree, minimizing(

∑
e∈Es

loss(Ŷ(e), Y(e))

)
+ γ ∗ |tree|

where |tree| is the number of leaves in a tree representation of Ŷ. This uses γ
instead of λ, following the convention in gradient-boosted trees (see below). A
single split on a leaf increases the number of leaves by 1. When splitting, a sin-
gle split is worthwhile if it reduces the sum of losses by γ. This regularization
is implemented in the decision tree learner (Figure 7.9 (page 284)).

For models where there are real-valued parameters, an L2 regularizer pe-
nalizes the sum of squares of the parameters. To optimize the squared error for
linear regression (page 288) with an L2 regularizer, minimize⎛⎝ ∑

e∈Es

(
Y(e)−

m

∑
i=0

wi ∗Xi(e)

)2
⎞⎠+ λ

(
m

∑
i=0

w2
i

)

which is known as ridge regression. Note that this is equivalent to λ pseudo-
examples with a value of 0 for the target, and a value of 1 for each input feature.

It is possible to use multiple regularizers, for example including both γ for
tree size and λ for L2 regularization.

To optimize the log loss (page 276) error for logistic regression (page 290)
with an L2 regularizer, minimize

−
(

∑
e∈Es

(
Y(e) log Ŷ(e) + (1− Y(e)) log(1− Ŷ(e))

))
+ λ

(
m

∑
i=0

w2
i

)
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where Ŷ(e) = sigmoid (∑m
i=0 wi ∗Xi(e)).

An L2 regularization is implemented for stochastic gradient descent by
adding

wi := wi − η ∗ λ ∗m/|Es| ∗wi

after line 24 of Figure 7.12 (page 292) (in the scope of “for each”). The m/|Es|
is because the regularization is λ for the whole dataset, but the update occurs
for each batch. Note that η ∗ λ ∗m/|Es| changes rarely, if ever, and so can be
stored until one of its constituents change.

An L1 regularizer adds a penalty for the sum of the absolute values of the
parameters.

To optimize the squared error for linear regression (page 288) with an L1
regularizer, minimize⎛⎝ ∑

e∈Es

(
Y(e)−

m

∑
i=0

wi ∗Xi(e)

)2
⎞⎠+ λ

(
m

∑
i=0
|wi|

)

which is called lasso (least absolute shrinkage and selection operator).
Adding an L1 regularizer to the log loss entails minimizing

−
(

∑
e∈Es

(
Y(e) log Ŷ(e) + (1− Y(e)) log(1− Ŷ(e))

))
+ λ

(
m

∑
i=0
|wi|

)
.

The partial derivative of the sum of absolute values with respect to wi is the
sign of wi, either 1 or −1 (defined as sign(wi) = wi/|wi|), at every point except
at 0. You do not need to make a step at 0, because the value is already a mini-
mum. To implement an L1 regularizer, each parameter is moved towards zero
by a constant, except if that constant would change the sign of the parameter,
in which case the parameter becomes zero. An L1 regularizer can be incorpo-
rated into the gradient descent algorithm of Figure 7.12 (page 292) by adding
after line 24 (in the scope of “for each”):

wi := sign(wi) ∗max(0, |wi| − η ∗ λ ∗m/|Es|).
This is called iterative soft-thresholding and is a special case of the proximal-
gradient method.

L1 regularization with many features tends to make many weights zero,
which means the corresponding feature is ignored. This is a way to imple-
ment feature selection. An L2 regularizer tends to make all of the parameters
smaller, but not zero.

7.4.3 Cross Validation

The problem with the previous methods is that they require a notion of sim-
plicity to be known before the agent has seen any data. It would seem that an
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agent should be able to determine, from the training data, how complicated a
model needs to be. Such a method could be used when the learning agent has
no prior information about the world.

Figure 7.17 shows a general pattern for learning and evaluating learning
algorithms. Recall (page 263) that you need to remove some of the examples
as the test set and only ever use these for the final evaluation. The aim is to
predict examples that the agent has not seen, and the test set acts as a surrogate
for these unseen examples, and so cannot be used in any part of training.

The idea of cross validation is to use part of the non-test data as a surrogate
for test data. In the simplest case, split the non-test data into two: a set of exam-
ples to train with, and a validation set, also called the dev (development) set
or holdout. The agent uses the remaining examples as the training set to build
models. The validation set can act as a surrogate for the test set in evaluating
the predictions from the training set.

The evaluation of the validation set is used to choose hyperparameters of
the learner. The hyperparameters are any choices that need to be made for the
learner, including the choice of the learning algorithm, the values of regular-
ization parameters, and other choices that affect the model learned.

Once the hyperparameters have been set, the whole non-test dataset can be
used to build a predictor, which is evaluated on the test set.

To see how the validation error could be used, consider a graph such as

Data

⎬ ⎫⎭⎬ ⎫⎭⎬ ⎫⎭ ｜｜｜｜｜｜

testvalidationtraining

learner predictor

Evaluationhyperparameters

predictor Evaluation

test error

learner

Figure 7.17: Using a validation set in learning
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the one in Figure 7.16 (page 300), but where the test errors instead come from
the validation set. The error on the training set gets smaller as the size of the
tree grows. However, on the validation set (and the test set), the error typically
improves for a while and then starts to get worse. The idea of cross validation
is to choose a parameter setting or a representation in which the error of the
validation set is a minimum. The hyperparameter here is how many steps to
train for before returning a predictor. This is known as early stopping. The
hypothesis is that the parameter setting where the validation set is a minimum
is also where the error on the test set is a minimum.

Typically, you want to train on as many examples as possible, because then
you get better models. However, a larger training set results in a smaller vali-
dation set, and a small validation set may or may not fit well just by luck.

To overcome this problem for small datasets, k-fold cross validation allows
examples to be used for both training and validation, but still use all of the data
for the final predictor. It has the following steps:

• Partition the non-test examples randomly into k sets, of approximately
equal size, called folds.

• To evaluate a parameter setting, train k times for that parameter setting,
each time using one of the folds as the validation set and the remaining
folds for training. Thus each fold is used as a validation set exactly once.
The accuracy is evaluated using the validation set. For example, if k = 10,
then 90% of the training examples are used for training and 10% of the
examples for validation. It does this 10 times, so each example is used
once in a validation set.

• Optimize parameter settings based on the error on each example when it
is used in the validation set.

• Return the model with the selected parameter settings, trained on all of
the data.

Example 7.19 One of the possible hyperparameters for the decision tree
learner is the minimum number of examples that needs to be in a child, so
the stopping criterion for the decision tree learner of Figure 7.9 (page 284) will
be true if the number of examples in a child is less than min child size. If this
threshold is too small, the decision tree learner will tend to overfit, and if it
is too large, it will tend not to generalize. Figure 7.18 (page 307) shows the
validation error for 5-fold cross validation as a function of the hyperparame-
ter min child size. For each point on the x-axis, the decision tree was run five
times, and the mean log loss was computed for the validation set. The error is
at a minimum at 39, and so this is selected as the best value for this parameter.
This plot also shows the error on the test set for trees with various settings for
the minimum number of examples, and 39 is a reasonable parameter setting
based on the test set. A learner does not get to see the error on the test set when
selecting a predictor.
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At one extreme, when k is the number of training examples, k-fold cross
validation becomes leave-one-out cross validation. With m examples in the
training set, it learns m times; for each example e, it uses the other examples
as training set, and evaluates on e. This is not practical if each training is done
independently, because it increases the complexity by the number of training
examples. However, if the model from one run can be adjusted quickly when
one example is removed and another added, this can be very effective.

One special case is when the data is temporal and the aim is to extrapolate;
to predict the future from the past. To work as a surrogate for predicting the
future, the test set should be the latest examples. The validation set can then
be the examples immediately before these. The analogy to leave-one-out cross
validation is to learn each example using only examples before it.

The final predictor to be evaluated on the test can use all of the non-test
examples in its predictions. This might mean adjusting some of the hyperpa-
rameters to account for the different size of the final training set.

7.5 Composite Models

Decision trees and (squashed) linear functions provide the basis for many other
supervised learning techniques. Although decision trees can represent any dis-
crete function, many simple functions have very complicated decision trees.

Figure 7.18: Validation error and test set error for determining the minimum
number of examples in a child needed to split in a decision tree learner
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Linear functions and linear classifiers (without inventing new features) are
very restricted in what they can represent.

One way to make the linear function more powerful is to have the inputs to
the linear function be some nonlinear function of the original inputs. Adding
these new features can increase the dimensionality, making some functions that
were not linear (or linearly separable) in the lower-dimensional space linear in
the higher-dimensional space.

Example 7.20 The exclusive-or function, x1 xor x2, is linearly separable in the
space where the dimensions are x1, x2, and x1x2, where x1x2 is a feature that
is true when both x1 and x2 are true. To visualize this, consider Figure 7.13(c);
with the product as the third dimension, the top-right point will be lifted out of
the page, allowing for a linear separator (in this case a plane) to go underneath.

A kernel function is a function that is applied to the input features to create
new features. For example, a product of features could either replace or aug-
ment the existing features. Adding such features can allow for linear separators
where there was none before. Another example is, for a feature x, adding x2 and
x3 to the features allows a linear learner to find the best degree-3 polynomial fit.
Note that when the feature space is augmented, overfitting can become more of
a problem. The use of the term kernel function is often restricted to cases where
learning in the augmented space can be implemented very efficiently, but that
is beyond the scope of this book.

Neural networks (Chapter 8) allow the inputs to the (squashed) linear func-
tion to be a squashed linear function with weights to be tuned. Having multi-
ple layers of squashed linear functions as inputs to (squashed) linear functions
allows more complex functions to be represented.

Another nonlinear representation is a regression tree, which is a decision
tree with a constant function at each leaf, which represents a piecewise con-
stant function. A decision tree for regression with a linear function at each
leaf represents a piecewise linear function. It is even possible to have neural
networks or other classifiers at the leaves of the decision tree. To classify a new
example, the example is filtered down the tree, and the classifier at the leaves
is then used to classify the example.

Another possibility is to use a number of classifiers that have each been
trained on the data and to combine their outputs using mode, median, or mean,
depending on the loss function (see Figure 7.5 (page 277)). In ensemble learn-
ing, an agent takes a number of learners and combines their predictions to
make a prediction for the ensemble. The algorithms being combined are called
base-level algorithms.

One simple yet effective composite model is to have an ensemble of deci-
sion trees, known as a random forest. The idea is to have a number of decision
trees, each of which can make a prediction on each example. Once the trees
have been trained, the predictions on the trees are combined, using a method
appropriate for the optimality criterion, such as the mode of the tree predic-
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tions for maximizing accuracy or the mean of the tree predictions for minimiz-
ing squared error or log loss.

In order to make this work effectively, the trees that make up the forest need
to make diverse predictions. There are a number of ways that you can ensure
diversity, including:

• Each tree could use a different subset of the examples to train on. If there
are many examples, each tree could use just a random subset of them.
In bagging, a random subset (with replacement) of |Es| examples – the
same size as the dataset – is selected for each tree to train on. In each of
these sets, some examples are not chosen and some are duplicated. On
average, each set contains about 63% of the original examples.

• A subset of the conditions could be used for each tree (or each split).
Rather than considering all of the conditions when selecting a split, a
random subset of them (e.g., a third of them) could be made available to
split on.

7.5.1 Boosting

In boosting, there is a sequence of learners in which each one learns from the
errors of the previous ones. The features of a boosting algorithm are:

• There is a sequence of base learners (that may be different from each
other or the same as each other), such as small decision trees or (squashed)
linear functions.

• Each learner is trained to fit the examples that the previous learners did
not fit well.

• The final prediction uses a mix (e.g., sum, weighted mean, or mode) of
the predictions of each learner.

The base learners can be weak learners, in that they do not need to be very
good; they just need to be better than random. These weak learners are then
boosted to be components in the ensemble that performs better than any of
them.

A simple boosting algorithm is functional gradient boosting, which can be
used for regression as follows. The algorithm is given the hyperparameter K,
which is the number of rounds of boosting, corresponding to the number of
base learners in the ensemble. The final prediction, as a function of the inputs,
is the sum

p0 + d1(X) + · · ·+ dK(X)

where p0 is an initial prediction, say the mean, and each di is the difference
from the previous prediction. The ith prediction is

pi(X) = p0 + d1(X) + · · ·+ di(X).
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Then pi(X) = pi−1(X) + di(X). Each di is constructed so that the error of pi is
minimal, given that pi−1 is fixed. At each stage, the base learner learns d̂i to
minimize

∑
e

loss(pi−1(e) + d̂i(e), Y(e)) = ∑
e

loss(d̂i(e), Y(e)− pi−1(e)).

for any loss based on the difference between the actual and predicated value.
This includes the losses considered for real-valued target features (page 269),
but does not include log loss, which is not of this form.

The ith learner learns di(e) to fit Yi(e)− pi−1(e). This is equivalent to learn-
ing from a modified dataset, where the previous prediction is subtracted from
the actual value of the training set. In this way, each learner is made to correct
the errors of the previous prediction.

The algorithm is shown in Figure 7.19. Each pi is a function that, given
an example, returns a prediction for that example. Ei is a new set of examples,
where for each e ∈ Es, the latest prediction, pi−1(e), is subtracted from the value
of the target feature Y(e). The new learner is therefore learning from the errors
of the old learner. The function di is computed by applying the base learner to
the examples Ei.

Ei could either be stored or the new targets for the examples can be gener-
ated as needed.

Example 7.21 Figure 7.20 (page 311) shows a plot of the squared error of the
validation set as the number of trees increases for functional gradient boosting

1: procedure Boosting learner(Xs, Y, Es, L, K)
2: Inputs
3: Xs: set of input features
4: Y: target feature
5: Es: set of examples from which to learn
6: L: base learner
7: K: number of components in the ensemble
8: Output
9: function to make prediction on examples

10: mean := ∑e∈Es Y(e)/|Es|
11: define p0(e) = mean
12: for each i from 1 to K do
13: let Ei = {〈Xs(e), Y(e)− pi−1(e)〉 for e ∈ Es}
14: let di = L(Ei)
15: define pi(e) = pi−1(e) + di(e)
16: return pk

Figure 7.19: Functional gradient-boosting regression learner
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of decision trees. The different lines are for different values of the parameter γ
in the decision tree learner. This is for the case where the minimum child size
is 20 (no nodes have fewer than 20 examples). The point for zero trees is the
error for predicting the mean. When γ = 10, the trees are degenerate and it
always predicts the mean. The other values of γ have similar errors for a single
tree. When γ = 1, the subsequent trees do not extract useful information. For
both the other values of γ, boosting helped improve the prediction. The code
is available as part of AIPython (aipython.org).

7.5.2 Gradient-Boosted Trees

Gradient-boosted trees are a mix of some of the techniques presented previ-
ously. They are a linear model (page 288) where the features are decision trees
(page 281) with binary splits, learned using boosting (page 309).

Let K be the number of boosting rounds, which corresponds to the number
of decision trees in the linear model.

Figure 7.20: Validation error of functional gradient boosting as a function of γ
and number of trees
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For regression, the prediction for example (xe, ye) is

ŷe =
K

∑
k=1

fk(xe)

where each fk is a decision tree. Each decision tree is represented by a vector
of weights, w, one weight for each leaf, and a function q that maps the input
features into the corresponding leaf. q is an implementation of the if–then–else
structure of the tree. wj is the jth component of w. The value of the decision
tree applied to an example with input feature values x is wq(x), the weight for
the leaf numbered q(x). |w| is the number of leaves in the tree, which is one
more than the number of splits in the tree.

For regression, the loss function is the regularized squared error(
∑

e
(ŷe − ye)

2

)
+

K

∑
k=1

Ω(fk).

The regularization term Ω(f ) = γ ∗ |w|+ 1
2 λ ∗ ∑j w2

j , where w is the vector of
weights for f ; γ and λ are nonnegative numbers. This allows for regularizing
on both the size of the tree and the values of the parameters.

For classification, the prediction is the sigmoid (or softmax) of the sum of
trees

ŷe = sigmoid(
K

∑
k=1

fk(xe))

and the error to be optimized is the sum of log loss with the same regularization
term used for regression:(

∑
e

logloss(ŷe, ye)

)
+

K

∑
k=1

Ω(fk).

Choosing Leaf Values

The model is learned using boosting (page 309), so the trees are learned one
at a time. Consider building the tth tree, where the previous trees are fixed.
Assume for now that the tree structure (q) for the tth tree is fixed. Consider a
single weight wj that is used for the examples that map to the jth leaf of the
tree. Let Ij = {e | q(xe) = j}, the set of training examples that map to the jth
leaf.

When choosing the value of wj to minimize loss, γ ∗ |w| does not depend
on the value of wj and so can be ignored in the minimization.

The tth tree is learned with the previous ones fixed. For regression, the loss
for the tth tree is

L(t) =
1
2

λ ∗∑
j

w2
j + ∑

e
(ye −

t

∑
k=1

fk(xe))
2 + constant
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where constant is the regularization values for the previous trees and the size,
which can be ignored when learning the parameters for the tth tree.

Ignoring the constant, this is the same as the squared error of the dataset
of differences between the observed values and the previous trees, for those
examples that map to this leaf, with λ extra pseudo-examples of value 0. Thus,

wj =
∑e∈Ij

(ye − ŷe
(t−1))

|Ij|+ λ

where ŷe
(t−1) = ∑t−1

k=1 fk(xe) is the previous prediction for example e.
For classification, the prediction is the sigmoid (or softmax) of the sum of

trees, and the error to be optimized for the tth tree is log loss with L2 regular-
ization:

ŷe
(t) = sigmoid(

t

∑
k=1

fk(xe))

L(t) =
1
2

λ ∗∑
j

w2
j + ∑

e
logloss(ŷe

(t), ye) + constant

where the constant again can be ignored in the minimization.
Taking the derivative of the loss with respect to wj:

∂

∂wj
L(t) = λ ∗wj + ∑

e∈Ij

(ŷe − ye)

where the sum is over examples in Ij because the predicted value is constant
with respect to wj outside of this set. Finding the weights where the derivative
is zero, which would be a minimum, is difficult to solve analytically.

For classification, starting with each wj in the new tree as zero, a single step
in the opposite direction of the gradient gives the weights for a new tree. A
second-order approximation (based on the Newton–Raphson method, which
we do not cover) provides a step size for the weight:

wj =
∑e∈Ij

(ye − ŷe
(t−1))

∑e∈Ij
ŷe

(t−1) ∗ (1− ŷe
(t−1)) + λ

where ŷe
(t−1) is the previous prediction for example e.

Choosing Splits

What remains is to choose the tree structure: choosing the splits of the tree.
This is done in a greedy fashion (as in the decision-tree learner of Figure 7.9).
Initially, the tree has a single leaf. The algorithm searches for a best leaf to
expand. For each leaf, it chooses a feature to split by searching through the
choices to make the split that most decreases the loss. For small datasets, the
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best split can be found by sorting the values on the feature and testing every
split. For larger datasets, suggested splits can be made by subsampling the
data or using pre-computed percentiles.

The regularization term γ gives a direct penalty for larger trees; splitting
stops when the optimal split does not decrease the loss by at least γ. Note that
the L2 regularization parameter, λ, when positive, also penalizes larger trees:
consider a split that provides no information; with the split, λ applied to each
child provides more regularization because each child has fewer examples, and
so will fit the training data worse.

The implementation of gradient-tree boosting for classification shown in

1: procedure Gradient boosted tree learner(Cs, Y, Es, K, λ, γ, η, css, ss)
2: Inputs
3: Cs: set of possible conditions
4: Y: target feature
5: Es: set of training examples
6: K: number of boosting rounds
7: λ: L2 regularization
8: γ: penalty for increasing tree size
9: η: weight shrinkage

10: css: proportion of features (columns) subsampled for each tree
11: ss: proportion of data subsampled for each tree
12: Output
13: function to predict a value of Y for an example
14: Ts := []
15: repeat K times
16: append Decision tree learner(sample(Cs, css), Y, sample(Es, ss), γ) to Ts
17: procedure leaf value(Es) � called by Decision tree learner
18: � Es is the set of training examples that reach this leaf
19: numerator := 0
20: denominator := λ
21: for e ∈ Es do
22: pred := sigmoid(∑t∈Ts t(e))
23: numerator := numerator + Y(e)− pred
24: denominator := denominator + pred ∗ (1− pred)
25: return η ∗ numerator/denominator
26: procedure sum loss(Es)
27: new val := leaf value(Es) � value of leaf that would be constructed
28: return ∑e∈Es logloss(sigmoid(new val + ∑t∈Ts t(e)), Y(e))

Figure 7.21: Gradient-boosted trees classification learner. Decision tree learner is
defined in Figure 7.9 (page 284)
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Figure 7.21 calls the decision-tree learner of Figure 7.9 (page 284) iteratively,
once for each decision tree in the ensemble. The gradient-boosted-tree learner
overrides the leaf value function called by Decision tree learner. The leaf value
is no longer the prediction for each example that reaches the leaf, but is a com-
ponent that goes into predicting the target value of examples that reach the
leaf. The function sample(S, p) returns a bag containing each member of S cho-
sen with probability p, without replacement. This allows for regularization by
subsampling the data or the features.

There are a number of hyperparameters that are used in Figure 7.21 to re-
duce overfitting:

• K, the number of boosting rounds, which is the number of trees in the
resulting ensemble.

• λ, the L2 regularization term.
• γ, the penalty for increasing the number of leaves by 1.
• η, the amount the weights for a tree are shrunk to make the algorithm

more conservative.
• css, the proportions of columns (features) that are used .
• ss, the proportion of the data used for each tree; e.g., if ss = 0.8, then 80%

of the data is selected for each tree.

The corresponding parameter names and default values for the open-source
packages XGBoost and LightGBM are given in Appendix B.1.

Other common hyperparameters include:

• The maximum depth of a tree.
• The minimum number of training examples that map to a child for a split

to be considered.
• The maximum number of leaves in a tree. Note that this value is a prop-

erty of the whole tree and is not a property of a single node. If used as a
criterion to stop when the number of leaves has been reached, the result
depends on how the leaves are selected. Rather than the depth-first algo-
rithm of Figure 7.9 (page 284), it is common to enumerate the leaves in a
best-first manner (choosing the best split based on all of the leaves).

7.6 Limitations

Even after the observation of the frequent or constant conjunction of ob-
jects, we have no reason to draw any inference concerning any object be-
yond those of which we have had experience.

– Hume [1739–40], Book I, Part 3, Section 12

One might think that one can learn just based on the data, without any need
to appeal to biases or any extra information. This is not possible. There are a
number of results that show why preferences over hypotheses are needed.
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The no-free-lunch theorem for machine learning specifies that no matter
what the training set, for any two definitive predictors A and B, there are as
many functions from the input features to the target features that are consis-
tent with the evidence for which A is better than B on the off-training set (the
examples not in the training set) as when B is better than A on the off-training
set. This includes when B is chosen randomly or even is the worst predictor
on the training set. Thus, if the functions are all equally likely to be the ground
truth, no predictor is better than any other predictor.

As a simple illustration of this, consider the case with m-Boolean input fea-
tures, and the aim is a Boolean classification. There are 2m assignments of the
input features, and so 22m

functions from assignments into {0, 1}. With no
probability to exploit (or assuming a uniform distribution over functions), the
best one can do is to use 2m bits to represent a function – one bit for each as-
signment, which is effectively just memorizing the training data. A training set
of size n will set n of these bits, but the remaining bits – those that are used for
off-training examples – are free to be assigned in any way.

This result does not mean learning is impossible. Rather, learning is possi-
ble because not all functions are equally likely. Or put another way, learning
would be impossible if the world was random, however, because we can learn,
the world cannot be random. It does mean that you cannot learn just from data
without any extra information; you need a bias (page 264).

The most common bias is to choose the simplest hypothesis that fits the data
by appealing to Ockham’s razor (page 302). The simplest hypothesis depends
on the language used to represent hypotheses and how data is represented, as
shown in the following example.

Example 7.22 Consider defining propositions using three Boolean variables,
x, y, and z, as in Example 7.11 (page 288). The set of assignments is shown in
Figure 7.22(a). Suppose, instead, that the space of assignments was represented
using variables a, b, and c, where a ≡ x⊕ y⊕ z, b ≡ (x⊕ y), and c ≡ (y⊕ z),
where ⊕ is exclusive-or (Figure 5.1 (page 179)). The exclusive-or of proposi-
tions is true whenever an odd number of them are true. Figure 7.22(b) shows
the truth values for a, b, and c given the values of x, y, and z.

As can be verified from the figure, the same space can be described using
features a, b, and c as using x, y, and z. What is simple in one representation may
be complicated in the other. For example, x⊕ y⊕ z is complicated to represent
using x, y, z – it requires a big decision tree and is not linearly separable – but
is trivial in the other; it is just a. Similarly a⊕ b⊕ c is complicated to represent
using a, b, and c, but is trivial in the other; it is just y. The representation for t –
see Figure 7.22(c) – is more complicated in terms of one representation than the
other.

One might think that x, y, and z is simpler because the other has a complex
description in terms of x, y, and z. However, x, y, and z also has a complex
description in terms of a, b, and c; see Exercise 7.15 (page 325).
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It might appear problematic that simplicity depends on the language and
the vocabulary. However, language has evolved to be useful, so this should
not necessarily make one suspicious. Data is often represented to make learn-
ing useful, and to make biases towards simplicity appropriate. For example,
there are many ways to represent an image; representing an image as a grid of
pixel values enables some learning algorithms to work well. However, a repre-
sentation that allows the image to be incrementally improved as it is delivered
over time may cause the same algorithms to fail to learn.

7.7 Social Impact

Preventing discrimination requires that we have means of detecting it,
and this can be enormously difficult when human beings are making the
underlying decisions. As applied today, algorithms can increase the risk
of discrimination. But . . . algorithms by their nature require a far greater
level of specificity than is usually possible with human decision making,
and this specificity makes it possible to probe aspects of the decision in
additional ways. With the right changes to legal and regulatory systems,
algorithms can thus potentially make it easier to detect – and hence to help
prevent – discrimination.

– Kleinberg et al. [2020]

Machine learning algorithms make predictions based on the selection of
input features, the target, the data, and the evaluation criteria. Numerous ma-
chine learning models have been shown to incorporate systematic biases based
on race, gender, and level of poverty. These can depend crucially on the input
features and target. Obermeyer et al. [2019] report on a learned model for deter-
mining which patients will require more intensive care. Using historical data,
the model predicted the costs of medical treatments, with the higher predicted

x y z a b c t
0 0 0 0 0 0 0
0 0 1 1 0 1 1
0 1 0 1 1 1 0
0 1 1 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 1 1 0
1 1 0 0 0 1 1
1 1 1 1 0 0 1

(a) (b) (c)

Figure 7.22: Alternative representations of a Boolean space
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costs getting more proactive treatment. They found that for the same symp-
toms, black people were systematically recommended to require less proactive
treatment. This occurred because blacks have historically had less money spent
on their healthcare. Even though the race was not an input feature, it was cor-
related with other features that were used in the prediction. While the amount
on money spent may be an easy to measure proxy for health for those juris-
dictions that track money, it does not correspond to the health, which is much
harder to measure. Obermeyer et al. [2019] argued that the predictive model
was flawed because the data was biased. In their case, they worked with the
model designers to make the target more appropriate for the actual decision,
and developed models that were much fairer.

Understanding the reasons behind predictions and actions is the subject of
explainable AI. It might seem obvious that it is better if a system can explain
its conclusion. Having a system that can explain an incorrect conclusion, par-
ticularly if the explanation is approximate, might do more harm than good.

There have been similar cases of biases in training data in many other
domains, including models that predict crime as used in predictive policing
[Lum and Isaac, 2016], and models of who to hire [Ajunwa, 2020]. The algo-
rithms might have worked as intended, predicting patterns in the data to train
them, but the data was biased. Datasets for facial recognition lead to models
that are more prone to false positives for some populations than others [Buo-
lamwini and Gebru, 2018], and mugshot datasets exacerbate over-surveillance
of marginalized populations, perpetuating systemic racism.

People might legitimately disagree on the appropriate label for training
data, such as toxicity and misinformation of social media posts. Different
groups of people may have irreconcilable disagreements about the ground
truth. Predicting the mode or average label can mean that minorities, who
are often most at risk, are ignored [Gordon et al., 2021].

A model that performs well on held-out (validation) data might not work
well in an application [Liao et al., 2021], due to internal or external validity.
Internal validity refers to issues that arise in the learning problem in isolation,
such as overfitting to standard validation sets – choosing the solutions that are
best on validation or test sets – and using them for new problems. External
validity refers to problems that arise on using the model for some task for
which it might seem appropriate, such as due to differences in the dataset or
the appropriate evaluation.

Data is invariably based on the past, but you might not want the future to
be like the past. As Agrawal et al. [2022] argue, prediction is not an end in
itself. Knowing predictions based on the past is useful, but does not directly
specify what you should do. What an agent should do (page 14) also depends
on the values and preferences as well as what actions are available. How to
make decisions based on predictions is the basis for much of the rest of the
book.
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7.8 Review

The following are the main points you should have learned from this chapter:

• Learning is the ability of an agent to improve its behavior based on expe-
rience.

• Supervised learning is the problem of predicting the target of a new in-
put, given a set of input–target pairs.

• Given some training examples, an agent builds a representation that can
be used for new predictions.

• Linear models and decision trees are representations which are the basis
for more sophisticated models.

• Overfitting occurs when a prediction fits the training set well but does
not fit the test set or future predictions.

• Gradient-boosted trees are an efficient and effective representation for
many learning problems.

• Data is invariably about the past. If data is used for acting in the future,
the predictor may no longer work as well, and we might want the future
to be different from the past.

7.9 References and Further Reading

For overviews of machine learning, see Mitchell [1997], Duda et al. [2001],
Bishop [2008], Hastie et al. [2009], and [Murphy, 2022]. Halevy et al. [2009]
discuss the unreasonable effectiveness of big data.

The UCI machine learning repository [Dua and Graff, 2017] is a collection of
classic machine learning datasets. Kaggle (https://www.kaggle.com) runs ma-
chine learning competitions and has many datasets available for testing algo-
rithms.

The collection of papers by Shavlik and Dietterich [1990] contains many
classic learning papers. Michie et al. [1994] give empirical evaluation of many
early learning algorithms on multiple problems. Davis and Goadrich [2006]
discuss precision, recall, and ROC curves. Settles [2012] overviews active learn-
ing.

The approach to combining expert knowledge and data was proposed by
Spiegelhalter et al. [1990].

Logistic regression dates back to 1832 by Verhulst [see Cramer, 2002], and
has a long history in many areas, including the economics Nobel prize to Mc-
Fadden [2000]. Decision tree learning is discussed by Breiman et al. [1984] and
Quinlan [1993]. Gelman et al. [2020] provide theory and practice for linear and
logistic regression, with many practical examples. Ng [2004] compares L1 and
L2 regularization for logistic regression. Hierarchical softmax is due to Morin
and Bengio [2005].

Feurer and Hutter [2019] overview automatic hyperparameter optimiza-
tion, or hyperparameter tuning, part of autoML [Hutter et al., 2019], which
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involves search to choose algorithms and hyperparameters for machine learn-
ing. Shahriari et al. [2016] review Bayesian optimization, one of the most use-
ful tools for hyperparameter optimization. Stanley et al. [2019] and Real et al.
[2020] show how genetic algorithms (page 159) can be successfully used for
autoML.

Random forests were introduced by Breiman [2001], and are compared by
Dietterich [2000a] and Denil et al. [2014]. For reviews of ensemble learning, see
Dietterich [2002]. Boosting is described in Schapire [2002] and Meir and Rätsch
[2003]. Gradient tree boosting is by Friedman [2001]. The notation used in that
section follows Chen and Guestrin [2016], who develop the algorithm in much
more generality, and discuss many efficiency refinements. XGBoost [Chen and
Guestrin, 2016] and LightGBM [Ke et al., 2017] are modern implementations
(see Appendix B).

The no-free-lunch theorem for machine learning is due to Wolpert [1996].
Rudin et al. [2022] review interpretable machine learning, which involves

building models that can be understood.
For research results on machine learning, see the journals Journal of Machine

Learning Research (JMLR), Machine Learning, the annual International Conference
on Machine Learning (ICML), the Proceedings of the Neural Information Processing
Society (NeurIPS), or general AI journals such as Artificial Intelligence and the
Journal of Artificial Intelligence Research, and many specialized conferences and
journals.

7.10 Exercises

Exercise 7.1 The aim of this exercise is to prove and extend the table of Figure
7.5 (page 277).

(a) Prove the optimal predictions for training data of Figure 7.5. To do this, find
the minimum value of the absolute error, the squared error, the log loss, and
the value that gives the maximum likelihood. The maximum or minimum
value is either at an end point or where the derivative is zero. [Hints: For
squared error and log loss, take the derivative and set to zero. For the abso-
lute error, consider how the error changes when moving from one data point
to the next (in order). It might help to consider first the case where the data
points are at consecutive integers, and then generalize.]

(b) To determine the best prediction for the test data, assume that the data cases
are generated stochastically according to some true parameter p. [See the
thought experiment (page 302).] Try the following for a number of different
values for p selected uniformly in the range [0, 1]. Generate n training exam-
ples (try various values for n, some small, say 2, 3, or 5, and some large, say
1000) by sampling with probability p0 from these training examples. Let n0
be the number of false examples and n1 be the number of true examples in
the training set (so n0 + n1 = n). Generate a test set of size, say, 20, that con-
tains many test cases using the same parameter p. Repeat this for 1000 times
to get a reasonable average. Which of the following gives a lower error on
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the test set for each of the optimality criteria: (I) absolute error; (II) squared
error; and (III) log loss.

(i) The mode.
(ii) n1/n.

(iii) If n1 = 0, use 0.001, if n0 = 0, use 0.999, else use n1/n. Try this for
different numbers when the counts are zero.

(iv) (n1 + 1)/(n + 2)
(v) (n1 + α)/(n + 2α) for different values of α > 0.

(vi) Another predictor that is a function of n0 and n1.

(For the mathematically sophisticated, try to prove what the optimal predic-
tor is for each criterion.)

Exercise 7.2 In the context of a point estimate of a feature with domain {0, 1}
with no inputs, it is possible for an agent to make a stochastic prediction with a
parameter p ∈ [0, 1] such that the agent predicts 1 with probability p and predicts
0 otherwise. For each of the following error measures, give the expected error on
a training set with n0 occurrences of 0 and n1 occurrences of 1 (as a function of p).
What is the value of p that minimizes the error? Is this worse or better than the
prediction of Figure 7.5 (page 277)?

(a) Mean absolute loss.
(b) Mean squared loss.
(c) Worst-case error.

Exercise 7.3

(a) Prove that for any two predictors A and B on the same dataset, if A domi-
nates B (page 279), that is, A has a higher true-positive rate and lower false-
positive rate than B, then A has a lower cost (and so is better) than B for all
cost functions that depend only on the number of false positives and false
negatives (assuming the costs to be minimized are non-negative). [Hint:
Prove that the conditions of the statement imply the number of false nega-
tives and the number of false positives is less (or, perhaps, equal), which in
turn implies the conclusion.]

(b) Consider the predictors (a) and (c) in Figure 7.7 (page 280).

(i) Which of (a) and (c) has a better recall (true-positive rate)? (See Exam-
ple 7.7.)

(ii) What is the precision of (a)? (Give both a ratio and the decimal value
to 3 decimal points.)

(iii) What is the precision of (c)?
(iv) Which of (a) and (c) is better in terms of precision?
(v) Suppose false positives were 1000 times worse than false negatives,

which of (a) and (c) would have a lower cost? (Consider the cost of
a false negative to be 1 and a false positive to be 1000.)

(vi) Suppose false negatives were 1000 times worse than false positives,
which of (a) and (c) would have a lower cost?
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Exercise 7.4 Suppose you need to define a system that, given data about a per-
son’s TV-watching likes, recommends other TV shows the person may like. Each
show has features specifying whether it is a comedy, whether it features doctors,
whether it features lawyers, and whether it has guns. You are given the fictitious
examples of Figure 7.23 about whether the person likes various TV shows. We
want to use this dataset to learn the value of Likes (i.e., to predict which TV shows
the person would like based on the attributes of the TV show).

This is designed to be small enough to do it manually, however you may find
the AIPython (aipython.org) code or useful to check your answers.

(a) Suppose the error is the sum of absolute errors. Give the optimal decision
tree with only one node (i.e., with no splits). What is the error of this tree?

(b) Do the same as in part (a), but with the squared error.
(c) Suppose the error is the sum of absolute errors. Give the optimal decision

tree of depth 2 (i.e., the root node is the only node with children). For each
leaf in the tree, give the examples that are filtered to that node. What is the
error of this tree?

(d) Do the same as in part (c) but with the squared error.
(e) What is the smallest tree that correctly classifies all training examples? Does

a top-down decision tree that optimizes the information gain at each step
represent the same function?

(f) Give two instances not appearing in the examples of Figure 7.23 and show
how they are classified using the smallest decision tree. Use this to explain
the bias inherent in the tree. (How does the bias give you these particular
predictions?)

(g) Is this dataset linearly separable? Explain why or why not.

Exercise 7.5 Consider the decision tree learning algorithm of Figure 7.9 (page 284)
and the data of Figure 7.1 (page 268). Suppose, for this question, the stopping cri-
terion is that all of the examples have the same classification. The tree of Figure

Example Comedy Doctors Lawyers Guns Likes
e1 false true false false false
e2 true false true false true
e3 false false true true true
e4 false false true false false
e5 false false false true false
e6 true false false true false
e7 true false false false true
e8 false true true true true
e9 false true true false false
e10 true true true false true
e11 true true false true false
e12 false false false false false

Figure 7.23: Training examples for Exercise 7.4
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7.8 (page 282) was built by selecting a feature that gives the maximum information
gain. This question considers what happens when a different feature is selected.

(a) Suppose you change the algorithm to always select the first element of the
list of features. What tree is found when the features are in the order [Author,
Thread, Length, WhereRead]? Does this tree represent a different function than
that found with the maximum information gain split? Explain.

(b) What tree is found when the features are in the order [WhereRead, Thread,
Length, Author]? Does this tree represent a different function than that found
with the maximum information gain split or the one given for the preceding
part? Explain.

(c) Is there a tree that correctly classifies the training examples but represents a
different function than those found by the preceding algorithms? If so, give
it. If not, explain why.

Exercise 7.6 In the decision tree learner of Figure 7.9 (page 284), it is possible to
mix the leaf predictions (what is returned by leaf value) and which loss is used in
sum loss. For each loss in the set {0–1 loss, absolute loss, squared loss, log loss}, and
for each leaf choice in {empirical distribution, mode, median}, build a tree to greedily
optimize the loss when choosing the split, and use the leaf choice. For each tree,
give the number of leaves and the evaluation of a test set for each loss. Try this for
at least two datasets.

(a) Which split choice gives the smallest tree?
(b) Is there a loss that is consistently improved by optimizing a different loss

when greedily choosing a split?
(c) Try to find a different leaf choice that would be better for some optimization

criterion.
(d) For each optimization criterion, which combination of split choice and leaf

choice has the best performance on the test set?

Exercise 7.7 The aim of this exercise is to determine the size of the space of deci-
sion trees. Suppose there are n binary features in a learning problem. How many
different decision trees are there? How many different functions are represented
by these decision trees? Is it possible that two different decision trees give rise to
the same function?

Exercise 7.8 Implement a decision tree learner that handles input features with
ordered domains. You can assume that any numerical feature is ordered. The
condition should be a cut on a single variable, such as X ≤ v, which partitions the
training examples according to the value v. A cut-value can be chosen for a feature
X by sorting the examples on the value of X, and sweeping through the examples
in order. While sweeping through the examples, the evaluation of each partition
should be computed from the evaluation of the previous partition. Does this work
better than, for example, selecting the cuts arbitrarily?

Exercise 7.9 Give the weights for a logistic regression model that can approxi-
mate the following logical operations. Assume true is represented as 1, and false
as 0. Assume that sigmoid(5) is a close enough approximation to 1, sigmoid(−5) is
close enough to 0.
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(a) and: x1 ∧ x2

(b) or: x1 ∨ x2

(c) negation: ¬x1

(d) nand: ¬(x1 ∧ x2). Note that nand (not and) is of interest because all Boolean
functions can be built using nand.

Use w0 for the bias term (the weight multiplied by 1) and wi is the weight for xi.

Exercise 7.10 Show how gradient descent can be used for learning a linear func-
tion that minimizes the absolute error. [Hint: Do a case analysis of the error; for
each example the absolute value is either the positive or the negative of the value.
What is appropriate when the value is zero?]

Exercise 7.11 Consider minimizing Equation (7.1) (page 289), which gives the
error of a linear prediction. This can be solved by finding the zero(s) of its deriva-
tive. The general case involves solving linear equations, for which there are many
techniques, but it is instructive to do a simple case by hand.

(a) Give a formula for the weights that minimize the error for the case where
n = 2 (i.e., when there are only two input features). [Hint: For each weight,
differentiate with respect to that weight and set to zero. Solve the resulting
equations.]

(b) Write pseudocode to implement this.
(c) Why is it hard to minimize the error analytically when using a sigmoid func-

tion as an activation function, for n = 2? (Why doesn’t the same method as
in part (a) work?)

Exercise 7.12 Suppose you want to optimize the mean squared loss (page 270)
for the sigmoid of a linear function.

(a) Modify the algorithm of Figure 7.12 (page 292) so that the update is propor-
tional to the gradient of the squared error. Note that this question assumes
you know differential calculus, in particular, the chain rule for differentia-
tion.

(b) Does this work better than the algorithm that minimizes log loss when eval-
uated according to the squared error?

Exercise 7.13 Consider how to estimate the quality of a restaurant from the rat-
ings of 1 to 5 stars as in Example 7.18 (page 301).

(a) What would this predict for a restaurant that has two 5-star ratings? How
would you test from the data whether this is a reasonable prediction?

(b) Suppose you wanted not to optimize just for the 5-star restaurants, but for
all restaurants. How can this be done?

(c) Can c, as computed in Example 7.18, be negative? Give a scenario where this
might occur.

(d) Why might we choose not to use the average rating for a0? What else might
you use? [Hints: A new restaurant may be quite different from a well-
established restaurant. Picking a restaurant at random, and then a rating
at random, will have a different average than picking a rating at random.]
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It might be useful to try this on some real data. For example, Movielens makes
a dataset of movie ratings available, which can be used to test such hypotheses
(albeit on movies, not restaurants).

Exercise 7.14 It is possible to define a regularizer to minimize ∑e(loss(Ŷ(e), Y(e))+
λ ∗ regularizer(Ŷ)) rather than formula (7.5) (page 303). How is this different than
the existing regularizer? [Hint: Think about how this affects multiple datasets or
for cross validation.]

Suppose λ is set by k-fold cross validation, and then the model is learned for
the whole dataset. How would the algorithm be different for the original way(s) of
defining a regularizer and this alternative way? [Hint: There is a different number
of examples used for the regularization than there is the full dataset; does this
matter?] Which works better in practice?

Exercise 7.15 Given the parameterizations of Example 7.22 (page 316):

(a) When the features are a, b, and c, what decision tree will the decision-tree
learning algorithm find to represent t (assuming it maximizes information
gain and only stops when all examples at a leaf agree)?

(b) When the features are a, b, and c, what is a smallest decision tree that can
represent t? How does this compare to using x, y, and z.

(c) How can x, y, and z be defined in terms of a, b, and c?
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Chapter 8

Neural Networks and Deep
Learning

Deep learning allows computational models that are composed of multiple
processing layers to learn representations of data with multiple levels of
abstraction. These methods have dramatically improved the state-of-the-
art in speech recognition, visual object recognition, object detection and
many other domains such as drug discovery and genomics. Deep learning
discovers intricate structure in large data sets by using the backpropaga-
tion algorithm to indicate how a machine should change its internal pa-
rameters that are used to compute the representation in each layer from
the representation in the previous layer. Deep convolutional nets have
brought about breakthroughs in processing images, video, speech and au-
dio, whereas recurrent nets have shone light on sequential data such as
text and speech.

– Y. LeCun, Y. Bengio, and G. Hinton [2015]

The previous chapter assumed that the input were features; you might won-
der where the features come from. The inputs to real-world agents are diverse,
including pixels from cameras, sound waves from microphones, or character
sequences from web requests. Using these directly as inputs to the methods
from the previous chapter often does not work well; useful features need to be
created from the raw inputs. This could be done by designing features from
the raw inputs using feature engineering. Learned features, however, are
now state-of-the-art for many applications, and can beat engineered features
for cases that have abundant data.

This chapter is about how to learn features. The methods here learn features
that are useful for the tasks trained on, even though they may not have an
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interpretation that can be easily explained. Often features learned for some
tasks are useful for other tasks.

Learning the features that are useful for prediction is called representation
learning. The most common form of representation reasoning is in terms of
multilayer neural networks. These networks are inspired by the neurons in the
brain but do not actually simulate neurons. Artificial neurons are called units.
Each unit has many real-valued parameters. Large artificial neural networks
(in 2022) contain on the order of one hundred billion (1011) trained parameters,
which is approximately the number of neurons in the human brain. Neurons
are much more complicated than the units in artificial neural networks. For
example, the roundworm Caenorhabditis elegans, which is about 1 mm long, has
302 neurons and exhibits complex behavior, which simple models of neurons
cannot account for.

As pointed out by LeCun et al., above, artificial neural networks (ANNs)
have had considerable success in unstructured and perception tasks for which
there is abundant training data, such as for image interpretation, speech recog-
nition, machine translation, and game playing. The models used in state-of-
the-art applications are trained on huge datasets, including more cats than any
one person has ever seen, more sentences than any one person has ever read,
and more games than any one person has played. They can take advantage of
the data because they are very flexible, with the capability of inventing low-
level features that are useful for the higher-level task.

Artificial neural networks are interesting to study for a number of reasons:

• As part of neuroscience, to understand real neural systems, researchers
are simulating the neural systems of simple animals such as worms, which
promises to lead to an understanding of which aspects of neural systems
are necessary to explain the behavior of these animals.

• Some researchers seek to automate not only the functionality of intelli-
gence (which is what the field of artificial intelligence is about) but also
the mechanism of the brain, suitably abstracted. One hypothesis is that
the best way to build the functionality of the brain is to use the mecha-
nism of the brain. This hypothesis can be tested by attempting to build
intelligence using the mechanism of the brain, as well as attempting it
without using the mechanism of the brain.

• The brain inspires a new way to think about computation that contrasts
with traditional computers. Unlike conventional computers, which have
a few processors and a large but essentially inert memory, the brain con-
sists of a huge number of asynchronous distributed processes, all running
concurrently with no master controller. Conventional computers are not
the only architecture available for computation. Current neural network
systems are often implemented on parallel architectures, including GPUs
and specialized tensor processing units.

• As far as learning is concerned, neural networks provide a different mea-
sure of simplicity as a learning bias than, for example, boosted deci-
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sion trees. Multilayer neural networks, like decision trees, can represent
any function of a set of discrete features. However, the bias is different;
functions that correspond to simple neural networks do not necessarily
correspond to simple ensembles of decision trees. In neural networks,
low-level features that are useful for multiple higher-level features are
learned.

8.1 Feedforward Neural Networks

There are many different types of neural networks. A feedforward neural net-
work implements a prediction function given inputs x as

f (x) = fn(fn−1(. . . f2(f1(x)))). (8.1)

Each function fi maps a vector (array or list) of values into a vector of values.
The function fi is the ith layer. The number of functions composed, n, is the
depth of the neural network. The last layer, fn, is the output layer. The other
layers are called hidden layers. Sometimes the input, x, is called the input
layer. Each component of the output vector of a layer is called a unit. The
“deep” in deep learning refers to the depth of the network.

In a feedforward network, each layer fi is a linear function (page 288) with
learnable parameters of each output given the input, similar to linear or logis-
tic regression, followed by a nonlinear activation function, φ (page 289). The

input layer

output layer

hidden layer

complete linear function

activation function

complete linear function

activation function

complete linear function

hidden layer

1

1

1

activation function

Figure 8.1: A feedforward neural network of depth three. On the bottom is the
input layer which is fed the input features. On the top is the output layer that
makes predictions for the target features. In each dense linear function, the left-
most input is clamped at 1, and there is a parameter for each arc. The activation
function is applied to each value
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linear function takes a vector in of values for the inputs to the layer (and, as
in linear regression (page 288), an extra constant input that has value “1”), and
returns a vector out of output values, so that

out[j] = φ(∑
k

in[k] ∗w[k, j])

for a two-dimensional array w of weights. The weight associated with the extra
1 input is the bias. There is a weight w[i, j] for each input–output pair of the
layer, plus a bias for each output. The outputs of one layer are the inputs to the
next. See Figure 8.1 (page 329).

The activation function φ for the hidden layers is a nonlinear function. If it
is a linear function (or the identity), the layer is redundant as a linear function
of a linear function is another linear function. An activation function should be
(almost everywhere) differentiable so that methods based on gradient descent
work.

A common activation function for hidden layers is the rectified linear unit
(ReLU): defined by φ(x) = max(0, x). That is

φ(x) =
{

0 if x < 0
x if x ≥ 0.

φ has derivative 0 for x < 0 and 1 for x > 0. Although it does not have a
derivative for x = 0, assume the derivative is 0. If all the hidden layers use
ReLU activation, the network implements a piecewise linear function.

The activation function for the output layer depends on the type of the
output y and the error function (loss) that is being optimized.

• If y is real and the average squared loss (page 270) is optimized, the acti-
vation function is typically the identity function: φ(x) = x.

• If y is Boolean with binary log loss (page 276) optimized, the activa-
tion function is typically the sigmoid (page 290): φ(x) = sigmoid(x) =
1/(1 + exp(−x)). Sigmoid has a theoretical justification in terms of prob-
ability (page 400).

• If y is categorical, but not binary, and categorical log loss (page 273) is
optimized, the activation function is typically softmax (page 295). The
output layer has one unit for each value in the domain of y.

In each of these choices, the activation function and the loss complement each
other to have a simple derivative. For each of these, the derivative of the error
is proportional to Ŷ(e)− Y(e).

Example 8.1 Consider the function with three Boolean inputs x, y, and z and
where the Boolean target has the value of y if x is true, and has the value of z if x
is false (see Figure 7.10 (page 288)). This function is not linearly separable (see
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Example 7.13 (page 294)) and logistic regression fails for a dataset that follows
this structure (Example 7.11 (page 288)).

This function can be approximated using a neural network with one hidden
layer containing two units. As the target is Boolean, a sigmoid is used for the
output.

The function is equivalent to the logical formula (x∧ y) ∨ (¬x∧ z). Each of
these operations can be represented in terms of rectified linear units or approx-
imated by sigmoids. The first layer can be represented as the function with two
outputs, h1 and h2, defined as

h1 = relu(x + y− 1)
h2 = relu(−x + z).

Then h1 is 1 when (x ∧ y) is true and h2 is 1 when (¬x ∧ z) is true, and they are
0 otherwise. The output is sigmoid(−5+ 10 ∗ h1 + 10 ∗ h2), which approximates
the function h1 ∨ h2 with approximately a 0.7% error. The resulting two-layer
neural network is shown in Figure 8.2.

Neural networks can have multiple real-valued inputs. Non-binary cate-
gorical features can be transformed into indicator variables (page 286), which
results in a one-hot encoding.

The width of a layer is the number of elements in the vector output of the
layer. The width of a neural network is the maximum width over all layers.
The architectural design of a network includes the depth of the network (num-
ber of layers) and the width of each hidden layer. The size of the output and
input are usually specified as part of the problem definition. A network with
one hidden layer – as long as it is wide enough – can approximate any con-
tinuous function on an interval of the reals, or any function of discrete inputs

x y1

-1
0

1 1-1 0

-5
10 10

ReLU ReLU

Sigmoid

z

1
0

1

Figure 8.2: A neural network with one hidden layer for “if x then y else z” with
ReLU hidden activation and sigmoid output activation functions
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to discrete outputs. The width required may be prohibitively wide, and it is
typically better for a network to be deep than be very wide. Lower-level layers
can provide useful features to make the upper layers simpler.

8.1.1 Parameter Learning

Backpropagation implements (stochastic) gradient descent for all weights. Re-
call that stochastic gradient descent (page 291) involves updating each weight
w proportionally to − ∂

∂w error(e), for each example e in a batch.
There are two properties of differentiation used in backpropagation.

• Linear rule: the derivative of a linear function, aw + b, is given by

∂

∂w
(aw + b) = a

so the derivative is the number that is multiplied by w in the linear func-
tion.

• Chain rule: if g is a function of w and function f , which does not depend
on w, is applied to g(w), then

∂

∂w
f (g(w)) = f ′(g(w)) ∗ ∂

∂w
g(w)

where f ′ is the derivative of f .

Let f (e) = fn(fn−1(. . . f2(f1(xe)))), the output of the prediction function (Equa-
tion (8.1)) for example e, with input features xe. The fi are parametrized by
weights. Suppose vi = fi(fi−1(. . . f2(f1(xe)))), which means vi = fi(vi−1) and
v0 = xe. The values for vi for 1 ≤ i ≤ n can be computed with one pass through
the nested functions.

Consider a single weight w that is used in the definition of fj. The fi for i �= j
do not depend on w. The derivative of error(f (e)) with respect to weight w:

∂

∂w
error(f (e)) = error′(vn) ∗ ∂

∂w
fn(vn−1)

= error′(vn) ∗ ∂

∂w
fn(fn−1(vn−2))

= error′(vn) ∗ f ′n(vn−1) ∗ ∂

∂w
(fn−1(vn−2))

= error′(vn) ∗ f ′n(vn−1) ∗ f ′n−1(vn−2) ∗ ∂

∂w
(fn−2(vn−3))

= error′(vn) ∗ f ′n(vn−1) ∗ f ′n−1(vn−2) ∗ · · · ∗ ∂

∂w
(fj(vj−1))

where f ′i is the derivative of fi with respect to its inputs. The expansion can stop
at fj. The last partial derivative is not an instance of the chain rule because vj−1
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is not a function of w. Instead, the linear rule is used, where w is multiplied by
the appropriate component of vj−1.

Backpropagation determines the update for every weight with two passes
through the network for each example.

• Prediction: given the values on the inputs for each layer, compute a value
for the outputs of the layer. That is, the vi are computed. In the algorithm
below, each vi is stored in a values array associated with the layer.

• Back propagate: go backwards through the layers to determine the up-
date of all of the weights of the network (the weights in the linear layers).
Going backwards, the error′(vn) ∗∏k

i=0 f ′n−i(vn−i−1) for k starting from 0
are computed and passed to the lower layers. This input is the error term
for a layer, which is combined with the values computed in the predic-
tion pass, to update all of the weights for the layer, and compute the error
term for the lower layer.

Storing the intermediate results makes backpropagation a dynamic pro-
gramming form of (stochastic) gradient descent.

A layer is represented by a linear function (page 288) and an activation
function in the algorithm below. Each function is implemented modularly
as a class (in the sense of object-oriented programming) that implements for-
ward prediction and backpropagation for each example, and the updates for
the weights after a batch.

The class Dense implements a dense linear function, where each output
unit is connected to all input units. The array w stores the weights, so the
weight for input unit i connected to output unit j is w[i, j], and the bias (the
weight associated with the implicit input that is always 1) for output j is in
w[ni, j]. The methods output and Backprop are called for each example. Backprop
accumulates the gradients for each w[i, j] in d[i, j], and returns an error term for
the lower levels. The update method updates the parameters given the gradi-
ents of the batch, and resets d. The method output remembers any information
necessary for Backprop for each example.

Figure 8.3 (page 334) shows a modular version of backpropagation. The
variable functions is the sequence of possibly parameterized functions that de-
fines the neural network (typically a linear function and an activation function
for each layer). Each function is implemented as a class that can carry out the
forward and backward passes and remembers any information it needs to.

The first function for the lowest layer has as many inputs as there are input
features. For each subsequent function, the number of inputs is the same as
the number of outputs of the previous function. The number of outputs of the
final function is the number of target features, or the number of values for a
(non-binary) categorical output feature.

The pseudocode of Figure 8.3 assumes the type of the output activation
function is made to complement the error (loss) function, so that the deriva-
tive is proportional to the predicted value minus the actual value. This is true
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The class for each function implements the methods:

• output(in) returns the output values for the input values of vector in
• Backprop(error) returns vector of input errors, and updates gradients
• update() updates the weights for a batch

Each class stores in and out if needed for Backprop
1: class Dense(ni, no) � ni is # inputs, no is #outputs
2: for each 0 ≤ i ≤ ni and each 0 ≤ j < no do
3: d[i, j] := 0; w[i, j] := a random value
4: method output(in) � in is array with length ni
5: for each j do out[j] := w[ni, j] + ∑i in[i] ∗w[i, j]
6: return out
7: method Backprop(error) � error is array with length no
8: for each i, j do d[i, j] := d[i, j] + in[i] ∗ error[j]
9: for each i do ierror[i] := ∑j w[i, j] ∗ error[j]

10: return ierror
11: method update() � update all weights. This implements SGD.
12: for each i, j do
13: w[i, j] := w[i, j]− η/batch size ∗ d[i, j] � η is learning rate
14: d[i, j] := 0
15: procedure Neural network learner(Xs, Ys, Es, functions, η, batch size)
16: Inputs
17: Xs: input features, Xs = (X1, . . . , Xn)
18: Ys: target features
19: Es: set of training examples
20: functions: the sequence of functions that defines the network
21: batch size: number of examples in each batch
22: η: learning rate (gradient descent step size)
23: repeat
24: batch := random sample of batch size examples
25: for each example e in batch do
26: for each input unit i do values[i] := Xi(e)
27: for each fun in functions from lowest to highest do
28: values := fun.output(values)
29: for each output unit j do error[j] := φo(values[j])− Ys[j]
30: for each fun in functions from highest to lowest do
31: error := fun.Backprop(error)
32: for each fun in functions that contains weights do
33: fun.update()
34: until termination

Figure 8.3: Backpropagation with stochastic gradient descent
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of the identity activation for squared error (Equation (7.1) (page 289)), the sig-
moid activation for binary log loss (Equation (7.3) (page 290)), and softmax
for categorical log loss (page 295). The final activation function, φo, is used in
Neural network learner, but is not implemented as a class. Other combinations
of error functions and loss might have a different form; modern tools automate
taking derivatives so you do not need to program it directly.

Figure 8.4 shows the pseudocode for two common activation functions.
ReLU is typically used for hidden layers in modern deep networks. Sigmoid
was common in classical neural networks, and is still used in models such as
the long short-term memory network (LSTM) (page 357).

Mappings to the parameters of Keras and PyTorch, two common deep
learning libraries, are presented in Appendix B.2.

Example 8.2 Consider training the parameters of the network of Figure 8.2
(page 331) using the “if x then y else z” data of Figure 7.10(b) (page 288).

This network is represented by the call to Neural network learner with

functions = [Dense(3, 2), ReLU(), Dense(2, 1)].

In one run with 10,000 epochs, learning rate of 0.01, and batch size 8 (includ-
ing all examples in a batch), the weights learned gave the network represented
by the following equations (to three significant digits), where h1 and h2 are the
hidden units:

h1 = relu(2.47 ∗ x + 0.0000236 ∗ y− 2.74 ∗ z + 2.74)
h2 = relu(3.62 ∗ x + 4.01 ∗ y + 0.228 ∗ z− 3.84)

1: class ReLU()
2: method output(in) � in is a vector with length ni
3: for each i : 0 ≤ i < ni do out[i] := max(0, in[i])
4: return out � out is a vector with length ni

5: method Backprop(error) � error is a vector with length ni
6: for each i : 0 ≤ i < ni do
7: ierror[i] := error[i] if (in[i] > 0) else 0
8: return ierror
9: class sigmoid()

10: method output(in) � in is a vector with length ni
11: for each i : 0 ≤ i < ni do out[i] := 1/(1 + exp(−in[i]))
12: return out � out is a vector with length ni

13: method Backprop(error) � error is a vector with length ni
14: for each i : 0 ≤ i < ni do ierror[i] := out[i] ∗ (1− out[i]) ∗ error[i]
15: return ierror

Figure 8.4: Backpropagation for some activation functions
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output = sigmoid(−4.42 ∗ h1 + 6.64 ∗ h2 + 4.95).

This has learned to approximate the function to 1% error in the worst case. The
prediction with the largest log loss is the prediction of 0.99 for the example with
¬x∧ ¬y∧ z, which should be 1.

Different runs can give quite different weights. For small examples like
this, you could try to interpret the target. In this case (very approximately) h1 is
positive unless x = 0, z = 1 and h2 is only large when x = 1, y = 1. Notice that,
even for a simple example like this, it is difficult to explain (or understand) why
it works. Easy-to-explain weights, like Example 8.1 (page 330), do not arise in
practice. Realistic problems have too many parameters to even try to interpret
them.

Example 8.3 MNIST (Modified National Institute of Standards and Technol-
ogy database) is a dataset of grayscale images of hand-written digits. Each
image consists of a 28× 28 grid of pixels, where each pixel is an integer in the
range [0, 255] specifying its intensity. Some examples are shown in Figure 8.5
(page 337). There are 60,000 training images and 10,000 test images. MNIST
has been used for many perceptual learning case studies.

This was trained with a network with 784 input units (one for each pixel),
and one hidden layer containing 512 units with ReLU activation. There are 10
output units, one for each digit, combined with a softmax. It was optimized for
categorical cross entropy, and trained for five epochs (each example was used
five times, on average, in the training), with a batch size of 128.

After training, the model has a training log loss (base e) of 0.21, with an
accuracy of 98.4% (the mode is the correct label). On the test set the log loss
is 0.68, with an accuracy of 97.0%. If trained for more epochs, the fit to the
training data gets better, but on the test set, the log loss becomes much worse
and accuracy improves to test 97.7% after 15 more epochs. This is run with
the default parameters of Keras; different runs might have different errors, and
different extreme examples.

Often, insights can be obtained by looking at the incorrect predictions. Fig-
ure 8.5 (page 337) shows some of the predictions for the images in the training
set and the test set. The first two sets of examples are the incorrect predictions
that are closest to 0.5; one for the training set and one for the test set. The other
two sets of examples are the most extreme incorrect classifications. They have
more extreme probabilities than would be justified by the examples.

8.2 Improved Optimization

Stochastic gradient descent (page 291) is the workhorse for parameter learning
in neural networks. However, setting the step size is challenging. The structure
of the multidimensional search space – the error as a function of the parameter
settings – is complex. For a model with, say, a million parameters, the search
space has a million dimensions, and the local structure can vary across the
dimensions.
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The most uncertain (closest to 0.5) incorrect predictions for the training set

and for the test set:

The predictions with highest log loss for the training set are as follows (where
0.0e + 00 indicates the number is less than machine precision for a GPU (≈
10−38), and because most of the mode predictions are 1.0 to machine precision,
they are written as 1− ε, for the given ε):

and for the test set:

Figure 8.5: Predictions of MNIST digits for the architecture of Example 8.3
(page 336) for one run with five epochs. The actual label, the prediction of the
actual label, and the prediction for the label with the greatest predicted probability
(the mode) are given
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One particular challenge is a canyon, where there is a U-shaped error func-
tion in one dimension and another dimension has a downhill slope. Another
is a saddle point, where a minimum in one dimension meets a maximum of
another. Close to a saddle point, moving along the dimension that is at a max-
imum, there is a canyon, so a way to handle canyons should also help with
saddle points.

Example 8.4 Figure 8.6 depicts a canyon with two parameters. The error
is plotted as a function of parameters x and y. In the x-direction the error has
a steep valley, but in the y-direction there is a gentle slope. A large step size
would keep jumping from side-to-side of the valley, perhaps diverging. A small
step size is needed for the x-value to decrease. However, a small step size in the
y-direction means very slow convergence. Ideally, you would like small steps
in the x-direction and large steps in the y-direction.

There are two main approaches to adapting step size to handle canyons and
related problems. Both have a separate step size for each parameter. They can
be combined. The intuition behind each is:

• If the sign of the gradient doesn’t change, the step size can be larger; if
the sign keeps changing, the step size should be smaller.

• Each weight update should follow the direction of the gradient, and the
magnitude should depend on whether the gradient is more or less than
its historic value.

Figure 8.6: A canyon with two parameters
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8.2.1 Momentum

The momentum for each parameter acts like a velocity of the update for each
parameter, with the standard stochastic gradient descent update acting like
an acceleration. The momentum acts as the step size for the parameter. It is
increased if the acceleration is the same sign as the momentum and is decreased
if the acceleration is the opposite sign.

To implement momentum, a velocity v[i, j] is stored for each weight w[i, j].
Hyperparameter α, with 0 ≤ α < 1, specifies how much of the momentum
should be used for each batch. The update method for Dense in Figure 8.3
(page 334) becomes

1: method update() � update all weights
2: for each i, j do
3: v[i, j] := α ∗ v[i, j]− η/batch size ∗ d[i, j]
4: w[i, j] := w[i, j] + v[i, j]
5: d[i, j] := 0.

The change in weight is not necessarily in the direction of the gradient of the
error, because the momentum might be too great.

The value of α affects how much the step size can increase. Common values
for α are 0.5, 0.9, and 0.99. If the gradients have the same value, the step size
will approach ∑∞

i=0 αi = 1/(1− α) times the step size without momentum. If α
is 0.5, the step size could double. If α is 0.9, the step size could increase up to
10 times, and α = 0.99 allows the step size to increase by up to 100 times.

Example 8.5 Consider the error surface of Figure 8.6 (page 338), described in
Example 8.4 (page 338). In the y-direction, the gradients are consistent, and so
momentum will increase the step size, up to 1/(1− α) times. In the x-direction,
as the valley is crossed, the sign of the gradient changes, and the momentum,
and so the steps, get smaller. This means that it eventually makes large steps in
the y-direction, but small steps in the x-direction, enabling it to move down the
canyon.

As well as handling canyons, momentum can average out noise due to the
batches not including all the examples.

8.2.2 RMS-Prop

RMS-Prop (root mean squared propagation) is the default optimizer for the
Keras deep learning library. The idea is that the magnitude of the change in
each weight depends on how (the square of) the gradient for that weight com-
pares to its historic value, rather than depending on the absolute value of the
gradient. For each weight, a rolling average (page 797) of the square of the gra-
dient is maintained. This is used to determine how much the weight should
change. A correction to avoid numeric instability of dividing by approximately
zero is also used.
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The hyperparameters for RMS-Prop are the learning rate η (with a default
of 0.001 in Keras), ρ (with a default of 0.9 in Keras) that controls the time hori-
zon of the rolling average, and ε (defaults to 10−7 in Keras) to ensure numerical
stability. The algorithm below maintains a rolling average of the square of the
gradient for w[i, j] in r[i, j]. The update method for Dense in Figure 8.3 becomes

1: method update() � update weights
2: for each i, j do
3: g := d[i, j]/batch size
4: r[i, j] := ρ ∗ r[i, j] + (1− ρ) ∗ g2

5: w[i, j] := w[i, j]− η ∗ g√
r[i, j] + ε

6: d[i, j] := 0 .

To understand the algorithm, assume the value of r[i, j] is initially much bigger
than ε, so that r[i, j] + ε ≈ r[i, j].

• When r[i, j] ≈ g2, the ratio g/
√

r[i, j] + ε is approximately 1 or −1, de-
pending on the sign of g, so the magnitude of the change in weight is
approximately η.

• When g2 is bigger than r[i, j], the error has a larger magnitude than its
historical value, r[i, j] is increased, and the step size increases.

• When g2 is smaller than r[i, j], the value r[i, j] is decreased, and the step
size decreases. When a local minimum is approached, the values of g2

and r[i, j] become smaller than the magnitude of ε, so the updates are
dominated by ε, and the step is small.

RMS-Prop only affects the magnitude of the step; the direction of change of
w[i, j] is always opposite to d[i, j].

Example 8.6 Consider the error surface of Figure 8.6 (page 338), described in
Example 8.4 (page 338). In the y-direction, the gradients are consistent, and so g
will be approximately the same as the square root of r[i, j], the average squared
value of g, and so, assuming r[i, j] is much greater than ε, the change in w[i, j]
will have magnitude approximately η.

In the x-direction, it might start with a large gradient, but when it encoun-
ters a flatter region, g2 becomes less than the rolling average r[i, j], so the step
size is reduced. As g for that parameter becomes very small, the steps get very
small because they are less than their historical value, eventually becoming
dominated by ε.

8.2.3 Adam

Adam, for “adaptive moments”, is an optimizer that uses both momentum and
the square of the gradient, similar to RMS-Prop. It also uses corrections for the
parameters to account for the fact that they are initialized at 0, which is not a
good estimate to average with. Other mixes of RMS-Prop and momentum are
also common.
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It takes as hyperparameters: learning-rate (η), with a default of 0.001; β1,
with a default of 0.9; β2, with a default of 0.999; and ε, with a default of 10−7.
(Names and defaults are consistent with Keras.)

Adam takes the gradient, d[i, j]/bath size, for the weight w[i, j] and main-
tains a rolling average of the gradient in s[i, j], a rolling average of the square
of the gradient in r[i, j], and the step number, t. These are all initialized to zero.
To implement Adam, the update method for Dense in Figure 8.3 becomes:

1: method update() � update weights
2: t := t + 1
3: for each i, j do
4: g := d[i, j]/batch size
5: s[i, j] := β1 ∗ s[i, j] + (1− β1) ∗ g
6: r[i, j] := β2 ∗ r[i, j] + (1− β2) ∗ g2

7: w[i, j] := w[i, j]− η ∗ s[i, j]/(1− βt
1)√

r[i, j]/(1− βt
2) + ε

8: d[i, j] := 0.

The weight update step (line 7) is like RMS-Prop but uses s[i, j] instead of the
gradient in the numerator, and corrects it by dividing by 1− βt

1. Note that β1
and β2 are the names of the parameters, but the superscript is the power. In
the first update, when t = 1, s[i, j]/(1− βt

1) is equal to g; it corrects subsequent
updates similarly. It also corrects r[i, j] by dividing by 1− βt

2. Note that ε is
inside the square root in RMS-Prop, but is outside in Adam.

8.2.4 Initialization

For convergence, it helps to normalize the input parameters, and sensibly ini-
tialize the weights.

For example, consider a dataset of people with features including height
(in cm), the number of steps walked in a day, and a Boolean which specifies
whether they have passed high school. These use very different units, and
might have very different utility in predictions. To make it learn independently
of the units, it is typical to normalize each real-valued feature, by subtracting
the mean, so the result has a mean of 0, and dividing by the standard deviation,
so the result has a standard deviation and variance of 1. Each feature is scaled
independently.

Categorical inputs are usually represented as indicator variables (page 182),
so that categorical variable X with domain {v1, . . . , vk} is represented as k in-
puts, X1, . . . , Xk. An input example with X = vj is represented with Xj = 1 and
every other Xj′ = 0. This is also called a one-hot encoding.

The weights for the linear functions in hidden layers cannot all be assigned
the same value, otherwise they will converge in lock-step, never learning dif-
ferent features. If the w[i, j] parameters are initialized to the same value, all of
the units at one layer will implement the same function. Thus they need to
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be initialized to random values. In Keras, the default initializer is the Glorot
uniform initializer, which chooses values uniformly in the interval between
±√

6/(ni + n0), where ni is the number of inputs and no is the number of out-
puts for the linear function. This has a theoretical basis and tends to work well
in practice for many cases. The biases (the weights multiplied by input unit 1)
are typically initialized to 0.

For the output units, the bias can be initialized to the value that would
predict best when all of the other inputs are zero. This is the mean for regres-
sion, or the inverse-sigmoid of the empirical probability for binary classifica-
tion. The other output weights can be set to 0. This allows the gradient descent
to learn the signal from the inputs, and not the background average.

8.3 Improving Generalization

When building a new model, it is often useful to ensure initially that the model
can fit the training data, and then tackle overfitting.

First make sure it is learning something. The error on the training set
should be able to beat the naive baseline corresponding to the loss being eval-
uated (page 276); for example, it should do better than the mean of the training
data targets for squared loss or log loss. If it does not, the algorithm is not
learning, and the algorithm, architecture, optimization algorithm, step size, or
initialization might need to be changed. You should try one of the algorithms
from the previous chapter, as well as a neural network.

If it beats the naive baseline, but does not perform as well as you might
expect on the training set, try changing the model. You know it won’t do as
well on the test set and on new examples as it does on the training set, so if
it is poor on the training set, it will be poor on new cases. Poor performance
on the training set is an indication of under fitting; the model is too simple to
represent the data. One example of under fitting is using logistic regression
for a function that is not linearly separable (see Example 7.11 (page 288)). Try
increasing the capacity (e.g., the width and/or depth), but also check other
algorithms and parameter settings. It also might be the case that the input
features do not contain enough information to predict the target features, in
which case the naive baseline might be the best you can do.

Once you know the algorithm can at least fit the training set, test the error
on validation set (page 305). If the validation error does not improve as the
algorithm proceeds, it means the learning is not generalizing, and it is fitting to
noise. In this case, it is probably overfitting and the model should be simplified.
When there is little data, models with more than one or two hidden layers tend
to severely overfit. In general, small amounts of data require small models.

At this stage it is useful to carry out hyperparameter tuning (page 305) us-
ing cross validation (page 304). Automating hyperparameter tuning, a process
known as autoML, is often the best way to select the hyperparameters.
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When there is little data available, k-fold cross validation (page 306) works
well, but might not be needed if there is a lot of data.

Some of the hyperparameters that can be tuned include:

• the algorithm (a decision tree or gradient-boosted trees (page 311) may
be more appropriate than a neural network)

• number of layers
• width (page 331) of each layer
• number of epochs, to allow for early stopping (page 306)
• learning rate
• batch size
• regularization parameters (page 302); L1 and L2 regularization are often

useful when there is little data.

One effective mechanism for deep networks is dropout, which involves
randomly dropping some units during training. Ignoring a unit is equivalent
to temporarily setting its output to zero. Dropout is controlled by a parame-
ter rate, which specifies the proportion of values that are zeroed. It is common
that rate is 0.5 for hidden units, and 0.2 for input units. These probabilities are
applied to each unit independently for each example in a batch.

This can be implemented by treating dropout as a layer consisting of a sin-
gle function, as in Figure 8.7. This function is used when learning, but not
when making a prediction for a new example.

If rate = 0.5, half of the values are used, and so the sum would be half,
on average, of what it would be without dropout. To make the learner with
dropout comparable to the one without, the output should be doubled. In
general, the output needs to be scaled by 1/(1− rate), which is the value of
scaling in Figure 8.7.

Improving the algorithm is not the only way to improve the prediction.
Other methods that are useful to building a better model include the following.

1: class Dropout(rate) � rate is probability of an input being zeroed
2: method output(in) � in is array with length ni
3: scaling := 1/(1− rate)
4: for each i ∈ [0, ni) do
5: mask[i] := 0 with probability rate else 1
6: out[i] := in[i] ∗mask[i] ∗ scaling
7: return out
8: method Backprop(error) � error is array with length ni
9: for each i ∈ [0, ni) do

10: ierror[i] := error[i] ∗mask[i]
11: return ierror

Figure 8.7: Pseudocode for dropout
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• Collecting more data is sometimes the most cost-effective way to improve
a model.

• Sometimes more data can be obtained by data augmentation: using the
existing data, for example in recognizing objects from images by trans-
lating, scaling, or rotating the image (but be careful it doesn’t change the
class, e.g., a rotation of a “6” might become a “9”), adding noise or chang-
ing the context (e.g., once you have a picture of a cat, put it in different
contexts).

• Feature engineering is still useful when the data is limited or there are
limited resources for trainings. For example, there are many representa-
tions for the positions of a hand on a clock, and some are much easier to
learn with than others; it is much easier to learn the time from the angles
of the hands than from an image of the clock.

• It is sometimes easier to learn a model for a task for which there is lim-
ited data, by sharing the lower-level features among multiple tasks. The
lower-level features then have many more examples to learn from than
they would with any single task. This is known as multi-task learning.
In a neural network, it can be achieved by sharing the lower layers (those
closest to the inputs), with the different tasks having their own higher
layers. When learning a task, all of the weights for the units used for the
task (including the shared lower-level units) are updated. An alternative,
which is used when one task has already been learned, is for a new task
with limited data to use the lower-level features of the original task and
only learn higher-level features for the new task. This is explored more
in Section 8.5.5 (page 364).

8.4 Convolutional Neural Networks

Imagine using a neural network for recognizing objects in large images using a
dense network, as in Example 8.3 (page 336). There are two aspects that might
seem strange. First, it does not take into account any spatial locality, if the pix-
els were shuffled consistently in all of the images, the neural network would act
the same. Humans would not be able to recognize objects any more, because
humans take the spatial proximity into account. Second, it would have to learn
to recognize cats, for example, separately when they appear in the bottom-left
of an image and when they appear in the bottom-right and in the top-middle
of an image. Convolutional neural networks tackle these problems by using
filters that act on small patches of an image, and by sharing the parameters so
they learn useful features no matter where in an image they occur.

In a convolutional neural network (CNN), a kernel (sometimes called a
convolution mask, or filter) is a learned linear operator that is applied to lo-
cal patches. The following first covers one-dimensional kernels, used for se-
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quences such as sound or text, then two-dimensional kernels, as used in im-
ages. Higher-dimensional kernels are also used, for example in video.

In one dimension, suppose the input is a sequence (list) [x0, . . . , xm−1] and
there is structure so that xi is close to xi+1 in some sense. For example, xi could
be the ith value of a speech signal in time, and xi+1 is the next one in time. In
a spectrum, xi could be the value of one frequency, and xi+1 the value for the
next frequency measured.

A one-dimensional kernel is a vector [w0, . . . , wk−1], where k is the ker-
nel size, which when applied to the sequence x = [x0, . . . , xm−1] produces a
sequence y = [y0, . . . , ym−k] where

y[i] =
k−1

∑
j=0

x[i + j] ∗w[j].

Example 8.7 Suppose a signal consists of the values

[0, 1, 2, 3, 7, 5, 8, 10, 12, 9, 6, 3, 0, 2, 4, 6, 8]

in order. Thus, x0 = 0, x6 = 7, x7 = 5, etc. This is shown in Figure 8.8(a).
Consider the kernel [0.5, 0.5]. Applying this to the signal gives the sequence

[0.5, 1.5, 2.5, 5.0, 6.0, 6.5, 9.0, 11.0, 10.5, 7.5, 4.5, 1.5, 1.0, 3.0, 5.0, 7.0]

[0.5, 0.5]

[-1, 1]

[-0.5, 1, -0.5]

[0.5, 0.5]

[-1, 1]

[-0.5, 1, -0.5]

(a) (b) (c)

Figure 8.8: Result of simple one-dimensional kernels: (a) is the original signal; (b)
shows the kernels [0.5, 0.5], [−1, 1], and [−0.5, 1,−0.5] applied to the signal (a);
(c) shows the same kernels applied to the top signal in (b)
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shown in Figure 8.8(b), top. Each value is the mean of two adjoining values in
the original signal. This kernel smooths a sequence.

Applying the kernel [−1, 1] to the original sequence results in the sequence

[1, 1, 1, 4,−2, 3, 2, 2,−3,−3,−3,−3, 2, 2, 2, 2]

which is the slope; it is positive when the value is increasing and negative when
the value is decreasing. See Figure 8.8(b), middle.

The kernel [−0.5, 1,−0.5] finds peaks and troughs. It is positive when the
value is locally higher than its neighbors, and negative when the value is lower
than its neighbors. The magnitude reflects how much it is greater or less. See
Figure 8.8(b), bottom.

Figure 8.8(c) shows the same kernels applied to the smoothed signal (Figure
8.8(b), top).

A two-dimensional kernel is a k × k array w[i, j], where k is the kernel
size, which when applied to the two-dimensional array in produces a two-
dimensional array out where

out[x, y] :=
k−1

∑
i=0

k−1

∑
j=0

in[x + i, y + j] ∗w[i, j].

The kernel size, k, is usually much smaller than the size of either dimension
of in. Two-dimensional kernels are used for images, where they are applied to
patches of adjacent pixels.

Example 8.8 Consider the following kernels that could be applied to a black-
and-white image where the value of in[x, y] is the brightness of the pixel at
position (x, y):

0 1
−1 0

(a)

1 0
0 −1

(b)

−1 0 1
−2 0 2
−1 0 1

(c)

1 2 1
0 0 0
−1 −2 −1

(d)

Kernels (a) and (b) were invented by Roberts [1965]. The result of (a) is positive
when the top-right pixel in a 2 × 2 block is greater than the pixel one down
and to the left. This can be used to detect the direction of a change in shading.
Kernels (a) and (b) together can recognize various directions of the change in
shading; when (a) and (b) are both positive, the brightness increases going up.
When (a) is positive and (b) is negative, the brightness increases going right.
When (a) is positive and (b) close to zero, the brightness increases going up-
right.

Kernels (c) and (d) are the Sobel-Feldman operators for edge detection,
where (c) finds edges in the x-direction and (d) finds edges in the y-direction;
together they can find edges in other directions.
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Before machine learning dominated image interpretation, kernels were hand
designed to have particular characteristics. Now kernels are mostly learned.

Convolutional neural networks learn the weights for the kernels from data.
Two main aspects distinguish convolutional neural networks from ordinary
neural networks.

• Locality: the values are a function of neighboring positions, rather than
being based on all units as they are in a fully-connected layer. For exam-
ple, a 5× 5 kernel for vision uses two pixels in each direction of a point
to give a value for the point for the next layer. Multiple applications of
kernels can increase the size of influence. For example, in image interpre-
tation, when two consecutive convolutional layers use 5× 5 kernels, the
values of the second one depend on four pixels in each direction in the
original image.

• Parameter sharing or weight tying means that, for a single kernel, the
same parameters are used at all locations in the image.

1: class Conv2D(k)
2: Create w[i, j] for each 0 ≤ i, j < k, initialize randomly
3: Create d[i, j] for each 0 ≤ i, j < k, initialize to 0
4: method output(input) � input is xd× yd array
5: Create out[x, y] for each 0 ≤ x ≤ xd− k, 0 ≤ y ≤ yd− k
6: for each x : 0 ≤ x ≤ xd− k do
7: for each y : 0 ≤ y ≤ yd− k do

8: out[x, y] :=
k−1

∑
i=0

k−1

∑
j=0

in[x + i, y + j] ∗w[i, j]

9: return out
10: method Backprop(error) � error is xd− k + 1× yd− k + 1 array
11: Create ierror[x, y] for each 0 ≤ x < xd, 0 ≤ j < yd initialized to 0
12: for each x : 0 ≤ x ≤ xd− k do
13: for each y : 0 ≤ y ≤ yd− k do
14: for each i : 0 ≤ i < k do
15: for each j : 0 ≤ j < k do
16: d[i, j] := d[i, j] + in[x + i, y + j] ∗ error[x, y]
17: ierror[x + i, y + j] := ierror[x + i, y + j] + error[x, y] ∗

w[i, j]
18: return ierror
19: method update() � update all weights
20: Same as for Dense (Figure 8.3 (page 334))

Figure 8.9: Two-dimensional convolution pseudocode
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Figure 8.9 shows the algorithm for a two-dimensional convolutional layer,
where only one kernel is applied to the input array. The kernel is a k× k square.
The input is an xd × yd rectangle. The output is smaller than the input, re-
moving k− 1 values from each dimension. In backpropagation, the input error
(ierror) and d are updated once for each time the corresponding input or weight
is used to compute an output. Unlike in the dense linear function (Figure 8.3
(page 334)), parameter sharing means that during backpropagation each d[i, j]
is updated multiple times for a single example.

Real convolutional neural networks are more sophisticated than this, in-
cluding the following features:

• The kernel does not need to be square, but can be any rectangular size.
This affects the size of d and w.

• Because the algorithm above requires each array index to be in range, it
removes elements from the edges. This is problematic for deep networks,
as the model eventually shrinks to zero as the number of layers increases.
It is common to add zero padding: expand the input (or the output) by
zeros symmetrically – with the same number of zeros on each side – so
that the output is the same size as the input. The use of padding means
it is reasonable for the kernel indexes to start from 0, whereas it was tra-
ditional to have them be symmetric about 0, such as in the range [−2, 2].

• Multiple kernels are applied concurrently. This means that the output
consists of multiple two-dimensional arrays, one for each kernel used.
These multiple arrays are called channels. To stack these into layers, the
input also needs to be able to handle multiple channels. A color image
typically has three channels corresponding to the colors red, green, and
blue. (Cameras for scientific purposes can contain many more channels.)

To represent multiple channels for the input and the output, the weight
array, w, becomes four-dimensional; one for x, one for y, one for the input
channel, and one for the output channel. The pseudocode needs to be
expanded, as follows. If the input is in[x, y, ic] for input channel ic and
the output is out[x, y, oc] for output channel oc, there is a weight for each
x, y, ic, oc. In the method output, there is an extra loop over oc, and the
output assignment becomes

out[x, y, oc] := ∑
ic

∑
i

∑
j

in[x + i, y + j, ic] ∗w[i, j, ic, oc].

Backprop needs also to loop over the input channels and the output chan-
nels, updating each parameter.

Instead of all input channels being connected to all output channels,
sometimes they are grouped so that only the input and output channels
in the same group are connected.
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• The above algorithm does not include a bias term – the weight multiplied
by 1. Whether to use a bias is a parameter in most implementations, with
a default of using a bias.

• This produces an output of the same size as the input, perhaps with a
fixed number of pixels removed at the sides. It is also possible to down-
sample, selecting every second (which would halve the size of each di-
mension) or every third value (which would divide the size of each di-
mension by three), for example. While this could be done with an extra
layer to down-sample, it is more efficient to not compute the values to
be thrown away, thus down-sampling is usually incorporated into the
convolutional layer.

A stride for a dimension is a positive integer s such that each sth
value is used in the output. For two dimensions, a stride of 2 for each
dimension will halve the size of each dimension, and so the output will
be a quarter the size of the input. For example, a 256× 265 image with
a stride of 2 for each dimension will output a 128× 128 array, which in
later layers can use another stride of 2 in each dimension to give a 64× 64
array. A stride of 1 selects all output values, and so is like not having a
stride. There can be a separate stride for each dimension.

• In a pooling layer, instead of a learnable linear kernel, a fixed function of
the outputs of the units is applied in a kernel. A common pooling layer
is max-pooling, which is like a convolution, but where the maximum is
used instead of a linear function. Pooling is typically combined with a
stride greater than 1 to down-sample as well. It is typical to use a convo-
lution layer, followed by a nonlinear function, such as ReLU, followed by
a pooling layer, the output of which is then input to a convolution layer
and so on.

• When used for classification of the whole image (e.g., detecting whether
there is a cat or a baby in the image), a convolutional neural network typ-
ically ends with fully-connected layers. Note that to use standard fully-
connected layers, the array needs to be flattened into a vector; this is done
by concatenating the rows or the columns. A fully convolutional neu-
ral network has a number of convolution layers, but no fully-connected
layer. This is used to classify each point in an image (e.g., whether each
pixel is part of a cat or part of the background).

• A shortcut connection or a skip connection in a deep network is a con-
nection that skips some layers. In particular, some of the input channels
of a layer come from the previous layer and some from lower-level lay-
ers. In a residual network, the values from one layer are added to the
values from a lower layer. In this case, the intermediate layers – those
between the two layers being added – become trained to predict the er-
ror, in a similar way to boosting (page 309). The first residual network

https://doi.org/10.1017/9781009258227.012


350 8. Neural Networks and Deep Learning

[He et al., 2015] won many competitions for classification from images.
One of their models had a depth of 152 layers with over a million param-
eters, and was trained on an ImageNet dataset with 1000 classes and 1.28
million training examples.

8.5 Neural Models for Sequences

Fully-connected networks, perhaps including convolutional layers, can handle
fixed-size images and sequences. It is also useful to consider sequential data
consisting of variable-length sequences. Sequences arise in natural language
processing, biology, and any domain involving time, such as the controllers
of Chapter 2. Here, natural language is used as the canonical example of se-
quences. We first give some background for neural language models that will
be expanded for language as a sequence of frequencies, phonemes, characters,
or words.

A corpus is the text used for training. The corpus could be, for example, a
novel, a set of news articles, all of Wikipedia, or a subset of the text on the web.
A token is a sequence of characters that are grouped together, such as all of the
characters between blanks or punctuation. The process of splitting a corpus
into tokens is called tokenization. Along with the corpus is a vocabulary, the
set of words that will be considered, such as all of the tokens that appear in the
corpus, the words in a fixed dictionary, or all of the tokens that appear more
than, say, 10 times in the corpus. The vocabulary typically includes not only the
words in common dictionaries, but also often names, common phrases (such
as “artificial intelligence” and “hot dog”), slang (such as “zzz”, which is used
to indicate snoring), punctuation, and a markers for the beginning and end of
sentences, written as “〈start〉” and “〈stop〉”. While word can be synonymous
with token, sometimes there is more processing to group words into tokens,
or to split words into tokens (such as the word “eating” becoming the tokens
“eat” and “ing”). In a character-level model, the vocabulary could be the set of
Unicode characters that appear in the corpus.

8.5.1 Word Embeddings

The first model, shown in Figure 8.10 (page 351), takes a single word and makes
a prediction about what word appears near it. It might take a word and predict
the next word in a text, or the word that was two words before. Each word is
mapped to a word embedding, a vector representing some mix of syntax and
semantics that is useful for predicting words that appear with the word.

The input layer uses indicator variables (page 286), forming a one-hot en-
coding for words. That is, there is an input unit for each word in a dictionary.
For a given word, the corresponding unit has value 1, and the rest of the units
have value 0. This input layer can feed into a hidden layer using a dense linear
function, as at the bottom of Figure 8.10. This dense linear layer is called an
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encoder, as it encodes each word into a vector. Suppose u defines the weights
for the encoder, so u[i, j] is the weight for the ith word for the jth unit in the
hidden layer. The bias term for the linear function can be used for unknown
words – words in a text that were not in the dictionary, so all of the input units
are 0 – but let’s ignore them for now and set the bias to 0.

The one-hot encoding has an interesting interaction with a dense linear
layer that may follow it. The one-hot encoding essentially selects one weight
for each hidden unit. The vector of values in the hidden layer for the input
word i is [u[i, 0], u[i, 1], u[i, 2], . . . ], which is called a word embedding for that
word.

To predict another word from this embedding, another dense linear func-
tion can be used to map the embedding into predictions for the words, with
one unit per word, as shown in Figure 8.10. This function from the embed-
dings to words is a decoder. Suppose v defines the weights for the decoder, so
v[j, k] is the weight for the kth word for the jth unit in the hidden layer.

Notice that, ignoring the softmax output, the relationship between the ith
input word and the kth output word is ∑j u[i, j] ∗ v[j, k]. This combination of
linear functions is matrix multiplication, where a matrix is a two-dimensional
array of weights (see box on page 352).

Suppose you want to predict a word in a text given the previous words, and
training on a corpus consisting of the sequence of words w0, w1, w2, . . . . The
models can be trained using input–output pairs of the form (wi−1, wi) for each
i > 0. The sequence wi−k, . . . , wi−1 is the context for wi. As you are predicting

1-hot word encoding ( xx )

word embedding ( hh )

Dense u (encoder)

input words 

a

aa
rd

va
rk

aa
rg

h $

zz
z

…

…

…

Dense v (decoder)

softmax

a aa
rd

va
rk

aa
rg

h

$zz
z

… output prediction (  ŷ̂y )

Figure 8.10: A shallow neural network for word embeddings
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Vectors, Matrices, Tensors, and Arrays

A vector is a fixed-length array of numbers. A matrix is a two-dimensional
rectangular array of numbers with a fixed size of each dimension. A ten-
sor generalizes these to allow multiple dimensions. A vector is thus a one-
dimensional tensor, a matrix is a two-dimensional tensor, a number is a zero-
dimensional tensor. Four-dimensional tensors are used for video, with di-
mensions for the frame number, x and y positions, and the color channel. A
collection of fixed-size video clips can be represented as a five-dimensional
tensor, with the extra dimension representing the clip.

For a matrix M, the i, jth element is Mij in mathematical notation, M[i, j]
in standard programming language notation, or M[i][j] in Python. Python
natively only has one-dimensional arrays, which are very flexible, where the
elements of the arrays can be of heterogenous types (e.g., integers or other ar-
rays). A tensor has a fixed dimensionality and fixed sizes of each dimension,
which makes them more inflexible than Python arrays. The inflexibility can
result in greater efficiency because the looping can be determined at compile
time, as is exploited in the NumPy package and in graphics processing units
(GPUs).

A vector can represent an assignment of values to a set of variables (given
a total ordering of the variables). A linear function (page 288) from one set of
variables to another can be represented by a matrix. What also distinguishes
matrices and vectors from arbitrary arrays is that they have particular oper-
ations defined on them. Matrix–vector multiplication represents the applica-
tion of a linear function, represented by matrix A, to a vector v representing
an assignment of values to the variables. The result is Av, a vector defined by

(Av)[i] = ∑
j

A[i, j] ∗ v[j].

Linear function composition is defined by matrix multiplication; if A and B
are matrices, AB represents the linear function that is the composition of these
two functions, defined by

(AB)[i, k] = ∑
j

A[i, j] ∗ B[j, k].

Later chapters define various generalizations of matrix multiplication.
Section 17.2.2 (page 740) defines a form of tensor multiplication that multi-
plies three matrices to get a three-dimensional tensor. The factors of Section
9.5.2 (page 413) allow multiple arrays to be multiplied before summing out a
variable.
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a single next word, softmax (page 295), implemented as hierarchical softmax
(page 296) when the vocabulary is large, is appropriate.

Example 8.9 Suppose the text starts with “The history of AI is a history of
fantasies, possibilities, demonstrations, and promise”. Let’s ignore punctua-
tion, and use 〈start〉 as the start of a sentence. The training data might be:

Input Target
〈start〉 the
the history
history of
of ai
ai is
is a
a history
history of
of fantasies

As you may imagine, learning a model that generalizes well requires a large
corpus. Some of the original models were trained on corpuses of billions of
words with a vocabulary of around a million words.

It usually works better to make predictions based on multiple surrounding
words, rather than just one. In the following two methods, the k surrounding
words form the context. For example, if k were 3, to predict a word, the three
words before and the three words after in the training corpus would form the
context. In these two methods, the order or position of the context words is
ignored. These two models form Word2vec.

• In the continuous bag of words (CBOW) model, all words in the context
contribute n/(2 ∗ k) in the one-hot encoding of Figure 8.10 (page 351),
where n is the number of times the word appears in the context. This
gives a weighted average of the embeddings of the word used.

• In the Skip-gram model, the model of Figure 8.10 (page 351) is used for
each (wi+j, wi), for j ∈ {−k, . . . ,−1, 1, . . . , k}, and the prediction of wi is
proportional to the product of each of the predictions. Thus, this assumes
that each context word gives an independent prediction of word wi.

Example 8.10 Consider the sentence “the history of AI is a history of fan-
tasies possibilities demonstrations and promise” from Example 8.9. Suppose
the context is the three words to the left and right, and case is ignored. In the
prediction for the fourth word (“ai”), the bag of context words is {a, history,
history, is, of, the}. For the following word (“is”), the bag of context words is
{a, ai, history, history, of, of}.

In the CBOW model, the positive training example for the fourth word
(“ai”), has inputs “the”, “of”, “is”, and “a” with weight 1/6 in the one-hot
encoding, “history” with weight 2/6, and the other words with weight 0 and
the target is “ai”.
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In the Skip-gram model, for the fourth word, there are six positive training
examples, namely (a,ai), (history,ai), (history,ai), (is,ai), (of,ai), (the ai). At test
time, there is a prediction for each of [a, history, history, is, of, the] being the
input. The prediction for a target word is the product of the predictions for
these.

The embeddings resulting from these models can be added or subtracted
point-wise, for example Paris− France+ Japan ≈ Tokyo. The idea is that Paris−
France represents the “capital of” relationship, which when added to the em-
bedding of Japan gives Tokyo. Mikolov et al. [2013], the originators of these
methods, trained them on a corpus of 1.6 billion words, with up to 600 hidden
units. Some other relationships found using the Skip-gram model were the
following, where the value after “≈” is the mode of the resulting prediction:

scientist− Einstein + Messi ≈ midfielder
scientist− Einstein + Mozart ≈ violinist
scientist− Einstein + Picasso ≈ painter
sushi− Japan + Germany ≈ bratwurst
sushi− Japan + USA ≈ pizza
sushi− Japan + France ≈ tapas.

There was about 60% accuracy picking the mode compared to what the authors
considered to be the correct answer.

It has been found that Skip-gram is better for small datasets and CBOW is
faster and better for more frequent words. How important it is to represent
rare words usually dictates which method to use.

8.5.2 Recurrent Neural Networks

The previous methods ignored the order of the words in the context. A recur-
rent neural network (RNN) explicitly models sequences by augmenting the
model of Figure 8.10 (page 351) with a hidden state. The following description
assumes sequences are ordered in time, as the actions of an agent or speech
would be.

Figure 8.11 (page 355) shows a recurrent neural network that takes a se-
quence of values

x(0), x(1), x(2), x(3) . . .

and outputs a sequence of values

y(0), y(1), y(2), y(3) . . .

where y(i) only depends on x(j) for j ≤ i. This is a matched RNN because there
is an output for each input. For example, the input could be a sequence of
words and the output the same sequence of words shifted right by 1 (so x(0) is
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the 〈start〉 token and y(i) = x(i+1)), so the model is predicting the next word in
the sequence. There is also a 〈stop〉 token to mean the end of the text output.

Between the inputs and the outputs for each time is a memory or belief
state (page 55), h(t), which represents the information remembered from the
previous times. A recurrent neural network represents a belief state transi-
tion function (page 56), which specifies how the belief state, h(t), depends on
the percept, x(t), and the previous belief state, h(t−1), and a command func-
tion (page 57), which specifies how the output y(t) depends on the input and
the belief state h(t) and the input x(t). For a basic recurrent neural network,
both of these are represented using a linear function followed by an activation
function. More sophisticated models use other differentiable functions, such as
deep networks, to represent these functions.

The vector h(t) has as the ith component

h(t)[i] = φ

(
b[i] + ∑

j
w[i, j] ∗ h(t−1)[j] + ∑

k
u[i, k] ∗ x(t)[k]

)
(8.2)

for a nonlinear activation function φ, bias weight vector b, weight matrices w
and u, which do not depend on time, t. Thus, a recurrent neural network uses
parameter sharing (page 347) for the weights because the same weights are
used every time. The prediction to time t is the vector ŷ(t), where

ŷ(t)[m] = sigmoid(b′[m] + ∑
i

v[m, i] ∗ h(t)[i])

where b′ is a vector and v is a weight matrix similar to Figure 8.10 (page 351).
Figure 8.12 (page 356) shows a recurrent neural network with a single out-

put at time T. This has a similar parametrization to that of Figure 8.11. It could
be used for determining the sentiment of some text, such as whether an online
review of a product is positive or negative. It could be used to generate an im-

ww ww

x(t−1)x(t−1)

ŷ(t−1)ŷ(t−1) ŷ(t+1)ŷ(t+1)ŷ(t)ŷ(t)

h(t−1)h(t−1) h(t)h(t)

x(t)x(t)

h(t+1)h(t+1)

x(t+1)x(t+1)

u u u

v v v

Figure 8.11: A recurrent neural network with matched input–output
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age from a text. In this case, the hidden state accumulates the evidence needed
to make the final prediction.

Figure 8.13 shows an encoder–decoder recurrent neural network which
does sequence-to-sequence mapping where the inputs and the outputs are
not matched. The input is a sequence x(0), x(1), . . . , x(nx) and the output is a se-
quence y(0), y(1), . . . , y(ny). These sequences could be of very different lengths.
There are two extra tokens, 〈start〉 and 〈stop〉; one for the beginning of a se-
quence and one for the end. Encoder–decoder networks are used for speech-
to-text and for machine translation. In a speech recognition system, the input
could be a sequence of sounds, and the output a sequence of words.

The encoder, shown on the left of Figure 8.13, is the same as the matched
RNN, but without the output. The hidden layer at the end of the encoder, c, be-
comes the context for the decoder. This context contains all of the information
about the input sequence that can be used to generate the output sequence.

ww ww

x(t−1)x(t−1)

h(t−1)h(t−1) h(t)h(t)

x(t)x(t) x(T )x(T )

…

u u u

v

ŷ

…

h(T )h(T )

Figure 8.12: A recurrent neural network with a single output

…

v

…

c

x(1)x(1)

y(0)y(0) y(1)y(1) 〈stop〉〈stop〉

x(nx−1)x(nx−1)x(0)x(0) 〈start〉〈start〉 y(0)y(0) y(ny−1)y(ny−1)

Figure 8.13: An encoder–decoder recurrent neural network
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(The start and stop tokens are ignored here.)
The decoder, shown on the right of Figure 8.13 (page 356), is a generative

language model that takes the context and emits an output sequence. It is like
the matched RNN (page 354), but also includes the hidden vector, c, as an input
for each hidden value and each output value. The output sequence is produced
one element at a time. The input to the first hidden layer of the decoder is the
〈start〉 token and the context (twice). The hidden layer and the context are used
to predict y(0). For each subsequent prediction of y(i), the hidden layer takes as
input the previous output, y(i−1), the context, c, and the value of the previous
hidden layer. Then y(i) is predicted from the hidden layer and the context. This
is repeated until the 〈stop〉 token is produced.

During training, all of the y(i) can be predicted at once based on the output
shifted by 1. Note that y(i) can only use the x(j) and the previous y(j); it cannot
use y(i) as an input. When generating text for the prediction for y(i), a value
for y(i−1) is input. If the most likely value of ŷ(i−1) is used, it is called greedy
decoding. It is usually better to search through the predicted values, using one
of the methods of Chapter 3, where the log-probability or log loss (page 273) is
the cost. Beam search (page 158) is a common method.

For a given input size, recurrent neural networks are feedforward networks
with shared parameters. Stochastic gradient descent and related methods work,
with the proviso that during backpropagation, the (shared) weights are up-
dated whenever they were used in the prediction. Recurrent neural networks
are challenging to train because for a parameter that is reduced in each back-
propagation step, its influence, and so its gradient vanishes, dropping expo-
nentially. A parameter that is increased at each step has its gradient increasing
exponentially and thus exploding.

8.5.3 Long Short-Term Memory

Consider the sentence “I grew up in Indonesia, where I had a wonderful child-
hood, speaking the local dialect of Indonesian.” Predicting the last word re-
quires information that is much earlier in the sentence (or even in previous
sentences). The problem of vanishing gradients means that it is difficult to
learn long dependencies such as the one in this sentence.

One way to think about recurrent neural networks is that the hidden layer
at any time represents the agent’s short-term memory at that time. At the next
time, the memory is replaced by a combination of the old memory and new
information, using the formula of Equation (8.2) (page 355). While parameter
values can be designed to remember information from long ago, the vanishing
and exploding gradients mean that the long-term dependencies are difficult to
learn.

A long short-term memory (LSTM) network is a special kind of recurrent
neural network designed so that the memory is maintained unless replaced
by new information. This allows it to better capture long-term dependencies
than is done in a traditional RNN. Intuitively, instead of learning the function
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from h(t−1) to h(t), it learns the change in h, which we write Δh(t), so that h(t) =
h(t−1) + Δh(t). Then the value of h(t) is h(0) + ∑i≤t Δh(i). This means that the
error in h(t) is passed to all predecessors, and is not vanishing exponentially as
it does in a traditional RNN.

In an LSTM, a hidden unit at time t takes in the previous hidden state
(h(t−1)), the previous output (o(t−1)), and the new input (x(t)). It needs to pro-
duce the next state and the next output.

A construct that is used in the steps of an LSTM is that if v1 and v2 are
vectors of the same length, a vector with element i being v1[i] ∗ sigmoid(v2[i])
will select elements of v1 where v2[i]� 0, and will zero-out the elements where
v2[i] � 0. This allows a model to learn which elements to keep, and which to
discard.

An LSTM consists of four dense linear functions (page 333), as implemented
in Dense in Figure 8.3. Each takes as input the vectors o(t−1) and x(t) appended
together, of length nh + ni, and the output is the same size as h(t), namely nh.
Thus an LSTM has 4 ∗ (1 + nh + ni) ∗ nh parameters, where ni is the number of
input units at each time and nh is the number of hidden units for each time,
which is also the size of the output for each time. The “1” is for the bias of each
linear function.

The state transition function and the command function are defined by the
following steps, where all of the linear functions use learnable parameters that
do not depend on time.

• Forgetting: the model decides what to forget. It uses a dense linear func-
tion, f (x), where x is of length nh + ni, that outputs a vector of length
nh. The function f is used to determine which components of the hidden
state to forget, by point-wise multiplying the sigmoid of f (x) to the hid-
den state. The bias of the dense linear function should be initialized to a
large value, such as 1 or 2, or an extra bias of 1 should be added, so that
the default behavior is to remember each value.

• Remembering: the model decides what to add, using two dense linear
functions, r(x) and w(x), where x is a vector of length nh + ni, and each
output a vector of length nh. The function w specifies what to remember
and traditionally uses the hyperbolic tangent, tanh, activation function,
where tanh(x) = 2 ∗ sigmoid(2 ∗ x)− 1, which squashes the real line into
the interval [−1, 1]. The tanh function is used because it is symmetric
about 0, which makes subsequent learning easier. The function r deter-
mines whether each hidden value should be remembered and so has a
sigmoid activation function.

• The resulting hidden state is a combination of what is forgotten and what
is remembered:

h(t)[i] = sigmoid(f (v(t))[i]) ∗ h(t−1)[i] + sigmoid(r(v(t))[i]) ∗ φ(w(v(t))[i])
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for each component i, where v(t) is the concatenation of o(t−1) and x(t),
and φ is an activation function (typically tanh).

• It then needs to decide what to output. It outputs components of a func-
tion of the hidden state, selected by another linear function, s, of y(t−1)

and x(t), similar to f and r. The output is a vector where the ith compo-
nent is

y(t)[i] = sigmoid(s(v(t))[i]) ∗ φ(h(t)[i]).

Figure 8.14 shows the data flow of an LSTM for one of the belief states of
the HMM of Figure 8.11 (page 355). In an LSTM, the belief state consists of
both h(t) and o(t).

Jozefowicz et al. [2015] evaluated over 10,000 different RNN architectures,
with 220 hyperparameter settings, on average, for each one, and concluded
“the fact a reasonable search procedure failed to dramatically improve over the
LSTM suggests that, at the very least, if there are architectures that are much
better than the LSTM, then they are not trivial to find.”

Example 8.11 Karpathy [2015] describes an experiment using a character-to-
character LSTM. (This example is based on his blog, and is reproduced with
permission of the author.)

The input to the model is a sequence of characters; x(t) is a one-hot encoding
of the tth character. The prediction y(t) is the next character. It is trained so
that there is a training example for every character in the text; it predicts that
character from the previous text. At test time, it predicts a distribution over the
next character, selects the mode of that distribution, and uses that character as

concatenateo(t−1)

x(t)

h(t−1)

f

σ

∗ +
∗

r

σ

w

φ

s σ ∗

φ

o(t)

o(t)

h(t)

Each of f , r, w, and s is a dense linear function with parameters shared
across time. σ is sigmoid, φ is tanh. Each arithmetic function acts point-wise.

Figure 8.14: An LSTM showing the data flow for each time
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the next input. It thus uses a greedy decoding (page 357) of a matched RNN.
In this way it can produce a sequence of characters from the learned model.

Karpathy uses examples of training from Shakespeare, Wikipedia, a book
on algebraic geometry, the linux source code, and baby names. In each case, a
new text is created based on a model learned from the original corpus.

In one experiment, Karpathy trained an LSTM on Leo Tolstoy’s War and
Peace and then generated samples every 100 iterations of training. The LSTM
had 512 hidden nodes, about 3.5 million parameters, dropout of 0.5 after each
layer, and a batch size of 100 examples. At iteration 100 the model output

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh

eoase rrranbyne ’nhthnee e plia tklrgd t o idoe ns,smtt

h ne etie h,hregtrs nigtike,aoaenns lng

which seems like gibberish. At iteration 500 the model had learned simple
words and produced

we counter. He stutn co des. His stanted out one ofler

that concossions and was to gearang reay Jotrets and with

fre colt otf paitt thin wall. Which das stimn

At iteration 500 the model had learned about quotation marks and other punc-
tuation, and hard learned more words:

"Kite vouch!" he repeated by her door. "But I would be

done and quarts, feeling, then, son is people...."

By about iteration 2000 it produced

"Why do what that day," replied Natasha, and wishing to

himself the fact the princess, Princess Mary was easier,

fed in had oftened him. Pierre aking his soul came to the

packs and drove up his father-in-law women.

This is a very simple model, with a few million parameters, trained at the char-
acter level on a single book. While it does not produce great literature, it is
producing something that resembles English.

8.5.4 Attention and Transformers

A way to improve sequential models is to allow the model to pay attention to
specific parts of the input. Attention uses a probability distribution over the
words in a text or regions of an image to compute an expected embedding for
each word or region. Consider a word like “bank” that has different meanings
depending on the context. Attention uses the probability that other words in a
window – a sentence or a fixed-size sequence of adjacent words – are related
to a particular instance of “bank” to infer a word embedding for the instance
of “bank” that takes the whole window into account. Attention in an image
might use the probability that a pixel is part of the head of one of the people in
an image. For concreteness, the following description uses text – sequences of
words – as the canonical example.
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There can be multiple instances of the same word in a sentence, as in the
sentence “The bank is on the river bank.” There is a dictionary that gives a
learnable embedding for each word. The whole sentence (or words in a win-
dow) can be used to give an embedding for each instance of each word in the
sentence.

Self-attention for text in a window inputs three embeddings for each word
instance in the window and outputs an embedding for each word that takes
the whole window into account. For each word w, it infers a probability distri-
bution over all the words, and uses this distribution to output an embedding
for w. For example, consider an instance of the word “bank” that appears with
“river”. Both words might have a high probability in the attention distribu-
tion for the instance of “bank”. The attention would output an embedding for
that instance of “bank” that is a mix of the input embeddings for the words
“bank” and “river”. If “bank” appears with “money”, the output embedding
for “bank” might be a mix of the embedding for “money” and “bank”. In this
way, instances of the same word can use different embeddings depending on
the context.

An attention mechanism uses three sequences, called query, keys, and val-
ues. In self-attention, these are all the same sequence. For translation from a
source to a target, the keys and values can be the source text, and the query the
target text.

The input to attention is three matrices, each representing an embedding
for each element of the corresponding sequence:

• q, where q[i, j] is the jth value of the query embedding for the ith word in
query

• k, where k[i, j] is the jth value of the key embedding for the ith word in
keys

• v, where v[i, j] is the jth value of the value embedding for the ith word in
values.

It returns a new embedding for the elements of values. This new embedding
takes the embeddings of the other elements in values into account, where the
mix is determined by query and keys.

It first determines the similarity between each query word i and each key
word j:

r[i, j] = ∑
l

q[i, l] ∗ k[j, l].

It uses this to compute a probability distribution over the key words for each
word in query:

a[i, j] =
exp(r[i, j])

∑l exp(r[i, l])
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which is the softmax (page 295) of the js for each i.
This probability distribution is then used to create a new embedding for the

values defined by

c[i, l] = ∑
j

a[i, j] ∗ v[j, l]

where i is the ith word in the values sequence, and l is the position in the em-
bedding. The array c is the output of the attention mechanism.

Note that r, a, and c have no learnable parameters. The query, key, and
value embeddings are typically the outputs of dense linear layers, which have
learnable parameters.

Example 8.12 Consider the text “the bank is on the river bank” which makes
up one window. The inputs for self-attention (q, k, and v) are of the following
form, where each row, labelled with a word–position pair, represents the em-
bedding of the word at that position, and the columns represent the embedding
positions:

the-0
bank-1
is-2
on-3
the-4
river-5
bank-6

(8.3)

The intermediate matrices r and v are of the same form, with v represented as a
probability distribution for each word, such as the following (to one significant
digit):

the-0

bank-1

is-2

on-3

the-4

river-5

bank-6

the-0 0.4 0.6 0 0 0 0 0
bank-1 0.2 0.4 0.1 0.3 0 0 0
is-2 0 0.4 0.2 0.4 0 0 0
on-3 0 0 0 0.4 0 0 0.6
the-4 0 0 0 0 0.4 0 0.6
river-5 0 0 0 0 0 0.5 0.5
bank-6 0 0 0 0 0.2 0.4 0.4

The output of self-attention, c, is of the same form as (8.3), with an embedding
for each word in the window. The embedding for the first occurrence of “bank”
is a mix of the value embeddings of “the-0”, “bank-1”, “is-2”, and “on-6”. The
output embedding for the second occurrence of “bank” is a mix of the value
embeddings of “the-4”, “river-5”, and “bank-6”.

Transformers are based on attention, interleaved with dense linear layers
and activation functions, with the following features:
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• There can be multiple attention mechanisms, called heads, applied in
parallel. The heads are each preceded by separate dense linear functions
so that they compute different values. The output of the multi-head at-
tention is the concatenation of the output of these attention layers.

• There can be multiple layers of attention, each with a shortcut connec-
tion, as in a residual network (page 349), so that the information from the
attention is added to the input.

• The input to the lowest level is the array of the word embeddings, with
a positional encoding of the position at which the word appears, which
is added to the embedding of the word. The positional encoding can be
learned, or given a priori.

Example 8.13 Consider the text “the bank is on the river bank”, as in Exam-
ple 8.12 (page 362). A transformer learns the parameters of the dense layers,
and an embedding for each word in the dictionary. At the lowest level, the em-
bedding for “bank” is combined with the positional encoding for 1 (counting
the elements from 0), giving the embedding for the first occurrence of “bank”
(labelled “bank-1” in (8.3)). The embedding for “bank” is combined with the
positional encoding for 6 to give the embedding for the second occurrence of
“bank” (labelled “bank-6”). This forms a matrix representation of the window
of the form of (8.3), which can be input into dense linear layers and attention
mechanisms.

The output of an attention module can be input into a dense linear layer
and other attention layers. Different heads can implement different functions
by being preceded by separate dense linear functions. This enables them to
have different properties, perhaps one where verbs attend to their subject and
one where verbs attend to their object.

Sequence-to-sequence mapping, such as translation between languages, can
be implemented using an encoder–decoder architecture (similar to Figure 8.13
(page 356)) to build a representation of one sequence, which is decoded to
construct the resulting sequence. This can be implemented as layers of self-
attention in both the encoder and the decoder, followed by a layer where the
query is from the target and the keys and values are from the input sequence.
This is then followed by layers of self-attention in the target. One complication
is that, while the encoder has access to the whole input sequence, the decoder
should only have access to the input before the current one, so it can learn to
predict the next word as a function of the input sequence, and the words pre-
viously generated.

Caswell and Liang [2020] report that a transformer for the encoder and an
LSTM for the decoder works better than transformers for both the encoder and
decoder, and so that architecture was used in Google translate.

Transformers have been used for other sequence modeling tasks, including
protein folding, a fundamental problem in biology. Proteins are made of long
chains of amino acid residues, and the aim of protein folding is to determine the
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three-dimensional structure of these residues. In the transformer, the residues
form the role of words in the above description. The attention mechanism uses
all pairs of residues in a protein. Proteins can contain thousands of residues.

8.5.5 Large Language Models

With a large corpus and a large number of parameters, transformer-based lan-
guage models have been shown to keep improving on the metrics they are
trained on, whereas other methods such as n-gram models (page 433) for small
n and LSTMs (page 357) tend to hit a plateau of performance. Transformer-
based models used for language generation can be seen as n-gram models with
a large n (the window size); 2048 is used in GPT-3, for example.

It is very expensive to train a large language model on a large corpus, and
so only a few organizations can afford to do so. Similarly, to train a large image
model on an Internet-scale number of images requires huge resources.

Recently, there has been a number of large language models trained on
huge corpora of text or huge collections of images. The texts include all of (En-
glish or Chinese) Wikipedia (about 4 billion words), documents linked from
Reddit, collections of books, and text collected from the Internet.

Figure 8.15 shows some large language models, with the number of param-
eters (trainable weights) and the sizes of the training dataset size. This infor-

Year Model # Parameters Dataset Size
2018 ELMo 9.36 ∗ 107 ≈ 6 GB *
2019 BERT 3.4 ∗ 108 16 GB
2019 Megatron-LM 8.3 ∗ 109 174 GB
2020 GPT-3 1.75 ∗ 1011 570 GB
2020 GShard 6.00 ∗ 1011 †
2021 Switch-C 1.57 ∗ 1012 745 GB
2021 Gopher 2.8 ∗ 1011 ≈ 1800 GB ‡
2022 PaLM 5.4 ∗ 1011 ≈ 4680 GB $

Those that did not report dataset size in GB are approximated with 6 bytes
per word (5 characters in a word plus a space):

* 1 billion words

† 25 billion training examples (100 languages)

‡ 300 billion tokens

$ 780 billion tokens.

ELMo uses character-based LSTMs; the others use transformers or variants.
Source: Parts extracted from Bender et al. [2021].

Figure 8.15: Some pre-trained large language models
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mation is confidential for some more recent models, such as GPT-4 [OpenAI,
2023].

To put the sizes of the datasets in perspective, someone who reads a 400-
page book each week takes about 30 years to read 180 million words, which
is approximately 1 GB of text. Someone who reads a 400-page book each day
for 30 years will only read 1% of the data used to train Switch-C. This model is
trained on more text than any one person and all of their ancestors put together
has read.

Some models are trained just to predict the next word, which lets them
continue stories and answer questions, but others are trained on multiple tasks.
The aim is to have representations that are useful for as many tasks as possible.

For a particular application, these models can be fine-tuned on specialized
corpora. However, adjusting all the weights is expensive. An alternative is to
train a new task on the high-level features of the model, with the lower layers
fixed.

Large language models are controversial because of the claims that are
made. In particular, there is a lot to be impressed with if you set out to be
impressed, however there is a lot to be critical of if you set out to be critical.
There are many examples of answering questions well, and giving sensible an-
swers, but the failures are interesting. Hofstadter [2022] gives the following
examples of interactions with GPT-3 [Brown et al., 2020]:

Person: When was the Golden Gate Bridge transported for the second time
across Egypt?
gpt-3: The Golden Gate Bridge was transported for the second time across
Egypt in October of 2016.
Person: How many pieces of sound are there in a typical cumulonimbus
cloud?
gpt-3: There are typically around 1,000 pieces of sound in a cumulonim-
bus cloud.
Person: How many parts will the Andromeda galaxy break into if a grain
of salt is dropped on it?
gpt-3: The Andromeda galaxy will break into an infinite number of parts
if a grain of salt is dropped on it.

It is not clear that the problem is with the large models, but with the nature
of language itself. People tend to only write what is unusual and notable. Even
when people are lying or trying to spread disinformation, they write a tiny pro-
portion of what is not true; there are too many statements that are false. The
models, however, are not able to distinguish fact from fiction or disinforma-
tion; they take all of the corpus as input and try to predict the next word (or
phrase), with no way to determine whether its output is true or not (see Section
8.7). While some have argued that such models show true intelligence, even
consciousness, others argue that examples like this “reveal a mind-boggling
hollowness hidden just beneath its flashy surface” [Hofstadter, 2022].
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8.6 Other Neural Network Models

8.6.1 Autoencoders

An encoder takes an input and maps it into a vector that can be used for pre-
diction. The dimension of a vector is the number of values in the vector. Figure
8.10 (page 351) shows a network that embeds words in a smaller embedding
than the one-hot embedding on the input. Figure 8.13 (page 356) shows an
encoder for sequences. An encoder is a way to carry out dimensionality re-
duction when the encoding has a smaller dimension than the input.

An autoencoder is an encoder where the inputs and the outputs are the
same. For images, an autoencoder can take an image, map it to a vector, and
then map that vector back into the same image. The vector forms a represen-
tation of the image, or an encoding of the image. The network learns both to
compress (the part of the network between the input and the representation)
and to decompress (the part of the network between the representation and the
output) images.

An autoencoder can be used as a generative image model, to generate ran-
dom images or images from text. Consider an autoencoder for images, where
the vector representation is small enough so there is little redundant informa-
tion. An image is mapped to an encoding, which is mapped back to the same
image. As the dimensionality of the encoding increases, more detail can be
represented. If a random bit vector is used as the embedding, the decoder can
be used to produce images, similar to how a decoder produced text in Example
8.11. When the network producing them is a deep network, the generated im-
ages are deep fakes. This method by itself does not produce very good images;
see Section 8.6.2 below.

An autoencoder can also be used to generate images from text. Given an
autoencoder for images, you can train a network to predict the embedding
of an image from its caption; the embedding is treated as the target for the
language model. Then, given a caption, the language model can produce a
vector representation of an image and the decoder part of the autoencoder can
be used to produce an image. The autoencoder is useful in this case because
it allows for a form of semi-supervised learning, where not all of the images
have captions; it uses all the images to train the autoencoder, and the images
with captions to train the caption to embedding mapping. It is easier to get
images without captions than images with captions.

8.6.2 Adversarial Networks

An adversarial network, such as a generative adversarial network (GAN), is
trained both to be able to predict some output, and also not to be able to predict
some other output.

One example is in adversarial debiasing for recruitment, where you want
to predict whether someone is suitable for a job, but to be blind to race or gen-
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der. It is not enough to just remove race and gender from the inputs, because
other inputs are correlated with race and gender (e.g., postcodes, poverty, cur-
rent occupation). One way to make the network blind to race and gender is
to create a layer from which race or gender cannot be predicted. The idea is
to train the network to predict suitability, but have an adversary that adjusts
the embedding of an intermediate layer so that race and gender cannot be pre-
dicted from it.

As another example, suppose there is a deep fake model able to generate
images from vector representations, as in the decoder of the last section, for
which the images are not very realistic. They can be made much more realistic
by also training a network N that, given an image, predicts whether the image
is real or fake. The image generator can then be trained so that N cannot de-
termine if its output is real or fake. This might produce details that make the
output look realistic, even though the details might be just fiction.

8.6.3 Diffusion Models

Diffusion models are effective methods for generative AI, particularly for im-
age generation. The idea is to build a sequence of more noisy images, starting
with the data and repeatedly add noise until the result is just noise, and then
learn the inverse of this process.

Suppose an input image is x0, and xt is produced from xt−1 by adding noise,
until xT, for some T (say 1000), is indistinguishable from noise. T neural net-
works are trained, when network Nt is trained with input xt and output xt−1.
Thus each network is learning to denoise – reduce the amount of noise in –
an image. An image can be generated by starting with random noise, yT, and
running it through the networks NT to N1 to produce an image y0. Different
noise inputs produce different images.

The details of diffusion models are beyond the scope of this book, with a
theory and practice more sophisticated than the characterization here.

8.7 Social Impact

ELIZA, written in 1964–66, was one of the first programs that conversed in En-
glish. A version, called DOCTOR, analyzed language and used a script for the
role of a psychotherapist. The author, Joseph Weizenbaum [1976], was shocked
by the reaction to the program:

A number of practicing psychiatrists seriously believed the DOCTOR
computer program could grow into a nearly completely automatic form
of psychotherapy. . . .

I was startled to see how quickly and how very deeply people convers-
ing with DOCTOR became emotionally involved with the computer and
how unequivocally they anthropomorphized it. . . .
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Another widespread, and to me surprising, reaction to the ELIZA pro-
gram was the spread of a belief that it demonstrated a general solution to
the problem of computer understanding of natural language.

– J. Weizenbaum [1976]

Over 50 years after ELIZA, natural language systems are much more so-
phisticated and much more widespread. The issues that Weizenbaum outlined
have become more pressing, and new issues have arisen.

Bender et al. [2021] outline many problems with modern systems based on
learning from huge corpora. These include the following:

• Data: biases in large uncurated data include stereotypical and derogatory
language along gender, race, ethnicity, and disability status. Most content
on the Internet is created by the privileged; those who have the time and
the access to create content, whereas the marginalized experience harass-
ment which discourages participation in open fora. Increasing the size
does not guarantee diversity, because while the number of diverse views
might increase, their proportion tends not to. Datasets curated for other
reasons, such as Wikipedia, have biases about who is included (“notable”
people), and how much information is included about each person. Blod-
gett et al. [2020] provide a review of biases in natural language process-
ing. Bender et al. [2021] recommend significant resources allocated to
dataset curation and documentation practices in order to mitigate the bi-
ases.

• Learning: once you have the data, training the models is very energy
intensive. Generating the energy creates greenhouse gases, or diverts en-
ergy from other sources that create greenhouse gases. Only rich corpora-
tions and governments can afford to train them, and accrue the benefits,
but it is poor countries that disproportionately accrue the risks. The ex-
pense of training only increases inequality.

• Use of models: once the models have been trained, they can be used in
various ways. Used as a generative language model, they are particu-
larly useful for those who want to spread misinformation; they can gen-
erate seemingly plausible text which may or may not correspond with
the truth. For example, consider saying you want fiction and asking for
a completion for “the atrocities committed by <target> included”, and
spreading this as factual information, in order to recruit people to a cause
against <target>. AI systems are trained to optimize some score, which
may not correspond to what the user wants to optimize. McGuffie and
Newhouse [2020] discuss the risk of large language models for radical-
ization and weaponization by extremists.

• Large language models are trained on text only, but language under-
standing also involves meaning; there is typically a world that text is
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about, and understanding meaning involves not just the text but the in-
teraction of the text, the world, and the intent of the author [Bender and
Koller, 2020; Bisk et al., 2020]. People will assume that the output is the
truth; but, when the data used to train isn’t necessarily the truth, and the
inference is opaque, there is no reason to have confidence in the outputs.
The preoccupation with improving scores on well-defined, but artificial,
tasks – those the AI systems are trained to optimize – has diverted re-
sources away from other research.

Feeding AI systems on the world’s beauty, ugliness and cruelty and ex-
pecting it to reflect only the beauty is a fantasy.

– Prabhu and Birhane [2020]

Deep learning has had success in science fields where large datasets can be
created. For example, the problem of protein folding – determining the three-
dimensional structure of proteins – is one of the successes of transformer-based
models. The predictions of these programs have changed how chemists work:

Today, thanks to programs like AlphaFold2 and RoseTTAFold, researchers
like me can determine the three-dimensional structure of proteins from the
sequence of amino acids that make up the protein – at no cost – in an hour
or two. Before AlphaFold2 we had to crystallize the proteins and solve the
structures using X-ray crystallography, a process that took months and
cost tens of thousands of dollars per structure.

– M. Zimmer [2022]

Better predictions promise to enable improved medicine, drug design, and un-
derstanding of biochemistry, which can have enormous social impacts. Ma
et al. [2022] used deep learning to identify many new candidates for potential
antimicrobials drugs, which may be important as drug-resistant bacteria kill
millions of people each year. These programs make predictions that still need
to be verified in the real world before being accepted.

8.8 Review

• Artificial neural networks are parametrized models for predictions, typi-
cally made of multiple layers of parameterized linear functions and non-
linear activation functions.

• The output is typically a linear function for a real-valued prediction, with
a sigmoid for a Boolean prediction, or with a softmax for a categorical
prediction. Other outputs, such as sequences or structured predictions,
use specialized methods.

https://doi.org/10.1017/9781009258227.012


370 8. Neural Networks and Deep Learning

• Neural networks that use ReLU for all hidden units define piecewise lin-
ear functions if they have a linear output, or piecewise linear separators
if they have a sigmoid output.

• Backpropagation can be used for training parameters of differentiable (al-
most everywhere) functions.

• Gradient descent is used to train by making steps proportional to the
negation of the gradient; many variants improve the basic algorithm by
adjusting the step size and adding momentum.

• Convolutional neural networks apply learnable filters to multiple posi-
tions on a grid.

• Recurrent neural networks can be used for sequences. An LSTM is a type
of RNN that solves the vanishing gradients problem.

• Attention for text is used to compute the expected embedding of words
based on their relationship with other words. Attention is also used for
speech, vision, and other tasks.

• Transformers, using layers of linear transformation and attention, are the
workhorse for modern language processing, computer vision, and biol-
ogy.

• Neural networks are used for generative AI, for the generation of images,
text, code, molecules, and other structured output.

• Neural networks are very successful for applications where there are
large training sets, or where training data can be generated from a model.

• It can be dangerous to make decisions based on data of dubious quality;
large quantity and high quality are difficult to achieve together.

8.9 References and Further Reading

Goodfellow et al. [2016] provide an overview of neural networks and deep
learning. Schmidhuber [2015] provides a comprehensive history and exten-
sive references to the literature. Chollet [2021] provides a readable intuitive
overview of deep learning with code (using Python and the Keras library).

McCulloch and Pitts [1943] define a formal neuron. Minsky [1952] showed
how such representations can be learned from data. Rosenblatt [1958] intro-
duced the perceptron. Minsky and Papert [1988] is a classic work that analyzed
the limitations of the neural networks of the time.

Backpropagation is introduced in Rumelhart et al. [1986]. LeCun et al.
[1998b] describe how to effectively implement backpropagation. Ng [2018]
provides practical advice on how to build deep learning applications.
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LeCun et al. [2015] review how multilayer neural networks have been used
for deep learning in many applications. Hinton et al. [2012a] review neural net-
works for speech recognition, Goldberg [2016] for natural language processing,
and Lakshmanan et al. [2021] for vision.

Different activation functions, including ReLU, are investigated in Jarrett
et al. [2009] and Glorot et al. [2011]. Ruder [2016] gives an overview of many
variants of gradient descent. Nocedal and Wright [2006] provide practical ad-
vice on gradient descent and related methods. Karimi et al. [2016] analyze how
many iterations of stochastic gradient descent are needed. The Glorot uniform
initializer is by Glorot and Bengio [2010]. Dropout is described by Hinton et al.
[2012b].

Convolutional neural networks and the MNIST dataset are by LeCun et al.
[1998a]. Krizhevsky et al. [2012] describe AlexNet, which used convolutional
neural networks to significantly beat the state-of-the-art on ImageNet [Rus-
sakovsky et al., 2014], a dataset to predict which of 1000 categories is in an
image. Residual networks are described by He et al. [2015].

Jurafsky and Martin [2023] provide a textbook introduction to speech and
language processing, which includes more detail on some of the language mod-
els presented here. LSTMs were invented by Hochreiter and Schmidhuber
[1997]. Gers et al. [2000] introduced the forget gate to LSTMs. Word embed-
dings were pioneered by Bengio et al. [2003]. The CBOW and Skip-gram mod-
els, collectively known as Word2vec, are by Mikolov et al. [2013]. Olah [2015]
presents a tutorial introduction to LSTMs.

Attention for machine translation was pioneered by Bahdanau et al. [2015].
Transformers are due to Vaswani et al. [2017]. Alammar [2018] provides a tu-
torial introduction, and Phuong and Hutter [2022] provide a self-contained
introduction, with pseudocode, to transformers. Tay et al. [2022] survey the
time and memory complexity of transformer variants. AlphaFold [Senior et al.,
2020; Jumper et al., 2021] and RoseTTAFold [Baek et al., 2021] used transform-
ers and other deep learning techniques for protein folding.

Large pre-trained language models are surveyed by Qiu et al. [2020] and
Minaee et al. [2021]. Bommasani et al. [2021], calling them foundation models,
outlined a research program for large pre-trained models of language, vision,
science, and other domains. The language models in Figure 8.15 (page 364) are
ELMo [Peters et al., 2018], BERT [Devlin et al., 2019], Magetron-ML [Shoeybi
et al., 2019], GPT-3 [Brown et al., 2020], GShard [Lepikhin et al., 2021], Switch-
C [Fedus et al., 2021], Gopher [Rae et al., 2021], and PaLM [Chowdhery et al.,
2022]. Shanahan [2022] and Zhang et al. [2022b] discuss what large language
models actually learn and what they do not learn.

Srivastava et al. [2022] provide challenge benchmarks of 204 diverse tasks
that are more precisely specified than the Turing test (page 5) and are be-
yond the capabilities of current language models. Lertvittayakumjorn and Toni
[2021] and Qian et al. [2021] survey explainability in natural language systems.

Generative adversarial networks were invented by Goodfellow et al. [2014].
Adversarial debiasing is based on Zhang et al. [2018]. Sohl-Dickstein et al.
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[2015] and Ho et al. [2020] present diffusion probabilistic models.
Bender et al. [2021] and Weidinger et al. [2021] discuss issues with large

pre-trained models, and include a diverse collection of references.

8.10 Exercises

Exercise 8.1 Give the weights and structure of a neural network with a sigmoid
output activation and one hidden layer with an ReLU activation, that can repre-
sent the exclusive-or function (⊕) of two Booleans, which is true when the inputs
have different truth values; see Figure 7.13 (page 293). Assume true is represented
as 1, and false as 0. [Hint: Write exclusive-or in terms of other logical operators.
See Exercise 7.9 (page 323) and Example 8.1 (page 330). You need to think about
how many units need to be in the hidden layer.]

Exercise 8.2 Run the AIPython (aipython.org) neural network code or an other
learner on the “Mail reading” data of Figure 7.1 (page 268) with a single hidden
layer with two hidden units.

(a) Suppose that you decide to use any predicted value from the neural network
greater than 0.5 as true, and any value less than 0.5 as false. How many
examples are misclassified initially? How many examples are misclassified
after 40 iterations? How many examples are misclassified after 80 iterations?

(b) Try the same example and the same initial values, with different step sizes
for the gradient descent. Try at least η = 0.1, η = 1.0, and η = 5.0. Comment
on the relationship between step size and convergence.

(c) Given the final parameter values you found, give a logical formula for what
each of the units is computing. [Hint: As a brute-force method, for each of
the units, build the truth tables for the input values and determine the out-
put for each combination, then simplify the resulting formula.] Is it always
possible to find such a formula?

(d) All of the parameters were set to different initial values. What happens if
the parameter values are all set to the same (random) value? Test it out for
this example, and hypothesize what occurs in general.

(e) For the neural network algorithm, comment on the following stopping cri-
teria.

(i) Learn for a limited number of iterations, where the limit is set initially.
(ii) Stop when the squared error is less than some threshold close to zero.

(iii) Stop when the derivatives all become within some ε of zero.
(iv) Split the data into training data and validation data, train on the train-

ing data and stop when the error on the validation data increases.

Which would you expect to better handle overfitting? Which criteria guar-
antee the gradient descent will stop? Which criteria would guarantee that,
if it stops, the network can be used to predict the test data accurately?

Exercise 8.3 Adam (page 340) was described as a combination of momentum
and RMS-Prop. Using AIPython (aipython.org), Keras, or PyTorch (see Appendix
B.2), find two datasets and compare the following:
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(a) How does Adam with β1 = β2 = 0, differ from plain stochastic gradient
descent without momentum? [Hint: How does setting β1 = β2 = 0 simplify
Adam, considering first the case where ε � g?] Which works better on the
datasets selected?

(b) How does Adam with β2 = 0 differ from stochastic gradient descent, when
the α momentum parameter is equal to β1 in Adam? [Hint: How does setting
β2 = 0 simplify Adam, considering first the case where ε � g?] Which
works better on the datasets selected?

(c) How does Adam with β1 = 0 differ from RMS-Prop, where the ρ parameter
in RMS-Prop is equal to β2 in Adam? Which works better on the datasets
selected?

Exercise 8.4 The Conv2D code of Figure 8.9 does not include a stride (page 349).
Show how a stride can be incorporated into the pseudocode, where the stride is a
pair of numbers, one for each dimension. Implement it in AIPython (aipython.org).

Exercise 8.5 Give the pseudocode for Conv1D, for one-dimensional convolutions
(the one-dimensional version of Figure 8.9). What hyperparameters are required?
This pseudocode does not include all of the hyperparameters of Keras or PyTorch.
For two of the hyperparameters of one of these, show how the pseudocode can be
extended to include this.

Exercise 8.6 In Exercise 8.11 (page 359), the LSTM was character-based, and there
were about 3.5 million parameters.

(a) How many parameters would there be in an LSTM if it was word-based with
a vocabulary of 1000 words and a hidden state of size 1000?

(b) How many parameters would there be if the vocabulary had 10,000 words
and the hidden state was of size 10,000?

(c) Consider a simple character-based transformer with a single attention mech-
anism that performs self-attention to predict the next character in a text.
Suppose the window size is 100, an embedding size is 1000, and there are
64 characters. Suppose as part of the transformer there are dense functions
for q, k, and v as inputs to the attention mechanism, and the output of the
attention goes directly into a softmax. How many parameters are there?

(d) Suppose instead of the character-based transformer in (c), the transformer
was word-based, with a vocabulary of 10,000 words. How many parameters
are there?

Exercise 8.7 Take the text of some classic work, such as can be found on gutenberg.
org. Repeat the experiment of Example 8.11 (page 359) with that text. Increase the
number of hidden nodes from 512 to 2048 and double the number of epochs. Is
the performance better? What evidence can you provide to show it is better?
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Chapter 9

Reasoning with Uncertainty

It is remarkable that a science which began with the consideration of games
of chance should become the most important object of human knowledge
. . . The most important questions of life are, for the most part, really only
problems of probability . . .

The theory of probabilities is at bottom nothing but common sense
reduced to calculus.

– Pierre Simon de Laplace [1812]

Agents in real environments are inevitably forced to make decisions based on
incomplete information. Even when an agent senses the world to find out more
information, it rarely finds out the exact state of the world. For example, a doc-
tor does not know exactly what is going on inside a patient, a teacher does not
know exactly what a student understands, and a robot does not know what is
in a room it left a few minutes ago. When an intelligent agent must act, it has
to use whatever information it has. The previous chapters considered learn-
ing probabilities, which is useful by itself when many similar cases have been
observed, however novel situations require reasoning, not just learning. This
chapter considers reasoning with uncertainty that is required whenever an in-
telligent agent is not omniscient, and cannot just rely on having seen similar
situations many times.

9.1 Probability

To make a good decision, an agent cannot simply assume what the world is
like and act according to that assumption. It must consider multiple hypothe-
ses when making a decision, and not just act on the most likely prediction.
Consider the following example.

375
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Example 9.1 Many people consider it sensible to wear a seat belt when trav-
eling in a car because, in an accident, wearing a seat belt reduces the risk of
serious injury. However, consider an agent that commits to assumptions and
bases its decision on these assumptions. If the agent assumes it will not have
an accident, it will not bother with the inconvenience of wearing a seat belt. If
it assumes it will have an accident, it will not go out. In neither case would
it wear a seat belt! A more intelligent agent may wear a seat belt because the
inconvenience of wearing a seat belt is far outweighed by the increased risk
of injury or death if it has an accident. It does not stay at home too worried
about an accident to go out; the benefits of being mobile, even with the risk of
an accident, outweigh the benefits of the extremely cautious approach of never
going out. The decisions of whether to go out and whether to wear a seat belt
depend on the likelihood of having an accident, how much a seat belt helps in
an accident, the inconvenience of wearing a seat belt, and how important it is
to go out. The various trade-offs may be different for different agents. Some
people do not wear seat belts, and some people do not go in cars because of the
risk of accident.

Reasoning with uncertainty has been studied in the fields of probability theory
and decision theory. Probability is the calculus needed for gambling. When
an agent makes decisions and is uncertain about the outcomes of its actions,
it is gambling on the outcomes. However, unlike a gambler at the casino, an
agent that has to survive in the real world cannot opt out and decide not to
gamble; whatever it does – including doing nothing – involves uncertainty
and risk. If it does not take the probabilities of possible outcomes into account,
it will eventually lose at gambling to an agent that does. This does not mean,
however, that making the best decision guarantees a win.

Probability is the calculus of belief; probability theory tells us how to up-
date beliefs based on new information. When an agent doesn’t have any in-
formation about the particular situation; it will still have beliefs. The belief of
an agent before it observes anything is its prior probability. As it discovers
information – typically by observing the environment – it updates its beliefs,
giving a posterior probability.

The view of probability as a measure of belief is known as Bayesian proba-
bility or subjective probability. The term subjective here means “belonging to
the subject” (as opposed to subjective meaning arbitrary). Different agents may
have different information, and so different beliefs.

Assume that the uncertainty is epistemological – pertaining to an agent’s
beliefs about the world – rather than ontological – how the world is. For exam-
ple, if you are told that someone is very tall, you know they have some height
but you only have vague knowledge about the actual value of their height.

Belief in some proposition, α, is measured in terms of a number between 0
and 1. The probability of α is 0 means that α is believed to be definitely false
(no new evidence will shift that belief), and the probability of α is 1 means that
α is believed to be definitely true. Using 0 and 1 is purely a convention; you
could just as well use 0 and 100. If an agent’s probability of α is greater than
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zero and less than one, this does not mean that α is true to some degree but
rather that the agent is ignorant of whether α is true or false. The probability
reflects the agent’s ignorance.

9.1.1 Semantics of Probability

The semantics is defined in terms of possible worlds, each of which is one way
the world could be. An omniscient agent knows which world is the true world,
but real agents are not omniscient.

A random variable (or just variable) is a function on worlds. Given a
world, it returns a value. The set of values a random variable could return
is the domain of the variable.

For example, a variable Coughs with domain {true, false} might be true in
worlds where the patient under consideration coughs and false in worlds where
the patient doesn’t cough. The variable Distance to wall might be a random
variable whose value might be the distance (in centimeters) of the agent from
the wall closest to it.

Variables are written starting with an uppercase letter. A discrete variable
has a domain that is a finite or countable set. A binary variable is a variable
where the domain has two values. A Boolean variable is a binary variable with
domain {true, false}. The assignment of true to a Boolean variable is written as
the lower-case variant of the variable (e.g., Happy= true is written as happy and
Fire= true is fire).

A primitive proposition (page 177) is an assignment of a value to a vari-
able, or an inequality between a variable and a value, or between variables
(e.g., A= true, X < 7, or Y > Z). A primitive proposition is true in a possible
world whenever that condition holds in the world. Propositions are built from
primitive propositions using logical connectives (page 178). A proposition is
either true or false in a world.

A probability measure is a function μ from sets of worlds into the nonneg-
ative real numbers that satisfies two constraints:

• if Ω1 and Ω2 are disjoint sets of worlds (they have no elements in com-
mon), then μ(Ω1 ∪Ω2) = μ(Ω1) + μ(Ω2)

• μ(Ω) = 1 where Ω is the set of all possible worlds.

These should not be controversial. For example, the number of people in two
groups of people is the sum of the number in each group if the groups don’t
have any members in common. The second constraint is just by convention;
we could have chosen any other value.

The probability of proposition α, written P(α), is the measure of the set of
possible worlds in which α is true. That is,

P(α) = μ({ω : α is true in ω}).
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Example 9.2 Consider the ten possible worlds of Figure 9.1, with Boolean
variable Filled and with variable Shape with domain {circle, triangle, star}. Each
world is defined by its shape, whether it’s filled, and its position. Suppose the
measure of each singleton set of worlds is 0.1. Then P(Shape= circle) = 0.5, as
there are five circles and P(Filled= false) = 0.4, as there are four unfilled shapes.
P(Shape= circle∧ Filled= false) = 0.1 (where “∧” means “and”), as there is only
one unfilled circle.

If X is a random variable, a probability distribution, P(X), over X is a
function from the domain of X into the real numbers such that, given a value
x ∈ domain(X), P(x) is the probability of the proposition X= x. A probability
distribution over a set of variables is a function from the values of those vari-
ables into a probability. For example, P(X, Y) is a probability distribution over
X and Y such that P(X= x, Y= y), where x ∈ domain(X) and y ∈ domain(Y),
has the value P(X= x ∧ Y= y), where X= x ∧ Y= y is the proposition repre-
senting the conjunction (and) of the assignments to the variables, and P is the
function on propositions defined above. Whether P refers to a function on
propositions or a probability distribution should be clear from the context.

If X1, . . . , Xn are all of the random variables, an assignment to those ran-
dom variables corresponds to a world, and the probability of the proposition
defining a world is equal to the probability of the world. The distribution over
all worlds, P(X1, . . . , Xn), is called the joint probability distribution.

9.1.2 Conditional Probability

Probability is a measure of belief. Beliefs need to be updated when new evi-
dence is observed.

The measure of belief in proposition h given proposition e is called the con-
ditional probability of h given e, written P(h | e).

A proposition e representing the conjunction of all of the agent’s observa-
tions of the world is called evidence. Given evidence e, the conditional prob-
ability P(h | e) is the agent’s posterior probability of h. The probability P(h)

Figure 9.1: Ten possible worlds described by variables Filled and Shape
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Beyond Finitely Many Worlds

The definition of probability is straightforward when there are only finitely
many worlds. When there are infinitely many worlds, there are some techni-
cal issues that need to be confronted.

There are infinitely many worlds when

• the domain of a variable is infinite, for example, the domain of a variable
height might be the set of nonnegative real numbers or

• there are infinitely many variables, for example, there might be a vari-
able for the location of a robot for every millisecond from now infinitely
far into the future.

When there are infinitely many worlds there are uncountably many sets of
worlds, which is more than can be described with a language with finite sen-
tences. We do not need to define the measure for all sets of worlds, just those
that can be defined by logical formulas. This is the basis for the definition of
a σ-algebra used in many probability texts.

For variables with continuous domains, the probability of X= v can be
zero for all v, even though the probability of v0 < X < vi is positive for v0 <
v1. For variables with real-valued domains, a probability density function,
written as p, is a function from reals into nonnegative reals that integrates to
1. The probability that a real-valued variable X has value between a and b is

P(a ≤ X ≤ b) =
∫ b

a
p(X) dX.

A parametric distribution is one where the probability or density function
is described by a formula with free parameters. Not all distributions can be
described by formulas, or any finite representation. Sometimes statisticians
use the term parametric to mean a distribution described using a fixed, fi-
nite number of parameters. A nonparametric distribution is one where the
number of parameters is not fixed, such as in a decision tree. (Oddly, non-
parametric typically means “many parameters”.)

An alternative is to consider discretization of continuous variables. For
example, only consider height to the nearest centimeter or micron, and only
consider heights up to some finite number (e.g., a kilometer). Or only consider
the location of the robot for a millennium. With finitely many variables, there
are only finitely many worlds if the variables are discretized. A challenge is
to define representations that work for any (fine enough) discretization.

It is common to work with a parametric distribution when the solutions
can be computed analytically and where there is theoretical justification for
some particular distribution or the parametric distribution is close enough.
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is the prior probability of h and is the same as P(h | true) because it is the
probability before the agent has observed anything.

The evidence used for the posterior probability is everything the agent ob-
serves about a particular situation. Everything observed, and not just a few se-
lect observations, must be conditioned on to obtain the correct posterior prob-
ability.

Example 9.3 For the diagnostic agent, the prior probability distribution over
possible diseases is used before the diagnostic agent finds out about the par-
ticular patient. Evidence is obtained through discussions with the patient, ob-
serving symptoms, and the results of lab tests. Essentially, any information that
the diagnostic agent finds out about the patient is evidence. The agent updates
its probability to reflect the new evidence in order to make informed decisions.

Example 9.4 The information that the delivery robot receives from its sensors
is its evidence. When sensors are noisy, the evidence is what is known, such
as the particular pattern received by the sensor, not that there is a person in
front of the robot. The robot could be mistaken about what is in the world but
it knows what information it received.

Semantics of Conditional Probability

Evidence e, where e is a proposition, will rule out all possible worlds that are in-
compatible with e. Like the definition of logical consequence, the given propo-
sition e selects the possible worlds in which e is true.

Evidence e induces a new measure, μe, over sets of worlds. Any set of
worlds which all have e false has measure 0 in μe. The measure of a set of
worlds for which e is true in all of them is its measure in μ multiplied by a
constant:

μe(S) =
{

c ∗ μ(S) if e is true in ω for all ω ∈ S
0 if e is false in ω for all ω ∈ S

where c is a constant (that depends on e) to ensure that μe is a proper measure.
For μe to be a probability measure over worlds for each e:

1 = μe(Ω)

= μe({w : e is true in w}) + μe({w : e is false in w})
= c ∗ μ({w : e is true in w}) + 0
= c ∗ P(e).

Therefore, c = 1/P(e). Thus, the conditional probability is only defined if
P(e) > 0. This is reasonable, as if P(e) = 0, e is impossible.

The conditional probability of proposition h given evidence e is the sum of
the conditional probabilities of the possible worlds in which h is true. That is:

P(h | e) = μe({ω : h is true in ω})
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= μe({ω : h∧ e is true in ω}) + μe({ω : h∧ ¬e is true in ω})
=

1
P(e)

∗ μ({ω : h∧ e is true in ω}) + 0

=
P(h∧ e)

P(e)
.

The last form above is typically given as the definition of conditional probabil-
ity. Here we have derived it as a consequence of a more basic definition. This
more basic definition is used when designing algorithms; set the assignments
inconsistent with the observations to have probability zero, and normalize at
the end.

Example 9.5 As in Example 9.2, consider the worlds of Figure 9.1 (page 378),
with each singleton set having a measure of 0.1. Given the evidence Filled= false,
only four worlds have a nonzero measure, with

P(Shape= circle | Filled= false) = 0.25

P(Shape= star | Filled= false) = 0.5.

A conditional probability distribution, written P(X | Y) where X and Y
are variables or sets of variables, is a function of the variables: given a value x ∈
domain(X) for X and a value y ∈ domain(Y) for Y, it gives the value P(X= x |
Y= y), where the latter is the conditional probability of the propositions.

The definition of conditional probability allows the decomposition of a con-
junction into a product of conditional probabilities. The definition of condi-
tional probability gives P(e ∧ h) = P(h | e) ∗ P(e). Repeated application of this
product can be used to derive the chain rule:

P(α1 ∧ α2 ∧ . . . ∧ αn)

= P(αn | α1 ∧ · · · ∧ αn−1) ∗ P(α1 ∧ · · · ∧ αn−1)

= P(αn | α1 ∧ · · · ∧ αn−1) ∗ · · · ∗ P(α2 | α1) ∗ P(α1)

=
n

∏
i=1

P(αi | α1 ∧ · · · ∧ αi−1)

where the base case is P(α1 | true) = P(α1), the empty conjunction being true.

Bayes’ Rule

An agent using probability updates its belief when it observes new evidence.
A new piece of evidence is conjoined to the old evidence to form the complete
set of evidence. Bayes’ rule specifies how an agent should update its belief in a
proposition based on a new piece of evidence.

Suppose an agent has a current belief in proposition h based on evidence
k already observed, given by P(h | k), and subsequently observes e. Its new
belief in h is P(h | e∧ k). Bayes’ rule tells us how to update the agent’s belief in
hypothesis h as new evidence arrives.
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Proposition 9.1. (Bayes’ rule) As long as P(e | k) �= 0:

P(h | e∧ k) =
P(e | h∧ k) ∗ P(h | k)

P(e | k)
.

This is often written with the background knowledge k implicit. In this
case, if P(e) �= 0, then

P(h | e) =
P(e | h) ∗ P(h)

P(e)
.

P(e | h) is the likelihood and P(h) is the prior probability of the hypothesis
h. Bayes’ rule states that the posterior probability is proportional to the likeli-
hood times the prior.

Proof. The commutativity of conjunction means that h∧ e is equivalent to e∧ h,
and so they have the same probability given k. Using the rule for multiplication
in two different ways:

P(h∧ e | k) = P(h | e∧ k) ∗ P(e | k)
= P(e∧ h | k) = P(e | h∧ k) ∗ P(h | k).

The theorem follows from dividing the right-hand sides by P(e | k), which is
not 0 by assumption.

Generally, one of P(e | h ∧ k) or P(h | e ∧ k) is much easier to estimate than
the other. Bayes’ rule is used to compute one from the other.

Example 9.6 In medical diagnosis, the doctor observes a patient’s symp-
toms, and would like to know the likely diseases. Thus the doctor would like
P(Disease | Symptoms). This is difficult to assess as it depends on the context
(e.g., some diseases are more prevalent in hospitals). It is typically easier to as-
sess P(Symptoms | Disease) because how the disease gives rise to the symptoms
is typically less context dependent. These two are related by Bayes’ rule, where
the prior probability of the disease, P(Disease), reflects the context.

Example 9.7 The diagnostic assistant may need to know whether the light
switch s1 of Figure 1.6 (page 18) is broken or not. You would expect that the
electrician who installed the light switch in the past would not know if it is
broken now, but would be able to specify how the output of a switch is a func-
tion of whether there is power coming into the switch, the switch position, and
the status of the switch (whether it is working, shorted, installed upside-down,
etc.). The prior probability for the switch being broken depends on the maker
of the switch and how old it is. Bayes’ rule lets an agent infer the status of the
switch given the prior and the evidence.

https://doi.org/10.1017/9781009258227.013


9.1. Probability 383

9.1.3 Expected Values

The expected value of a numerical random variable (one whose domain is the
real numbers or a subset of the reals) is the variable’s weighted average value,
where sets of worlds with higher probability have higher weight.

Let X be a numerical random variable. The expected value of X, written
EP(X), with respect to probability P is

EP(X) = ∑
v∈domain(X)

v ∗ P(X= v)

when the domain is X is finite or countable. When the domain is continuous,
the sum becomes an integral.

One special case is if α is a proposition, treating true as 1 and false as 0,
where EP(α) = P(α).

Example 9.8 In an electrical domain, if number of broken switches is the num-
ber of switches broken:

EP(number of broken switches)

would give the expected number of broken switches given by probability dis-
tribution P. If the world acted according to the probability distribution P, this
would give the long-run average number of broken switches. If there were
three switches, each with a probability of 0.7 of being broken independently of
the others, the expected number of broken switches is

0 ∗ 0.33 + 1 ∗ 3 ∗ 0.7 ∗ 0.32 + 2 ∗ 3 ∗ 0.72 ∗ 0.3 + 3 ∗ 0.73 = 2.01

where 0.33 is the probability that no switches are broken, 0.7 ∗ 0.32 is the proba-
bility that one switch is broken, which is multiplied by 3 as there are three ways
that one switch can be broken.

In a manner analogous to the semantic definition of conditional probability
(page 380), the conditional expected value of X conditioned on evidence e,
written E(X | e), is

E(X | e) = ∑
v∈domain(X)

v ∗ P(X= v | e).

Example 9.9 The expected number of broken switches given that light l1 is
not lit is given by

E(number of broken switches | ¬lit(l1)).

This is obtained by averaging the number of broken switches over all of the
worlds in which light l1 is not lit.

If a variable is Boolean, with true represented as 1 and false as 0, the ex-
pected value is the probability of the variable. Thus any algorithms for ex-
pected values can also be used to compute probabilities, and any theorems
about expected values are also directly applicable to probabilities.
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9.2 Independence

The axioms of probability are very weak and provide few constraints on al-
lowable conditional probabilities. For example, if there are n binary variables,
there are 2n − 1 free parameters, which means there are 2n − 1 numbers to be
assigned to give an arbitrary probability distribution.

A useful way to limit the amount of information required is to assume that
each variable only directly depends on a few other variables. This uses as-
sumptions of conditional independence. Not only does it reduce how many
numbers are required to specify a model, but also the independence structure
may be exploited for efficient reasoning.

As long as the value of P(h | e) is not 0 or 1, the value of P(h | e) does not
constrain the value of P(h | f ∧ e). This latter probability could have any value
in the range [0, 1]. It is 1 when f implies h, and it is 0 if f implies ¬h. A common
kind of qualitative knowledge is of the form P(h | e) = P(h | f ∧ e), which
specifies f is irrelevant to the probability of h given that e is observed. This idea
applies to random variables, as in the following definition.

Random variable X is conditionally independent of random variable Y
given a set of random variables Zs if

P(X | Y, Zs) = P(X | Zs)

whenever the probabilities are well defined. That is, given a value of each
variable in Zs, knowing Y’s value does not affect the belief in the value of X.

Example 9.10 Consider a probabilistic model of students and exams. It is
reasonable to assume that the random variable Intelligence is independent of
Works hard, given no observations. If you find that a student works hard, it
does not tell you anything about their intelligence.

The answers to the exam (the variable Answers) would depend on whether
the student is intelligent and works hard. Thus, given Answers, Intelligent would
be dependent on Works hard; if you found someone had insightful answers, and
did not work hard, your belief that they are intelligent would go up.

The grade on the exam (variable Grade) should depend on the student’s an-
swers, not on the intelligence or whether the student worked hard. Thus, Grade
would be independent of Intelligence given Answers. However, if the answers
were not observed, Intelligence will affect Grade (because highly intelligent stu-
dents would be expected to have different answers than not so intelligent stu-
dents); thus, Grade is dependent on Intelligence given no observations.

Proposition 9.2. The following four statements are equivalent, as long as the condi-
tional probabilities are well defined:

1. X is conditionally independent of Y given Z.
2. Y is conditionally independent of X given Z.
3. P(X= x | Y= y ∧ Z= z) = P(X= x | Y= y′ ∧ Z= z) for all values x, y,

y′, and z. That is, in the context that you are given a value for Z, changing the
value of Y does not affect the belief in X.
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4. P(X, Y | Z) = P(X | Z)P(Y | Z).

The proof is left as an exercise. See Exercise 9.1 (page 451).
Variables X and Y are unconditionally independent if P(X, Y) = P(X)P(Y),

that is, if they are conditionally independent given no observations. Note that
X and Y being unconditionally independent does not imply they are condition-
ally independent given some other information Z.

Conditional independence is a useful assumption that is often natural to
assess and can be exploited in inference. It is rare to have a table of probabilities
of worlds and assess independence numerically.

Another useful concept is context-specific independence. Variables X and
Y are independent with respect to context Zs= vs if

P(X | Y, Zs= vs) = P(X | Zs= zs)

whenever the probabilities are well defined. That is, for all x ∈ domain(X) and
for all y ∈ domain(Y), if P(Y= y∧ Zs= zs) > 0:

P(X= x | Y= y∧ Zs= zs) = P(X= x | Zs= zs).

This is like conditional independence, but is only for one of the values of Zs.
This is discussed in more detail when representing conditional probabilities in
terms of decision trees (page 396).

9.3 Belief Networks

The notion of conditional independence is used to give a concise representa-
tion of many domains. The idea is that, given a random variable X, there may
be a few variables that directly affect the X’s value, in the sense that X is condi-
tionally independent of other variables given these variables. The set of locally
affecting variables is called the Markov blanket. This locality is exploited in a
belief network.

A belief network is a directed acyclic graph representing conditional de-
pendence among a set of random variables. The random variables are the
nodes. The arcs represent direct dependence. The conditional independence
implied by a belief network is determined by an ordering of the variables; each
variable is independent of its predecessors in the total ordering given a subset
of the predecessors called its parents. Independence in the graph is indicated
by missing arcs.

To define a belief network on a set of random variables, {X1, . . . , Xn}, first
select a total ordering of the variables, say, X1, . . . , Xn. The chain rule (Proposi-
tion 9.1.2 (page 381)) shows how to decompose a conjunction into conditional
probabilities:

P(X1 = v1 ∧X2 = v2 ∧ · · · ∧Xn = vn)
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=
n

∏
i=1

P(Xi = vi | X1 = v1 ∧ · · · ∧Xi−1 = vi−1).

Or, in terms of random variables:

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi | X1, . . . , Xi−1). (9.1)

Define the parents of random variable Xi, written parents(Xi), to be a min-
imal set of predecessors of Xi in the total ordering such that the other pre-
decessors of Xi are conditionally independent of Xi given parents(Xi). Thus
Xi probabilistically depends on each of its parents, but is independent of its
other predecessors. That is, parents(Xi) ⊆ {X1, . . . , Xi−1} such that

P(Xi | X1, . . . , Xi−1) = P(Xi | parents(Xi)).

This conditional independence characterizes a belief network.
When there are multiple minimal sets of predecessors satisfying this con-

dition, any minimal set may be chosen to be the parents. There can be more
than one minimal set only when some of the predecessors are deterministic
functions of others.

Putting the chain rule and the definition of parents together gives

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi | parents(Xi)).

The probability over all of the variables, P(X1, X2, . . . , Xn), is called the joint
probability distribution. A belief network defines a factorization of the joint
probability distribution into a product of conditional probabilities.

A belief network, also called a Bayesian network, is an acyclic directed
graph (DAG), where the nodes are random variables. There is an arc from each
element of parents(Xi) into Xi. Associated with the belief network is a set of
conditional probability distributions that specify the conditional probability of
each variable given its parents (which includes the prior probabilities of those
variables with no parents).

Thus, a belief network consists of

• a DAG, where each node is labeled by a random variable
• a domain for each random variable, and
• a set of conditional probability distributions giving P(X | parents(X)) for

each variable X.

A belief network is acyclic by construction. How the chain rule decomposes
a conjunction depends on the ordering of the variables. Different orderings can
result in different belief networks. In particular, which variables are eligible to
be parents depends on the ordering, as only predecessors in the ordering can
be parents. Some of the orderings may result in networks with fewer arcs than
other orderings.

https://doi.org/10.1017/9781009258227.013


9.3. Belief Networks 387

Example 9.11 Consider the four variables of Example 9.10 (page 384), with the
ordering: Intelligent, Works hard, Answers, Grade. Consider the variables in or-
der. Intelligent does not have any predecessors in the ordering, so it has no par-
ents, thus parents(Intelligent) = {}. Works hard is independent of Intelligent, and
so it too has no parents. Answers depends on both Intelligent and Works hard, so

parents(Answers) = {Intelligent, Works hard}.

Grade is independent of Intelligent and Works hard given Answers and so

parents(Grade) = {Answers}.

The corresponding belief network is given in Figure 9.2.
This graph defines the decomposition of the joint distribution:

P(Intelligent, Works hard, Answers, Grade)
= P(Intelligent) ∗ P(Works hard) ∗ P(Answers | Intelligent, Works hard)
∗ P(Grade | Answers).

In the examples below, the domains of the variables are simple, for example
the domain of Answers may be {insightful, clear, superficial, vacuous} or it could
be the actual text answers.

The independence of a belief network, according to the definition of par-
ents, is that each variable is independent of all of the variables that are not
descendants of the variable (its non-descendants) given the variable’s parents.

9.3.1 Observations and Queries

A belief network specifies a joint probability distribution from which arbitrary
conditional probabilities can be derived. The most common probabilistic infer-
ence task – the task required for decision making – is to compute the posterior
distribution of a query variable, or variables, given some evidence, where the
evidence is a conjunction of assignment of values to some of the variables.

Intelligent Works_hard

Answers

Grade

Figure 9.2: Belief network for exam answering of Example 9.11
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Example 9.12 Before there are any observations, the distribution over intelli-
gence is P(Intelligent), which is provided as part of the network. To determine
the distribution over grades, P(Grade), requires inference.

If a grade of A is observed, the posterior distribution of Intelligent is given
by

P(Intelligent | Grade=A).

If it was also observed that Works hard is false, the posterior distribution of
Intelligent is

P(Intelligent | Grade=A∧Works hard= false).

Although Intelligent and Works hard are independent given no observations,
they are dependent given the grade. This might explain why some people claim
they did not work hard to get a good grade; it increases the probability they are
intelligent.

9.3.2 Constructing Belief Networks

To represent a domain in a belief network, the designer of a network must
consider the following questions.

• What are the relevant variables? In particular, the designer must con-
sider:

– What the agent may observe in the domain. Each feature that may
be observed should be a variable, because the agent must be able to
condition on all of its observations.

– What information the agent is interested in knowing the posterior
probability of. Each of these features should be made into a variable
that can be queried.

– Other hidden variables or latent variables that will not be observed
or queried but make the model simpler. These variables either ac-
count for dependencies, reduce the size of the specification of the
conditional probabilities, or better model how the world is assumed
to work.

• What values should these variables take? This involves considering the
level of detail at which the agent should reason to answer the sorts of
queries that will be encountered.

For each variable, the designer should specify what it means to take
each value in its domain. What must be true in the world for a (non-
hidden) variable to have a particular value should satisfy the clarity prin-
ciple (page 128): an omniscient agent should be able to know the value
of a variable. It is a good idea to explicitly document the meaning of all
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variables and their possible values. The only time the designer may not
want to do this is for hidden variables whose values the agent will want
to learn from data (see Section 10.4.1, page 482).

• What is the relationship between the variables? This should be expressed
by adding arcs in the graph to define the parent relation.

• How does the distribution of a variable depend on its parents? This is
expressed in terms of the conditional probability distributions.

Example 9.13 Suppose you want to use the diagnostic assistant to diagnose
whether there is a fire in a building and whether there has been some tamper-
ing with equipment based on noisy sensor information and possibly conflicting
explanations of what could be going on. The agent receives a report from Sam
about whether everyone is leaving the building. Suppose Sam’s report is noisy:
Sam sometimes reports leaving when there is no exodus (a false positive), and
sometimes does not report when everyone is leaving (a false negative). Sup-
pose that leaving only depends on the fire alarm going off. Either tampering or
fire could affect the alarm. Whether there is smoke only depends on whether
there is fire.

Suppose you use the following variables in the following order:

• Tampering is true when there is tampering with the alarm.
• Fire is true when there is a fire.
• Alarm is true when the alarm sounds.
• Smoke is true when there is smoke.
• Leaving is true if there are many people leaving the building at once.
• Report is true if Sam reports people leaving. Report is false if there is no

report of leaving.

Assume the following conditional independencies:

• Fire is conditionally independent of Tampering (given no other informa-
tion).

• Alarm depends on both Fire and Tampering. This is making no indepen-
dence assumptions about how Alarm depends on its predecessors given
this variable ordering.

• Smoke depends only on Fire and is conditionally independent of Tampering
and Alarm given whether there is Fire.

• Leaving only depends on Alarm and not directly on Fire or Tampering or
Smoke. That is, Leaving is conditionally independent of the other variables
given Alarm.

• Report only directly depends on Leaving.

The belief network of Figure 9.3 (page 390) expresses these dependencies.
This network represents the factorization

P(Tampering, Fire, Alarm, Smoke, Leaving, Report)
= P(Tampering) ∗ P(Fire) ∗ P(Alarm | Tampering, Fire)

https://doi.org/10.1017/9781009258227.013


390 9. Reasoning with Uncertainty

∗ P(Smoke | Fire) ∗ P(Leaving | Alarm) ∗ P(Report | Leaving).

Note that the alarm is not a smoke alarm, which would be affected by the
smoke, and not directly by the fire, but rather it is a heat alarm that is directly
affected by the fire. This is made explicit in the model in that Alarm is indepen-
dent of Smoke given Fire.

You also must define the domain of each variable. Assume that the vari-
ables are Boolean; that is, they have domain {true, false}. We use the lower-
case variant of the variable to represent the true value and use negation for the
false value. Thus, for example, Tampering= true is written as tampering, and
Tampering= false is written as ¬tampering.

The examples that follow assume the following conditional probabilities:

P(tampering) = 0.02
P(fire) = 0.01
P(alarm | fire∧ tampering) = 0.5
P(alarm | fire∧ ¬tampering) = 0.99
P(alarm | ¬fire∧ tampering) = 0.85
P(alarm | ¬fire∧ ¬tampering) = 0.0001

P(smoke | fire) = 0.9
P(smoke | ¬fire) = 0.01
P(leaving | alarm) = 0.88
P(leaving | ¬alarm) = 0.001
P(report | leaving) = 0.75
P(report | ¬leaving) = 0.01.

Before any evidence arrives, the probability is given by the priors. The
following probabilities follow from the model (all of the numbers here are to
about three decimal places):

P(tampering) = 0.02
P(fire) = 0.01
P(report) = 0.028
P(smoke) = 0.0189.

Tampering Fire

Alarm

Leaving

Smoke

Report

Figure 9.3: Belief network for report of leaving of Example 9.13
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Observing a report gives the following:

P(tampering | report) = 0.399
P(fire | report) = 0.2305
P(smoke | report) = 0.215.

As expected, the probabilities of both tampering and fire are increased by the
report. Because the probability of fire is increased, so is the probability of smoke.

Suppose instead that smoke alone was observed:

P(tampering | smoke) = 0.02
P(fire | smoke) = 0.476
P(report | smoke) = 0.320.

Note that the probability of tampering is not affected by observing smoke; how-
ever, the probabilities of report and fire are increased.

Suppose that both report and smoke were observed:

P(tampering | report∧ smoke) = 0.0284
P(fire | report∧ smoke) = 0.964.

Observing both makes fire even more likely. However, in the context of report,
the presence of smoke makes tampering less likely. This is because report is ex-
plained away by fire, which is now more likely.

Suppose instead that report, but not smoke, was observed:

P(tampering | report∧ ¬smoke) = 0.501
P(fire | report∧ ¬smoke) = 0.0294.

In the context of report, fire becomes much less likely and so the probability of
tampering increases to explain report.

This example illustrates how the belief net independence assumption gives
commonsense conclusions and also demonstrates how explaining away is a
consequence of the independence assumption of a belief network.

Example 9.14 Consider the problem of diagnosing why someone is sneezing
and perhaps has a fever. Sneezing could be because of influenza or because
of hay fever. They are not independent, but are correlated due to the season.
Suppose hay fever depends on the season because it depends on the amount of
pollen, which in turn depends on the season. The agent does not get to observe
sneezing directly, but rather observed just the “Achoo” sound. Suppose fever
depends directly on influenza. These dependency considerations lead to the
belief network of Figure 9.4 (page 392).

Example 9.15 Consider the wiring example of Figure 1.6 (page 18). Let’s have
variables for whether lights are lit, for the switch positions, for whether lights
and switches are faulty or not, and for whether there is power in the wires. The
variables are defined in Figure 9.5 (page 393).
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Let’s try to order the variables so that each variable has few parents. In this
case there seems to be a natural causal order where, for example, the variable
for whether a light is lit comes after variables for whether the light is working
and whether there is power coming into the light.

Whether light l1 is lit depends only on whether there is power in wire w0
and whether light l1 is working properly. Other variables, such as the position
of switch s1, whether light l2 is lit, or who is the Queen of Canada, are irrelevant.
Thus, the parents of L1 lit are whether there is power in wire w0 (variable W0),
and the status of light l1 (variable L1 st); see Figure 9.5 for the meaning of the
variables.

Consider variable W0, which represents whether there is power in wire w0.
If you knew whether there was power in wires w1 and w2, and knew the posi-
tion of switch s2 and whether the switch was working properly, the value of the
other variables (other than L1 lit) would not affect the belief in whether there is
power in wire w0. Thus, the parents of W0 should be S2 Pos, S2 st, W1, and W2.

Figure 9.5 (page 393) shows the resulting belief network after the inde-
pendence of each variable has been considered. The belief network also con-
tains the domains of the variables and conditional probabilities of each variable
given its parents.

Note the independence assumption embedded in this model. The DAG
specifies that the lights, switches, and circuit breakers break independently. To
model dependencies among how the switches break, you could add more arcs
and perhaps more variables. For example, if some lights do not break indepen-
dently because they come from the same batch, you could add an extra node
modeling the batch, and whether it is a good batch or a bad batch, which is
made a parent of the Li st variables for each light Li from that batch. When
you have evidence that one light is broken, the probability that the batch is bad
may increase and thus make it more likely that other lights from that batch are
broken. If you are not sure whether the lights are indeed from the same batch,
you could add variables representing this, too. The important point is that the

Influenza Hay_fever

Sneezing

“Achoo” sound

Fever

Season

Pollen

Figure 9.4: Belief network for Example 9.14
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Outside_power

W3

Cb1_st
Cb2_st

W6

W2

W0

W1

W4

S1_st

S2_st

P1

P2

S1_pos

S2_pos

S3_pos

S3_st

L2_st

L2_lit

L1_st

L1_lit

• For each wire wi, there is a random variable, Wi, with domain {live, dead},
which denotes whether there is power in wire wi. Wi = live means wire wi
has power. Wi = dead means there is no power in wire wi.

• Outside power with domain {live, dead} denotes whether there is power
coming into the building.

• For each switch si, variable Si pos denotes the position of si. It has domain
{up, down}.

• For each switch si, variable Si st denotes the state of switch si. It has do-
main {ok, upside down, short, intermittent, broken}. Si st= ok means switch
si is working normally. Si st= upside down means switch si is installed
upside-down. Si st= short means switch si is shorted and acting as a wire.
Si st= broken means switch si is broken and does not allow electricity to
flow.

• For each circuit breaker cbi, variable Cbi st has domain {on, off}.
Cbi st= on means power could flow through cbi and Cbi st= off means
power could not flow through cbi.

• For each light li, variable Li st with domain {ok, intermittent, broken} de-
notes the state of the light. Li st= ok means light li will light if pow-
ered, Li st= intermittent means light li intermittently lights if powered,
and Li st= broken means light li does not work.

Figure 9.5: Belief network for the electrical domain of Figure 1.6
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belief network provides a specification of independence that lets us model de-
pendencies in a natural and direct manner.

The model implies that there is no possibility of shorts in the wires or that
the house is wired differently from the diagram. For example, it implies that
w0 cannot be shorted to w4 so that wire w0 gets power from wire w4. You could
add extra dependencies that let each possible short be modeled. An alterna-
tive is to add an extra node that indicates that the model is appropriate. Arcs
from this node would lead to each variable representing power in a wire and
to each light. When the model is appropriate, you could use the probabilities
of Example 9.15 (page 391). When the model is inappropriate, you could, for
example, specify that each wire and light works at random. When there are
weird observations that do not fit in with the original model – they are impos-
sible or extremely unlikely given the model – the probability that the model is
inappropriate will increase.

9.3.3 Representing Conditional Probabilities and Factors

A factor is a function of a set of variables; the variables on which it depends
are the scope of the factor. Given an assignment of a value to each variable in
the scope, the factor evaluates to a number.

A conditional probability is a factor representing P(Y | X1, . . . , Xk), which is
a function from the variables Y, X1, . . . , Xk into nonnegative numbers. It must
satisfy the constraints that for each assignment of values to all of X1, . . . , Xk, the
values for Y sum to 1. That is, given values for all of the variables, the function
returns a number that satisfies the constraint

∀x1 . . . ∀xk ∑
y∈domain(Y)

P(Y= y | X1 = x1, . . . , Xk = xk) = 1. (9.2)

The following gives a number of ways of representing conditional proba-
bilities, and other factors.

Conditional Probability Tables

A representation for a conditional probability that explicitly stores a value for
each assignment to the variables is called a conditional probability table or
CPT. This can be done whenever there is a finite set of variables with finite
domains. The space used is exponential in the number of variables; the size of
the table is the product of the sizes of the domains of the variables in the scope.

One such representation is to use a multidimensional table, storing P(Y= y |
X1 = v1, . . . , xk = vk) in p y[v1] . . . [vk][y] (using Python’s notation for arrays, and
exploiting its ambiguity of arrays and dictionaries).

Example 9.16 Figure 9.6 shows the conditional probabilities for P(alarm |
Fire, Tampering). The probability for Alarm being false can be computed from
the given probabilities, for example:

P(Alarm= false | Fire= false, Tampering= true) = 1− 0.85 = 0.15
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Given a total ordering of the variables, [Fire, Tampering, Alarm], the values
mapped to the nonnegative integers; false to 0 and true to 1.

P(Alarm | Fire, Tampering) of Figure 9.6 can be represented as the Python
array

cpt = [[[0.9999, 0.0001], [0.15, 0.85]], [[0.01, 0.99], [0.5, 0.5]]].

Given particular values of Fire= f , Tampering= t, Alarm= a, where f , t, and a are
each 0 or 1, the value can be found at cpt[f ][t][a]. If the domain of a variable is
not of the form {0, . . . , n− 1}, a dictionary can be used. Other languages have
different syntaxes.

There are a number of refinements, which use different space-time trade-
offs, including the following.

• Tables can be implemented as one-dimensional arrays. Given an ordering
of the variables (e.g., alphabetical) and an ordering for the values, and
using a mapping from the values into nonnegative integers, there is a
unique representation using the lexical ordering of each factor as a one-
dimensional array that is indexed by natural numbers. This is a space-
efficient way to store a table.

• If the child variable is treated the same as the parent variables, the infor-
mation is redundant; more numbers are specified than is required. One
way to handle this is to store the probability for all-but-one of the values
of the child, Y. The probability of the other value can be computed as
1 minus the sum of other values for a set of parents. In particular, if Y
is Boolean, you only need to represent the probability for one value, say
Y= true given the parents; the probability for Y= false can be computed
from this.

• It is also possible to store unnormalized probabilities, which are nonneg-
ative numbers that are proportional to the probability. The probability is
computed by dividing each value by the sum of the values. This is com-
mon when the unnormalized probabilities are counts (see Section 10.2.1,
page 461).

Fire Tampering P(alarm | Fire, Tampering)
false false 0.0001
false true 0.85
true false 0.99
true true 0.5

Figure 9.6: Conditional probability of Alarm= true given Fire and Tampering
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Decision Trees

The tabular representation of conditional probabilities can be enormous when
there are many parents. There is often insufficient evidence – either from data
or from experts – to provide all the numbers required. Fortunately, there is
often structure in conditional probabilities which can be exploited.

One such structure exploits context-specific independence (page 385), where
one variable is conditionally independent of another, given particular values
for some other variables.

Example 9.17 Suppose a robot can go outside or get coffee, so Action has
domain {go out, get coffee}. Whether it gets wet (variable Wet) depends on
whether there is rain (variable Rain) in the context that it went out or on whether
the cup was full (variable Full) if it got coffee. Thus Wet is independent of
Rain given context Action= get coffee, but is dependent on Rain given contexts
Action= go out. Also, Wet is independent of Full given Action= go out, but is
dependent on Full given Action= get coffee.

A conditional probability table that represents such independencies is shown
in Figure 9.7.

Context-specific independence may be exploited in a representation by not
requiring numbers that are not needed. A simple representation for condi-
tional probabilities that models context-specific independence is a decision
tree (page 281), where the parents in a belief network correspond to the input
features that form the splits, and the child corresponds to the target feature.
Each leaf of the decision tree contains a probability distribution over the child
variable.

Example 9.18 The conditional probability P(Wet | Action, Rain, Full) of Figure
9.7 could be represented as a decision tree, where the number at the leaf is the
probability for Wet= true:

Action Rain Full P(Wet= true | Action, Rain, Full)
go out false false 0.1
go out false true 0.1
go out true false 0.8
go out true true 0.8
get coffee false false 0.3
get coffee false true 0.6
get coffee true false 0.3
get coffee true true 0.6

Figure 9.7: A conditional probability that a robot will get wet
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t fft

get_coffeego_out
Action

Rain Full

0.8 0.1 0.6 0.3

How to learn a decision tree from data was explored in Section 7.3.1 (page 281).
Context-specific inference can be exploited in probabilistic inference because a
factor represented by a decision tree can be evaluated in an assignment when
the values down a path in the tree hold; you don’t need to know the value of
all parent variables.

Deterministic System with Noisy Inputs

An alternative representation of conditional distributions is in terms of a deter-
ministic system, with probabilistic inputs. The deterministic system can range
from a logical formula to a program. The inputs to the system are the parent
variables and stochastic inputs. The stochastic inputs – often called noise vari-
ables or exogenous variables – can be considered as random variables that are
unconditionally independent (page 385) of each other. There is a deterministic
system that defines the non-leaf variables of the belief network, the endoge-
nous variables, as a deterministic function of the exogenous variables and the
parents.

When the deterministic system is Clark’s completion of a logic program
(page 208), it is known as probabilistic logic programming and when the de-
terministic system is a program, it is known as probabilistic programming.
When the deterministic system is specified by a logical formula, the probabilis-
tic inference is known as weighted model counting.

Example 9.19 The decision tree of Example 9.7 (page 396) for the conditional
distribution of Figure 9.6 (page 395) can be represented as the logical formula
(page 178)

wet ↔ ((go out∧ rain∧ n0)

∨ (go out∧ ¬rain∧ n1)

∨ (¬go out∧ full∧ n2)

∨ (¬go out∧ ¬full∧ n3))

where the ni are independent noise variables, with

P(n0) = 0.8, P(n1) = 0.1, P(n2) = 0.6, P(n3) = 0.3.

So if, for example, go out is true and rain is false, then wet is true whenever n1
is true, which occurs with probability 0.1.

This conditional distribution can be represented as a program:
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if go_out:

if rain:

wet := flip(0.8)

else:

wet := flip(0.1)

else:

if full:

wet := flip(0.6)

else:

wet := flip(0.3)

flip(x) = (random() < x)

where random() returns a random number uniformly in the range [0,1), so
flip(x) makes a new independent random variable that is true with probabil-
ity x. The logical formula gave these random variables names.

Logical formulas allow for much more complicated expressions than pre-
sented here. Probabilistic programming allows for the full expressivity of the
underlying programming language to express probabilistic models. Typically
a single program is used to represent the distribution of all variables, rather
than having a separate program for each conditional probability.

Noisy-or

There are many cases where something is true if there is something that makes
it true. For example, someone has a symptom if there is a disease that causes
that symptom; each of the causes can be probabilistic. In natural language
understanding, topics may have words probabilistically associated with them;
a word is used if there is a topic that makes that word appear. Each of these
examples follows the same pattern, called a noisy-or.

In a noisy-or model of a conditional probability, the child is true if one of
the parents is activated and each parent has a probability of activation. So the
child is an “or” of the activations of the parents.

If Y has Boolean parents X1, . . . , Xk, the noisy-or model of probability is
defined by k + 1 parameters w0, . . . , wk. Y is defined in terms of a deterministic
system with noisy inputs, where

Y ≡ n0 ∨ (n1 ∧ x1) ∨ · · · ∨ (nk ∧ xk).

The ni are unconditionally independent noise variables (page 397), with P(ni) =
wi, and xi means Xi = true.

The same distribution for P(Y | X1, X2, . . . , Xk) can be defined using k + 1
Boolean variables A0, A1, . . . , Ak, where for each i > 0, Ai has Xi as its only par-
ent. See Figure 9.8 (page 399). P(Ai = true | Xi = true) = wi and P(Ai = true |
Xi = false) = 0. The variable A0 has P(A0 = true) = w0. The variables A0, . . . , Ak
are the parents of Y. The conditional probability for Y, P(Y | A0, A1, . . . , Ak), is
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1 if any of the Ai are true and 0 if all of the Ai are false. Thus, w0 is the proba-
bility of Y when all of Xi are false; the probability of Y increases as more of the
Xi become true.

Example 9.20 Suppose the robot could get wet from rain or coffee. There is a
probability that it gets wet from rain if it rains, and a probability that it gets wet
from coffee if it has coffee, and a probability that it gets wet for other reasons.
The robot gets wet if it gets wet from one of the reasons, giving the “or”. You
could have P(wet from rain | rain) = 0.3, P(wet from coffee | coffee) = 0.2, and,
for the bias term, P(wet for other reasons) = 0.1. The robot is wet if it is wet
from rain, wet from coffee, or wet for other reasons.

Log-linear Models and Logistic Regression

In a log-linear model unnormalized probabilities are specified using a product
of terms, and probabilities are inferred by normalization. When the terms be-
ing multiplied are all positive, a product can be represented as the exponential
of a sum. A sum of terms is often a convenient term to work with.

The simplest case is for a Boolean variable. To represent conditional proba-
bilities of a Boolean variable h:

P(h | e) =
P(h∧ e)

P(e)

=
P(h∧ e)

P(h∧ e) + P(¬h∧ e)

=
1

1 + P(¬h∧ e)/P(h∧ e)

=
1

1 + exp(−(log P(h∧ e)/P(¬h∧ e)))
= sigmoid(log odds(h | e)).

A0 A1 A2 A3 Ak...

Y

X1 X2 X3 Xk...

Figure 9.8: Noisy-or P(Y | X1, X2, . . . , Xk) as a belief network
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• The sigmoid function, sigmoid(x) = 1/(1 + exp(−x)), plotted in Figure
7.11 (page 290), has been used previously in this book for logistic regres-
sion (page 290) and neural networks (page 330).

• The conditional odds (as often used by bookmakers in gambling)

odds(h | e) =
P(h∧ e)

P(¬h∧ e)

=
P(h | e)

P(¬h | e)

=
P(h | e)

1− P(h | e)
.

Decomposing P(h ∧ e) into P(e | h) ∗ P(h), and analogously for the
numerator, gives

odds(h | e) =
P(e | h)

P(e | ¬h)
∗ P(h)

P(¬h)

where P(h)
P(¬h) =

P(h)
1−P(h) is the prior odds and P(e|h)

P(e|¬h) is the likelihood ratio.
When P(e | h)/P(e | ¬h) is a product of terms, the log is a sum of terms.

The logistic regression (page 290) model of a conditional probability P(Y |
X1, . . . , Xk) is of the form

P(Y= true | X1, . . . , Xk) = sigmoid

(
∑

i
wi ∗Xi

)
. (9.3)

Assume a dummy input X0 which is always 1; w0 is the bias. This corresponds
to a decomposition of the conditional probability, where the likelihood ratio is
a product of terms, one for each Xi.

Note that P(Y | X1 = 0, . . . , Xk = 0) = sigmoid(w0). Thus, w0 determines
the probability when all of the parents are zero. Each wi specifies a value
that should be added as Xi changes. P(Y | X1 = 0, . . . , Xi = 1, . . . , Xk = 0) =
sigmoid(w0 + wi). The logistic regression model makes the independence as-
sumption that the influence of each parent on the child does not depend on the
other parents. In particular, it assumes that the odds can be decomposed into
a product of terms that each only depend on a single variable. When learning
logistic regression models (Section 7.3.2 (page 288)), the training data does not
need to obey that independence, but rather the algorithm tries to find a logistic
regression model that best predicts the training data (in the sense of having the
lowest squared error or log loss).

Example 9.21 Suppose the probability of wet given whether there is rain,
coffee, kids, or whether the robot has a coat, P(wet | Rain, Coffee, Kids, Coat), is

sigmoid(−1.0 + 2.0 ∗ Rain + 1.0 ∗ Coffee + 0.5 ∗ Kids− 1.5 ∗ Coat).
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This implies the following conditional probabilities:

P(wet | ¬rain∧ ¬coffee∧ ¬kids∧ ¬coat) = sigmoid(−1.0) = 0.27
P(wet | rain∧ ¬coffee∧ ¬kids∧ ¬coat) = sigmoid(1.0) = 0.73
P(wet | rain∧ ¬coffee∧ ¬kids∧ coat) = sigmoid(−0.5) = 0.38.

This requires fewer parameters than the 24 = 16 parameters required for a
tabular representation, but makes more independence assumptions.

Noisy-or and logistic regression models are similar, but different. Noisy-
or is typically used when the causal assumption that a variable is true if it is
caused to be true by one of the parents, is appropriate. Logistic regression is
used when the various parents add up to influence the child. See the box on
page 402.

One way to extend logistic regression to be able to represent more condi-
tional probabilities is to allow weights for conjunctions of Boolean properties.
For example, if Boolean Y has Booleans X1 and X2 as parents, four weights can
be used to define the conditional distribution:

P(Y | X1, X2) = w0 + w1 ∗X1 + w2 ∗X2 + w3 ∗X1 ∗X2

where X1 ∗X2 is 1 only when both X1 and X2 are true – the product of variables
with domain {0, 1} corresponds to conjunction. Then w0 = P(Y | X1 = 0, X2 = 0),
w1 = P(Y | X1 = 1, X2 = 0) − w0, w2 = P(Y | X1 = 0, X2 = 1) − w0 and w3 =
P(Y | X1 = 1, X2 = 1)−w0−w1−w2. In general, for P(Y | X1, . . . , Xk) there are
2k parameters, one for each subset of {X1, . . . , Xk} being conjoined (or multi-
plied). This is known as the canonical representation for Boolean conditional
probabilities. This has the same number of parameters as a conditional prob-
ability table, but can be made simpler by not representing the zero weights.
Logistic regression is the extreme form where all of the interaction (product)
weights are zero. It is common to start with the logistic regression form and
add as few interaction terms as needed.

A logistic regression model for Boolean variables can be represented using
weighted logical formulas, where a weighted logical formula is a pair of a
formula and a weight, such that P(Y= true | X1, . . . , Xk) is proportional to the
exponential of the sum of the weights for the formulas for which Y is true, and
the Xi have their given value. The model of Equation (9.3) (page 400) can be
specified by (y, w0) and (y∧ xi, wi) for each i, where xi means Xi = true. For the
canonical representation, more complicated formulas can be used; for exam-
ple, the case in the previous paragraph is represented by adding the weighted
formula (y∧ x1 ∧ x2, w3) to the logistic regression weighted formulas.

The extension of logistic regression to non-binary discrete variables is soft-
max regression (page 295); the softmax of linear functions.
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Noisy-or Compared to Logistic Regression

Noisy-or and logistic regression when used for Boolean parents are similar in
many ways. They both take a parameter for each parent plus another parame-
ter that is used when all parents are false. Logistic regression cannot represent
zero probabilities. Noisy-or cannot represent cases where a parent being true
makes the child less probable (although the negation can be a parent).

They can both represent the probability exactly when zero or one parent
is true (as long as there are no zero probabilities for logistic regression). They
are quite different in how they handle cases when multiple parents are true.

To see the difference, consider representing P(Y | X1, X2, X3, X4), using
parameters w0, . . . , w4. Assume the following probabilities when zero or one
parent is true:

X1 X2 X3 X4 Prob
False False False False p0 = 0.01
True False False False p1 = 0.05
False True False False p2 = 0.1
False False True False p3 = 0.2
False False False True p4 = 0.2

For noisy-or, w0 = p0. 1 − (1 − w0)(1 − wi) = pi. Solving for wi gives
wi = 1− (1− pi)/(1−w0).

For logistic regression, sigmoid(w0) = p0 and sigmoid(w0 + wi) = pi.
The predictions for Y= true for the other assignments to Xs are:

X1 X2 X3 X4 Noisy-or Logistic Regression
False False True True 0.353535 0.860870
False True False True 0.272727 0.733333
False True True False 0.272727 0.733333
False True True True 0.412305 0.985520
True False False True 0.232323 0.565714
True False True False 0.232323 0.565714
True False True True 0.379655 0.969916
True True False False 0.136364 0.366667
True True False True 0.302112 0.934764
True True True False 0.302112 0.934764
True True True True 0.436050 0.997188

Logistic regression is much more extreme than noisy-or when multiple Xi are
true. With noisy-or, each Xi = true probabilistically forces Y to be true. With
logistic regression, each Xi = true provides independent evidence for Y.

If the probability p0 is increased, to say, 0.05, with p1, . . . , p4 fixed, the prob-
ability of Y= true given assignments with multiple Xi true for noisy-or goes
up (as there are more ways Y could be true) and for logistic regression goes
down (as each Xi true provides less evidence of exceptionality).
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Directed and Undirected Graphical Models

A belief network is a directed model; all of the arcs are directed. The model is
defined in terms of conditional probabilities.

An alternative is an undirected model. A factor graph consists of a set
of variables and a set of nonnegative factors (page 394), each with scope a
subset of the variables. There is an arc between each variable and the factors
it is in the scope of, similar to a constraint network (page 136). It is sometimes
written as a Markov random field or Markov network where the factors are
implicit: the nodes are the variables, with an edge between any pair of nodes
if there is a factor containing both.

The joint probability is defined by

P(X1 = v1 ∧X2 = v2 ∧ · · · ∧Xn = vn) ∝ ∏
F

F(XF = vf )

where XF is the tuple of variables in factor F and vF is the tuple of correspond-
ing values.

The constant of proportionality,

∑
X1,...,Xn

∏
F

F(XF)

is called the partition function. The exact algorithms of Section 9.5 (page 405)
can be used to compute the partition function; those algorithms just assume a
set of factors.

Sometimes the factors are defined in terms of weights, so that
F(XF1 , . . . , XFk) = exp(wF(XF1 , . . . , XFk)). This changes the product above to

P(X1 = v1 ∧X2 = v2 ∧ · · · ∧Xn = vn) ∝ exp(∑
F

wF(XF = vf ))

giving a log-linear model, which is useful for learning as the derivative is
simpler and the nonnegative constraint happens automatically, although zero
probabilities cannot be represented.

Note that a belief network can also be seen as a factor graph, where the
factors are defined in terms of conditional probabilities. The directed and
undirected models are collectively called graphical models.

A canonical representation is a representation that has a unique form.
One problem with undirected models is that there is no canonical representa-
tion for a probability distribution. For example, modifying a factor on Xi by
multiplying Xi = vi by a constant and modifying another factor on Xi by di-
viding by the same constant gives the same model. This means that the model
cannot be learned modularly; each factor depends on the others. A belief net-
work forces a particular factorization that gives a canonical representation for
a distribution.
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9.4 Probabilistic Inference

The most common and useful probabilistic inference task is to compute the
posterior distribution of a query variable or variables given some evidence.
Unfortunately, even the problem of estimating the posterior probability in a
belief network within an absolute error (of less than 0.5), or within a constant
multiplicative factor, is NP-hard (page 89), so general efficient implementations
will not be available. Computing the posterior probability of a variable is in a
complexity class called #NP (pronounced “sharp-NP”). NP is the complexity of
determining whether there is a solution to a decision problem where solutions
can be verified in polynomial time. #NP is the complexity of counting the num-
ber of solutions. These are for the worst case, however, there is often structure
that can be exploited, such as conditional independence.

The main approaches for probabilistic inference in belief networks are:

Exact inference where the probabilities are computed exactly. A naive way is
to enumerate the worlds that are consistent with the evidence, but this
algorithm takes time exponential in the number of variables. It is possi-
ble to do much better than this by exploiting the structure of the network.
The recursive conditioning and variable elimination algorithms (below)
are exact algorithms that exploit conditional independence so that they
can be much more efficient for networks that are not highly intercon-
nected.

Approximate inference where probabilities are approximated. Such methods
are characterized by the guarantees they provide:

• They could produce guaranteed bounds on the probabilities. That
is, they return a range [l, u] where the exact probability p is guar-
anteed to have l ≤ p ≤ u. An anytime algorithm (page 26) may
guarantee that l and u get closer to each other as computation time
(and perhaps space) increases.

• They could produce probabilistic bounds on the error. Such algo-
rithms might guarantee that the error, for example, is within 0.1 of
the correct answer 95% of the time. They might also have guar-
antees that, as time increases, probability estimates will converge to
the exact probability. Some even have guarantees of the rates of con-
vergence. Stochastic simulation (page 436) is a class of algorithms,
many of which have such guarantees.

• They could make a best effort to produce an approximation that may
be good enough, even though there may be cases where they do not
work very well. One such class of techniques is called variational
inference, where the idea is to find an approximation to the problem
that is easy to compute. First choose a class of representations that
are easy to compute. This class could be as simple as the set of dis-
connected belief networks (with no arcs). Next try to find a member
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of the class that is closest to the original problem. That is, find an
easy-to-compute distribution that is as close as possible to the pos-
terior distribution to be computed. Thus, the problem reduces to an
optimization problem of minimizing the error, followed by a simple
inference problem.

This book presents some exact methods and some stochastic simulation meth-
ods.

9.5 Exact Probabilistic Inference

The task of probabilistic inference is to compute the probability of a query
variable Q given evidence e, where e is a conjunction of assignments of values
to some of the variables; that is, to compute P(Q | e). This is the task that is
needed for decision making.

Given evidence e, and query variable or variables Q, the problem of com-
puting the posterior distribution on Q can be reduced to the problem of com-
puting the probability of conjunctions, using the definition of conditioning:

P(Q | e) =
P(Q∧ e)

P(e)

=
P(Q∧ e)

∑
Q

P(Q∧ e)
(9.4)

where ∑
Q

means summing over all of the values of Q, which is called marginal-

izing Q and ∑
Q

P(Q ∧ e) is an abbreviation for ∑
v∈domain(Q)

P(Q= v ∧ e), where

Q= v is the proposition that is true when Q has value v.
To compute the probability of a product, first introduce all of the other vari-

ables. With all of the variables, the definition of a belief network is used to
decompose the resulting joint probability into a product of factors.

Suppose {X1, . . . , Xn} is the set of all variables in the belief network and the
evidence e is Y1 = v1, . . . , Yj = vj, where {Y1, . . . , Yj} ⊆ {X1, . . . , Xn}.

Suppose Z1, . . . , Zk is a total ordering of the variables in the belief network
other than the observed variables, Y1, . . . , Yj, and the query variable, Q. That
is:

{Z1, . . . , Zk} = {X1, . . . , Xn} \ {Q, Y1, . . . , Yj}.

The probability of Q conjoined with the evidence is

p(Q, e) = ∑
Z1

· · ·∑
Zk

P(X1, . . . , Xn)e
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where the subscript e means that the observed variables are set to their ob-
served values.

Once all of the variables are modeled, the definition of a belief network,
Equation (9.1) (page 386), shows how to decompose the joint probability:

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi | parents(Xi))

where parents(Xi) is the set of parents of variable Xi.
So

p(Q, e) = ∑
Z1

· · ·∑
Zk

n

∏
i=1

P(Xi | parents(Xi))e. (9.5)

The belief-network inference problem is thus reduced to a problem of sum-
ming out a set of variables from a product of factors.

Naive Search-Based Algorithm

The naive search-based algorithm shown in Figure 9.9 computes Equation (9.5)
from the outside-in. The algorithm is similar to the search-based algorithm for
constraint satisfaction problems (see Figure 4.1 (page 134)).

The algorithm takes in a context, Con, an assignment of values to some
of the variables, and a set, Fs, of factors. The aim is to compute the value of
the product of the factors, evaluated with the assignment Con, after all of the

1: procedure prob dfs(Con, Fs)
2: Inputs
3: Con: context
4: Fs: set of factors
5: Output
6: ∑

v1,...,vk

∏
f∈Fs

fCon where {v1, . . . , vk} = vars(Fs) \ vars(Con)

7: if Fs = {} then
8: return 1
9: else if there is f ∈ Fs that can be evaluated in Con then

10: return eval(f , Con) ∗ prob dfs(Con, Fs \ {f})
11: else
12: select variable var in vars(Fs) \ vars(Con)
13: sum := 0
14: for val in domain(var) do
15: sum := sum + prob dfs(Con∪ {var= val}, Fs)
16: return sum

Figure 9.9: Naive search-based inference algorithm
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variables not in the context are summed out. Initially the context is usually
the observations and an assignment of a value to the query variable, and the
factors are the conditional probabilities of a belief network.

In this algorithm, the function vars returns the set of variables in a context
or set of factors, so vars(context) is the set of variables assigned in context and
vars(factors) is the set of all variables that appear in any factor in factors. Thus,
vars(factors) \ vars(context) is the set of variables that appear in factors that are
not assigned in the context. The algorithm returns the value of the product of
the factors with all of these variables summed out. This is the probability of
the context, given the model specified by the factors.

If there are no factors, the probability is 1. Factors are evaluated as soon
as they can be. A factor on a set of variables can be evaluated when all of
the variables in the factor are assigned in the context. Some representations
of factors, such as decision trees, may be able to be evaluated before all of the
variables are assigned. The function eval(f , context) returns the value of factor
f in context; it is only called when it can return a value.

If neither of the previous conditions arise, the algorithm selects a variable
and branches on it, summing the values. This is marginalizing the selected
variable. Which variable is selected does not affect the correctness of the algo-
rithm, but may affect the efficiency.

Exploiting Independence in Inference

The naive search-based algorithm evaluates the sum of Equation (9.5) (page 406)
directly. However, it is possible to do much better.

The distribution law specifies that a sum of products, such as xy + xz, can
be simplified by distributing out the common factors (here x), which results in
x(y + z). The resulting form is more efficient to compute, because it has only
one addition and one multiplication. Distributing out common factors is the
essence of the efficient exact algorithms. The elements multiplied together are
called “factors” because of the use of the term in algebra.

Example 9.22 Consider the simple chain belief network of Figure 9.10. Sup-
pose you want to compute P(D), the probability of D with no observations; the
denominator of Equation (9.4) (page 405) is 1, so let’s ignore that. The variable
order A, B, C, results in the factorization

P(D) = ∑
A

∑
B

∑
C

P(A, B, C, D)

A B C D

Figure 9.10: A simple chain belief network

https://doi.org/10.1017/9781009258227.013


408 9. Reasoning with Uncertainty

= ∑
A

∑
B

∑
C

P(A)P(B | A)P(C | B)P(D | C).

Consider the rightmost sum (∑
C

). The left two terms do not include C and can

be distributed out of that sum, giving

P(D) = ∑
A

∑
B

P(A)P(B | A)∑
C

P(C | B)P(D | C).

Similarly, P(A) can be distributed out of ∑
B

, giving

P(D) = ∑
A

P(A)∑
B

P(B | A)∑
C

P(C | B)P(D | C).

The search-based algorithms, described below, start at the leftmost sum and
sum the values. Variable elimination (see Section 9.5.2, page 413) is the dy-
namic programming variant that creates factors from the inside-out; in this case
creating an explicit representation for ∑

C
P(C | B)P(D | C), which is multiplied

by P(B | A), and then B is summed out, and so on.
You could choose a different ordering of the variables, which can result in

a different factorization. For example, the variable order C, B, A gives

P(D) = ∑
C

∑
B

∑
A

P(A, B, C, D)

= ∑
C

∑
B

∑
A

P(A)P(B | A)P(C | B)P(D | C)

= ∑
C

P(D | C)∑
B

P(C | B)∑
A

P(A)P(B | A).

Example 9.23 Consider the query P(B | D= true) in the simple chain belief
network of Figure 9.10 (page 407). Let’s write D= true as d. Equation (9.4)
(page 405) gives

P(B | d) =
P(B, d)

∑D P(B, d)
.

Computing P(B, d) with the variable order A, C gives

P(B, d) = ∑
A

∑
C

P(A, B, C, d)

= ∑
A

∑
C

P(A)P(B | A)P(C | B)P(d | C).

Distributing the factors out of the sums gives

P(B, d) =

(
∑
A

P(A)P(B | A)

)(
∑
C

P(C | B)P(d | C)

)
.

This gives two independent problems that can be solved separately. Note that,
in this case, the variable order C, A gives the same factorization.
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9.5.1 Recursive Conditioning

Recursive conditioning is one of the most efficient exact algorithms. It adds two
features to the naive search-based inference algorithm of Figure 9.9 (page 406),
namely caching and recognizing subproblems that can be solved independently.
The motivation for this can be seen in the following two examples.

Example 9.24 Consider the chain belief network of Figure 9.10 (page 407)
with the last factorization of Example 9.22 (page 407). First splitting on D, then
C, B, A, results in the tree of Figure 9.11(a). In general, you need to split on
the values of the query variable to compute the normalizing constant; while it
is not necessary here (because there is no evidence, it must be 1), we show it
anyway.

The left branch is for the variable having value false, and the right branch
for the variable having value true.

Part (b) of the figure shows the stage where each factor can be evaluated.
P(D | C) can be evaluated when D and C are assigned values. P(C | B) can be
evaluated when D, C, and B have been assigned values. For this variable order-
ing, all variables need to be split before P(A) and P(B | A) can be evaluated.

Consider the first recursive call after D and C have been assigned false, and
P(D | C) has been evaluated:

prob dfs({D= false, C= false}, {P(C | B), P(B | A), P(A)}).

Notice that the factors do not involve D, and so this call will have the same
value as when the context is {D= true, C= false}.

Recursive conditioning “forgets” D, and stores the computed value for

prob dfs({C= false}, {P(C | B), P(B | A), P(A)})

in a cache (a dictionary), and then retrieves that value for the D= true case.

A A A A A AAA AAA A
P(A)
P(B|A)

A A

B B B B B

C C C

B

D

C

D

P(C|B)

P(D|C)

(b)(a) (c)

Figure 9.11: Search space of (a) naive search and (c) recursive conditioning, with
(b) the factors that can be evaluated
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Similarly, after D, C, and B have been assigned a value, the factors are {P(B |
A), P(A)}, which will give the same values for C= true as for C= false. Again,
recursive conditioning saves the result of prob dfs({B= false}, {P(B | A), P(A)})
in a cache and retrieves that value for the other value of C.

This results in the search space of Figure 9.11(c), where the dashed lines
indicate a cache lookup.

Example 9.25 Consider the query P(B | d) for the belief network in Example
9.23 (page 408). The assigned value, D= true, is given as the initial context.
After B is assigned a value (which is needed for the denominator of Equation
(9.4) (page 405)), the naive search algorithm has the recursive call

prob dfs({B= false, D= true}, {P(D | C), P(C | B), P(B | A), P(A)}).
This can be decomposed into two independent problems, one using the factors
P(D | C), P(C | B), which has the same value independently of the assignment
to A, and the other for the factors P(B | A), P(A), which has the same value
independently of the assignment to C. These factors only have B in common,
which has been assigned a value in the context.

Thus, this call can be decomposed into the product:

prob dfs({B= false, D= true}, {P(D | C), P(C | B)})
∗ prob dfs({B= false, D= true}, {P(B | A), P(A)}).

The recursive conditioning algorithm is shown in Figure 9.12 (page 411).
The function vars returns the set of variables, as described previously for

the naive algorithm.
The cache is a global dictionary that can be reused through recursive calls.

It remembers what has already been computed. The keys are (Con, Fs) pairs.
In order to cover the base case, the cache is initialized to have value 1 for the
key ({}, {}).

The first condition (line 7) is to check whether the answer has already been
computed and stored in the cache. If it has, the stored value is returned. Note
that because of the initialization of the cache, this can replace the base case for
the naive search.

The second condition (line 9) checks whether there are variables in the con-
text that are not in any factors, and “forgets” them. This is needed so that the
caching works properly, as in Example 9.24 (page 409).

The third condition (line 11) checks whether some factors can be evaluated
in the given context. If so, these factors are evaluated and removed from the
factors of the recursive call.

The fourth condition (line 13) checks whether the problem can be split into
independent parts that can be solved separately and multiplied. Here � is the
disjoint union, where Fs = Fs1 � Fs2 means that non-empty sets Fs1 and Fs2
have no element in common and together contain all of the elements of Fs.
Thus, Fs1 and Fs2 are a partition of Fs. If all of the variables in common are
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assigned in the context, the problem can be decomposed into two independent
problems. The algorithm could, alternatively, split into multiple nonempty sets
of factors that have no unassigned variables in any pair. They would then be
the connected components, where the two factors are connected if they both
contain a variable that is not assigned in the context. If there are more than two
connected components, the algorithm of Figure 9.12 would find the connected
components in recursive calls. Note that the subsequent recursive calls typi-
cally result in forgetting the variables that are only in the other partition, so it
does not need to be done explicitly here.

If none of the other conditions hold (line 15), the algorithm branches. It
selects a variable, and sums over all of the values of this variable. Which vari-
able is selected does not affect the result, but can affect the efficiency. Finding
the optimal variable to select is an NP-hard problem. Often the algorithm is
given a split-order of variables in the order they should be branched on. The
algorithm saves the computed result in the cache.

Examples of the application of recursive conditioning are given in Example
9.24 (page 409) and Example 9.25 (page 410).

1: procedure prob RC(Con, Fs)
2: Inputs
3: Con: context
4: Fs: set of factors
5: Output
6: ∑

v1,...,vk

∏
f∈Fs

fCon where {v1, . . . , vk} = vars(Fs) \ vars(Con)

7: if (Con, Fs) in cache with value v then
8: return v
9: else if there is X= v in Con such that X �∈ vars(Fs) then

10: return prob RC({X= v ∈ Con : X ∈ vars(Fs)}, Fs)
11: else if fs = {f ∈ Fs : f can be evaluated in Con} is not empty then
12: return

(
∏f∈fs eval(f , Con)

)
∗ prob RC(Con, Fs \ fs)

13: else if Fs = Fs1 � Fs2 where vars(Fs1)∩ vars(Fs2) are all assigned in Con
then

14: return prob RC(Con, Fs1) ∗ prob RC(Con, Fs2)
15: else
16: select variable var in vars(Fs) \ vars(Con)
17: sum := 0
18: for val in domain(var) do
19: sum := sum + prob RC(Con∪ {var= val}, Fs)
20: add (Con, Fs) to cache with value sum
21: return sum

Figure 9.12: Recursive conditioning algorithm
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Example 9.26 Consider Example 9.13 (page 389) with the query

P(Tampering | Smoke= true∧ Report= true).

The initial call (using abbreviated names, and lower-case letters for true
value) for the Ta= false case is

prob RC({sm, re,¬ta}, {P(Ta), P(Fi), P(Al | Ta, Fi), P(Sm | Fi), P(Le | Al), P(Re | Le)}).
P(Ta) can be evaluated. If it then splits on Le, the call is

prob RC({sm, re,¬ta,¬le}, {P(Fi), P(Al | Ta, Fi), P(Sm | Fi), P(Le | Al), P(Re | Le)}).
At this stage P(Re | Le) can be evaluated, and then Re is not in the remaining
factors, so re can be forgotten in the context. If it then splits on Al, the call is

prob RC({sm,¬ta,¬le,¬al}, {P(Fi), P(Al | Ta, Fi), P(Sm | Fi), P(Le | Al)}).
Then P(Le | Al) can be evaluated, and ¬le forgotten. Splitting on Fi results in
the call

prob RC({sm,¬ta,¬al,¬fi}, {P(Fi), P(Al | Ta, Fi), P(Sm | Fi)}).
All of the factors can be evaluated, and so this call returns the value P(¬fi) ∗
P(¬al | ¬ta,¬fi) ∗ P(sm | ¬fi).

The search continues; where the variables are forgotten, the cache is used
to look up values rather than computing them. This can be summarized as

Variable Split on Factors Evaluated Forgotten
Ta P(Ta)
Le P(Re | Le) Re
Al P(Le | Al) Le
Fi P(Fi), P(Al | Ta, Fi), P(Sm | Fi)

Different variable orderings can result in quite different evaluations, for
example, for the same query P(Ta | sm, re), for the splitting order Ta, Fi, Al, Le:

Variable Split on Factors Evaluated Forgotten
Ta P(Ta)
Fi P(Fi), P(Sm | Fi) Sm
Al P(Al | Ta, Fi) Fi, Ta
Le P(Le | Al), P(Re | Le)

If Al was split before Fi and Le, there are two independent subproblems that can
be solved separately; subproblem 1 involving Fi and subproblem 2 involving
Le:

Variable Split on Factors Evaluated Forgotten
Ta P(Ta)
Al
subproblem 1:
Fi P(Fi), P(Sm | Fi), P(Al | Ta, Fi) Sm, Fi
subproblem 2:
Le P(Le | Al), P(Re | Le) Le, Re
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The solutions to the subproblems are multiplied.

Some of the conditions checked in Figure 9.12 (page 411) only depend on
the variables in the context, and not on the values of the variables. The re-
sults of these conditions can be precomputed and looked up during the search,
saving a lot of time.

Some representations of factors (e.g., tables or logistic regression) require
all variables to be assigned before they can be evaluated, whereas other repre-
sentations (e.g., decision trees or weighted logical formula) can often be eval-
uated before all variables involved have been assigned values. To exploit this
short-circuiting effectively, there needs to be good indexing to determine which
factors can be evaluated.

9.5.2 Variable Elimination for Belief Networks

Variable elimination (VE) is the dynamic programming variant of recursive
conditioning. Consider the decomposition of probability of the query Q and
the evidence e (Equation (9.5) (page 406), reproduced here):

p(Q, e) = ∑
Z1

· · ·∑
Zk

n

∏
i=1

P(Xi | parents(Xi))e.

VE carries out the rightmost sum, here ∑Zk
first, eliminating Zk, producing an

explicit representation of the resulting factor. The resulting factorization then
contains one fewer variables. This can be repeated until there is an explicit
representation of P(Q, e). The resulting factor is a function just of Q; given a
value for Q, it evaluates to a number that is the probability of the evidence
conjoined with the value for Q. The conditional probability can be obtained by
normalization (dividing each value by the sum of the values).

To compute the posterior distribution of a query variable given observa-
tions:

1. Construct a factor for each conditional probability distribution.
2. Eliminate each of the non-query variables:

• if the variable is observed, its value is set to the observed value in
each of the factors in which the variable appears

• otherwise, the variable is summed out.
To sum out a variable Z from a product f1, . . . , fk of factors, first

partition the factors into those not containing Z, say f1, . . . , fi, and
those containing Z, fi+1, . . . , fk; then distribute the common factors
out of the sum:

∑
Z

f1 ∗ · · · ∗ fk = f1 ∗ · · · ∗ fi ∗
(

∑
Z

fi+1 ∗ · · · ∗ fk

)
.
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Variable elimination explicitly constructs a representation (in terms
of a multidimensional array, a tree, or a set of rules) of the right-
most factor. We have then simplified the problem to have one fewer
variable.

3. Multiply the remaining factors and normalize.

Figure 9.13 gives pseudocode for the VE algorithm. The elimination order-
ing could be given a priori or computed on the fly. This algorithm assigns the
values to the observations as part of the elimination. It is worthwhile to select
observed variables first in the elimination ordering, because eliminating these
simplifies the problem.

This algorithm assumes that the query variable is not observed. If it is ob-
served to have a particular value, its posterior probability is just 1 for the ob-
served value and 0 for the other values.

Example 9.27 Consider Example 9.13 (page 389) with the query

P(Tampering | Smoke= true∧ Report= true).

Suppose it first eliminates the observed variables, Smoke and Report. This cre-
ated a factor for P(Smoke= yes | Fire) which is just a function of Fire; call it

1: procedure VE BN(Vs, Ps, e, Q)
2: Inputs
3: Vs: set of variables
4: Ps: set of factors representing the conditional probabilities
5: e: the evidence, a variable-value assignment to some of the variables
6: Q: a query variable
7: Output
8: posterior distribution on Q
9: Fs := Ps � Fs is the current set of factors

10: for each X ∈ Vs− {Q} using some elimination ordering do
11: if X is observed then
12: for each F ∈ Fs that involves X do
13: assign X in F to its observed value in e
14: else
15: Rs := {F ∈ Fs : F involves X}
16: let T be the product of the factors in Rs
17: construct an explicit representation for N = ∑X T
18: Fs := Fs \ Rs∪ {N}
19: let T be the product of the factors in Fs
20: N := ∑Q T
21: return T/N

Figure 9.13: Variable elimination for belief networks
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f0(Fire). Given a value for Fire, this evaluates to a number. P(Report= yes |
Leaving) becomes a factor f1(Leaving).

Suppose Fire is next in the elimination ordering. To eliminate Fire, collect
all of the factors containing Fire, namely P(Fire), P(Alarm | Tampering, Fire), and
f0(Fire), and replace them with an explicit representation of the resulting factor.
This factor is on Tampering and Alarm as these are the other variables in the
factors being multiplied. Call it f2(Tampering, Alarm):

f2(Tampering, Alarm) = ∑
Fire

P(Fire) ∗ (Alarm | Tampering, Fire) ∗ f0(Fire).

We explicitly store a number for each value for Tampering and Alarm. For ex-
ample, f2(Tampering= t, Alarm= f ) has value

∑
v∈domain(Fire)

P(Fire= v) ∗ P(Alarm= f | Tampering= t, Fire= v) ∗ f0(Fire= v).

At this stage, Fs contains the factors

P(Tampering), P(Leaving | Alarm), f1(Leaving), f2(Tampering, Alarm).

Suppose Alarm is eliminated next. VE multiplies the factors containing Alarm
and sums out Alarm from the product, giving a factor, call it f7:

f3(Tampering, Leaving) = ∑
Alarm

P(Leaving | Alarm) ∗ f2(Tampering, Alarm).

Fs then contains the factors

P(Tampering), f1(Leaving), f3(Tampering, Leaving).

Eliminating Leaving results in the factor

f4(Tampering) = ∑
Leaving

f1(Leaving) ∗ f3(Tampering, Leaving).

The posterior distribution over Tampering is given by

P(Tampering) ∗ f4(Tampering)
∑Tampering P(Tampering) ∗ f4(Tampering)

.

Note that the denominator is the prior probability of the evidence, namely
P(Smoke= true∧ Report= true).

Example 9.28 Consider the same network as in the previous example but
with the query

P(Alarm | Fire= true).

When Fire is eliminated, the factor P(Fire) becomes a factor of no variables; it is
just a number, P(Fire= true).

https://doi.org/10.1017/9781009258227.013


416 9. Reasoning with Uncertainty

Suppose Report is eliminated next. It is in one factor, which represents
P(Report | Leaving). Summing over all of the values of Report gives a fac-
tor on Leaving, all of whose values are 1. This is because P(Report= true |
Leaving= v) + P(Report= false | Leaving= v) = 1 for any value v of Leaving.

If Leaving is eliminated next, a factor that is all 1 is multiplied by a factor
representing P(Leaving | Alarm) and Leaving is summed out. This, again, results
in a factor all of whose values are 1.

Similarly, eliminating Smoke results in a factor of no variables, whose value
is 1. Note that even if smoke had also been observed, eliminating Smoke would
result in a factor of no variables, which would not affect the posterior distribu-
tion on Alarm.

Eventually, there is only the factor on Alarm that represents its posterior
probability and a constant factor that will cancel in the normalization.

9.5.3 Exploiting Structure and Compilation

When the ordering of the splits in recursive conditioning is the reverse of the
elimination ordering of variable elimination, the two algorithms carry out the
same multiplications and additions, and the values stored in the factors of vari-
able elimination are the same numbers as stored in the cache of recursive con-
ditioning. The main differences are:

• Recursive conditioning just evaluates the input factors, whereas variable
elimination requires an explicit representation of intermediate factors.
This means that recursive conditioning can be used where the condi-
tional probabilities can be treated as black boxes that output a value when
enough of their variables are instantiated. Thus, recursive conditioning
allows for diverse representations of conditional probabilities, such as
presented in Section 9.3.3 (page 394). This also enables it to exploit struc-
ture when all of the variables need not be assigned. For example, in a
decision tree representation of a conditional probability, it is possible to
evaluate a factor before all values are assigned.

• A straightforward implementation of variable elimination can use a more
space-efficient tabular representation of the intermediate factors than a
straightforward implementation of the cache in recursive conditioning.

• When there are zeros in a product, there is no need to compute the rest
of the product. Zeros arise from constraints where some combination of
values to variables is impossible. This is called determinism. Determin-
ism can be incorporated into recursive conditioning in a straightforward
way.

• Recursive conditioning can act as an any-space algorithm, which can use
any amount of space by just not storing some values in the cache, but
instead recomputing them, trading off space for time.
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To speed up the inference, variables that are irrelevant to a conditional
probability query can be pruned. In particular, any node that has no observed
or queried descendants and is itself not observed or queried may be pruned.
This may result in a smaller network with fewer factors and variables. For ex-
ample, to compute P(Alarm | Fire= true), in the running example, the variables
Report, Leaving, and Smoke may be pruned.

The complexity of the algorithms depends on a measure of complexity of
the network. The size of a tabular representation of a factor is exponential in
the number of variables in the factor. The treewidth (page 145) of a network
for an elimination ordering is the maximum number of variables in a factor
created by variable elimination summing out the variables in the elimination
ordering. The treewidth of a belief network is the minimum treewidth over all
elimination orderings. The treewidth depends only on the graph structure and
is a measure of the sparseness of the graph. The complexity of recursive con-
ditioning and variable elimination is exponential in the treewidth and linear
in the number of variables. Finding the elimination ordering with minimum
treewidth is NP-hard, but there are some good elimination ordering heuristics,
as discussed for CSP VE (page 146).

Example 9.29 Consider the belief network of Figure 9.4 (page 392). To com-
pute the probability of Sneezing, the variables Fever and ”Achoo” sound may be
pruned, as they have no children and are not observed or queried. Summing
out Season involves multiplying the factors

P(Season), P(Pollen | Season), P(Influenza | Season)

and results in a factor on Influenza and Pollen. The treewidth of this belief net-
work is 2; there is an ordering of the variables that only constructs factors of size
1 or 2, and there is no ordering of the variables that has a smaller treewidth.

Many modern exact algorithms compile the network into a secondary struc-
ture, by essentially carrying out variable elimination or recursive conditioning
symbolically, summing out all of the variables, to produce a probabilistic cir-
cuit that just contains the symbolic variables combined by sum and product.
The circuit is like Figure 9.11 (page 409), where the branches in (c) form the
sums and the conditional probabilities in (b) are multiplied at the appropri-
ate place, as in the factorization of Example 9.22 (page 407). The circuit is an
arithmetic expression with shared structure. When all variables are summed
out, the circuit provides an expensive way to compute the value 1. When some
variables are observed, the circuit uses the observed values instead of sum-
ming out these variables; the output is the probability of the evidence. When
a query variable is then set to a value, the circuit outputs the probability of the
evidence and the query variable, from which a conditional probability can be
computed. It is possible to compute the posterior probability of all variables
with two passes through the circuit, but that is beyond the scope of this book.
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Compilation is appropriate when the same belief network is used for many
multiple queries, or where observations are added incrementally. Unfortu-
nately, extensive preprocessing, allowing arbitrary sequences of observations
and deriving the posterior on each variable, precludes pruning the network. So
for each application you need to choose whether you will save more by prun-
ing irrelevant variables for each query or by preprocessing before there are any
observations or queries.

9.6 Sequential Probability Models

Special types of belief networks with repeated structure are used for reason-
ing about time and other sequences, such as sequences of words in a sentence.
Such probabilistic models may have an unbounded number of random vari-
ables. Reasoning with time is essential for agents in the world. Reasoning
about text with unbounded size is important for understanding language.

9.6.1 Markov Chains

A Markov chain is a belief network with random variables in a sequence,
where each variable only directly depends on its predecessor in the sequence.
Markov chains are used to represent sequences of values, such as the sequence
of states in a dynamic system or language model (page 357). Each point in the
sequence is called a stage.

Figure 9.14 shows a generic Markov chain as a belief network. The network
has five stages, but does not have to stop at stage 4; it can extend indefinitely.
The belief network conveys the independence assumption

P(Si+1 | S0, . . . , Si) = P(Si+1 | Si)

which is called the Markov assumption.
Often the sequences are in time, and St represents the state at time t. The

state conveys all of the information about the history that could affect the fu-
ture. The independence assumption of the Markov chain can be seen as “the
future is conditionally independent of the past given the state.”

A Markov chain is a stationary model or time-homogenous model if the
variables all have the same domain, and the transition probabilities are the

S0 S1 S2 S3 S4

Figure 9.14: A Markov chain as a belief network
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same for each stage:

for all i ≥ 0, P(Si+1 | Si) = P(S1 | S0).

To specify a stationary Markov chain, two conditional probabilities are pro-
vided:

• P(S0) specifies the initial conditions
• P(Si+1 | Si) specifies the dynamics, which is the same for each i ≥ 0.

The sharing of the parameters for the conditional probability is known as pa-
rameter sharing or weight tying, as used in convolutional neural networks
(page 347).

Stationary Markov chains are of interest for the following reasons:

• They provide a simple model that is easy to specify.
• The assumption of stationarity is often the natural model, because the

dynamics of the world typically does not change in time. If the dynamics
does change in time, it is usually because of some other feature that could
also be modeled as part of the state.

• The network extends indefinitely. Specifying a small number of parame-
ters gives an infinite network. You can ask queries or make observations
about any arbitrary points in the future or the past.

To determine the probability distribution of state Si, variable elimination
can be used to sum out the preceding variables. The variables after Si are irrele-
vant to the probability of Si and need not be considered. To compute P(Si | Sk),
where i > k, only the variables between Si and Sk need to be considered, and if
i < k, only the variables less than k need to be considered.

A stationary distribution of a Markov chain is a distribution of the states
such that if it holds at one time, it holds at the next time. Thus, P is a stationary
distribution if for each state s, P(Si+1 = s) = P(Si = s). Thus

P(Si = s) = ∑
s′

P(Si+1 = s | Si = s′) ∗ P(Si = s′).

Every Markov chain with a finite number of states has at least one station-
ary distribution. The distribution over states encountered in one infinite run
(or the limit as the number of steps approaches infinity) is a stationary distri-
bution. Intuitively, if an agent is lost at time i, and doesn’t observe anything,
it is still lost at time i + 1. Different runs might result in different parts of the
state space being reached, and so result in different stationary distributions.
There are some general conditions that result in unique stationary distribu-
tions, which are presented below.

A Markov chain is ergodic if, for any two states s1 and s2, there is a nonzero
probability of eventually reaching s2 from s1.

A Markov chain is periodic with period p if the difference between the
times when it visits the same state is always divisible by p. For example, con-
sider a Markov chain where the step is per day, so Si+1 is the state on the day
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after Si, and where the day of the week is part of the state. A state where the
day is Monday is followed by a state where the day is Tuesday, etc. The period
will be (a multiple of) 7; a state where the day is Monday can only be a multi-
ple of 7 days from a state where the day is also Monday. If the only period of a
Markov chain is a period of 1, then the Markov chain is aperiodic.

If a Markov chain is ergodic and aperiodic, then there is a unique stationary
distribution, and this is the equilibrium distribution that will be approached
from any starting state. Thus, for any distribution over S0, the distribution over
Si will get closer and closer to the equilibrium distribution, as i gets larger.

The box on page 421 gives an application of Markov chains that formed the
basis of Google’s initial search engine.

9.6.2 Hidden Markov Models

A hidden Markov model (HMM) is an augmentation of a Markov chain to
include observations. A hidden Markov model includes the state transition of
the Markov chain, and adds to it observations at each time that depend on the
state at the time. These observations can be partial in that different states map
to the same observation and noisy in that the same state can map to different
observations at different times.

The assumptions behind an HMM are:

• The state at time t + 1 only directly depends on the state at time t for
t ≥ 0, as in the Markov chain.

• The observation at time t only directly depends on the state at time t.

The observations are modeled using the variable Ot for each time t whose do-
main is the set of possible observations. The belief-network representation of
an HMM is depicted in Figure 9.15 (page 422). Although the belief network is
shown for five stages, it extends indefinitely.

A stationary HMM includes the following probability distributions:

• P(S0) specifies initial conditions
• P(St+1 | St) specifies the dynamics or the belief state transition function
• P(Ot | St) specifies the sensor model.

Example 9.30 Suppose you want to keep track of an animal in a triangular
enclosure using sound. You have three microphones that provide unreliable
(noisy) binary information at each time step. The animal is either near one of
the three vertices of the triangle or close to the middle of the triangle. The state
has domain {m, c1, c2, c3}, where m means the animal is in the middle and ci
means the animal is in corner i.

The dynamics of the world is a model of how the state at one time depends
on the previous time. If the animal is in a corner, it stays in the same corner
with probability 0.8, goes to the middle with probability 0.1, or goes to one of
the other corners with probability 0.05 each. If it is in the middle, it stays in the
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PageRank

Google’s initial search engine [Brin and Page, 1998] was based on PageRank
[Page et al., 1999], a probability measure over web pages where the most influ-
ential web pages have the highest probability. It is based on a Markov chain
of a web surfer who starts on a random page, and with some probability d
picks one of the pages at random that is linked from the current page, and
otherwise (if the current page has no outgoing links or with probability 1− d)
picks a page at random. The Markov chain is defined as follows:

• The domain of Si is the set of all web pages.

• P(S0) is the uniform distribution of web pages: P(S0 = pj) = 1/N for
each web page pj, where N is the number of web pages.

• The transition is defined as follows:

P(Si+1 = pj | Si = pk)

= (1− d)/N + d ∗
⎧⎨⎩

1/nk if pk links to pj
1/N if pk has no links
0 otherwise

where there are N web pages and nk links on page pk. The way to think
about this is that pk is the current web page, and pj is the next web page.
If pk has no outgoing links, then pj is a page at random, which is the
effect of the middle case. If pk has outgoing links, with probability d the
surfer picks a random page linked from pk, and otherwise picks a page
at random.

• d ≈ 0.85 is the probability someone picks a link on the current page.

This Markov chain converges to a stationary distribution over web pages.
Page et al. [1999] reported the search engine had converged to “a reasonable
tolerance” for i = 52 with 322 million links.

PageRank provides a measure of influence. To get a high PageRank, a web
page should be linked from other pages with a high PageRank. It is difficult,
yet not impossible, to manipulate PageRank for selfish reasons. One could try
to artificially boost PageRank for a specific page, by creating many pages that
point to that page, but it is difficult for those referring pages to also have a
high PageRank.

In the initial reported version, Brin and Page [1998] used 24 million web
pages and 76 million links. The web is more complex now, with many pages
being dynamically generated, and search engines use much more sophisti-
cated algorithms.

https://doi.org/10.1017/9781009258227.013


422 9. Reasoning with Uncertainty

middle with probability 0.7, otherwise it moves to one of the corners, each with
probability 0.1.

The sensor model specifies the probability of detection by each microphone
given the state. If the animal is in a corner, it will be detected by the microphone
at that corner with probability 0.6, and will be independently detected by each
of the other microphones with probability 0.1. If the animal is in the middle, it
will be detected by each microphone with probability 0.4.

Initially the animal is in one of the four states, with equal probability.

There are a number of tasks that are common for HMMs.
The problem of filtering or belief-state monitoring is to determine the cur-

rent state based on the current and previous observations, namely to determine

P(Si | O0, . . . , Oi).

All state and observation variables after Si are irrelevant because they are not
observed and can be ignored when this conditional distribution is computed.

Example 9.31 Consider filtering for Example 9.30 (page 420).
The following table gives the observations for each time, and the resulting

state distribution.

Observation Posterior State Distribution
Time Mic#1 Mic#2 Mic#3 P(m) P(c1) P(c2) P(c3)
initially – – – 0.25 0.25 0.25 0.25
0 0 1 1 0.46 0.019 0.26 0.26
1 1 0 1 0.64 0.084 0.019 0.26

Thus, even with only two time steps of noisy observations from initial igno-
rance, it is very sure that the animal is not at corner 1 or corner 2. It is most
likely that the animal is in the middle.

Note that the posterior distribution at any time only depended on the obser-
vations up to that time. Filtering does not take into account future observations
that provide more information about the initial state.

The problem of smoothing is to determine a state based on past and fu-
ture observations. Suppose an agent has observed up to time k and wants to

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

Figure 9.15: A hidden Markov model as a belief network
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determine the state at time i for i < k; the smoothing problem is to determine

P(Si | O0, . . . , Ok).

All of the variables Si and Vi for i > k can be ignored.

Localization

Suppose a robot wants to determine its location based on its history of actions
and its sensor readings. This is the problem of localization. Figure 9.16 shows
a belief-network representation of the localization problem. There is a variable
Loci for each time i, which represents the robot’s location at time i. There is a
variable Obsi for each time i, which represents the robot’s observation made at
time i. For each time i, there is a variable Acti that represents the robot’s action
at time i. In this section, assume that the robot’s actions are observed. (The case
in which the robot chooses its actions is discussed in Chapter 12.)

This model assumes the following dynamics: at time i, the robot is at lo-
cation Loci, it observes Obsi, then it acts, it observes its action Acti, and time
progresses to time i + 1, where it is at location Loci+1. Its observation at time
t only depends on the state at time t. The robot’s location at time t + 1 de-
pends on its location at time t and its action at time t. Its location at time t + 1
is conditionally independent of previous locations, previous observations, and
previous actions, given its location at time t and its action at time t.

The localization problem is to determine the robot’s location as a function
of its observation history:

P(Loct | Obs0, Act0, Obs1, Act1, . . . , Actt−1, Obst).

Example 9.32 Consider the domain depicted in Figure 9.17 (page 424). There
is a circular corridor, with 16 locations numbered 0 to 15. The robot is at one of
these locations at each time. This is modeled with, for every time i, a variable
Loci with domain {0, 1, . . . , 15}.

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3

Figure 9.16: A belief network for localization
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• There are doors at positions 2, 4, 7, and 11 and no doors at other locations.
• The robot has a sensor that noisily senses whether or not it is in front of

a door. This is modeled with a variable Obsi for each time i, with domain
{door, nodoor}. Assume the following conditional probabilities:

P(Obst = door | atDoort) = 0.8
P(Obst = door | ¬AtDoort) = 0.1

where atDoort is true when the robot is at states 2, 4, 7, or 11 at time t.
Thus, the observation is partial in that many states give the same ob-

servation and it is noisy in the following way: in 20% of the cases in which
the robot is at a door, the sensor gives a negative reading (a false negative).
In 10% of the cases where the robot is not at a door, the sensor records that
there is a door (a false positive).

• The robot can, at each time, move left, move right, or stay still. Assume
that the stay still action is deterministic, but the dynamics of the moving
actions are stochastic. Just because the robot carries out the goRight action
does not mean that it actually goes one step to the right – it is possible
that it stays still, goes two steps right, or even ends up at some arbitrary
location (e.g., if someone picks up the robot and moves it). Assume the
following dynamics, for each location L:

P(Loct+1 = L | Actt = goRight∧ Loct = L) = 0.1
P(Loct+1 = L + 1 | Actt = goRight∧ Loct = L) = 0.8
P(Loct+1 = L + 2 | Actt = goRight∧ Loct = L) = 0.074
P(Loct+1 = L′ | Actt = goRight∧ Loct = L) = 0.002 for L′ �= L.

All location arithmetic is modulo 16. The action goLeft works the same
way but to the left.

The robot starts at an unknown location and must determine its location.
It may seem as though the domain is too ambiguous, the sensors are too

noisy, and the dynamics is too stochastic to do anything. However, it is possible
to compute the probability of the robot’s current location given its history of
actions and observations.

Figure 9.18 (page 425) gives the robot’s probability distribution over its lo-
cations, assuming it starts with no knowledge of where it is and experiences the
following observations: observe door, go right, observe no door, go right, and
then observe door. Location 4 is the most likely current location, with posterior
probability of 0.42. That is, in terms of the network of Figure 9.16 (page 423):

P(Loc2 = 4 |Obs0 = door, Act0 = goRight, Obs1 = nodoor,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9.17: Localization domain
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Act1 = goRight, Obs2 = door) = 0.42.

Location 7 is the second most likely current location, with posterior prob-
ability of 0.141. Locations 0, 1, 3, 8, 12, and 15 are the least likely current loca-
tions, with posterior probability 0.011.

You can see how well this works for other sequences of observations using
the AIPython (aipython.org) code.

Example 9.33 Let us augment Example 9.32 (page 423) with another sen-
sor. Suppose that, in addition to a door sensor, there is also a light sensor. The
light sensor and the door sensor are conditionally independent given the state.
Suppose the light sensor is not very informative; it only gives yes-or-no infor-
mation about whether it detects any light, and this is very noisy, and depends
on the location.

This is modeled in Figure 9.19 (page 426) using the following variables:

• Loct is the robot’s location at time t
• Actt is the robot’s action at time t
• Dt is the door sensor value at time t
• Lt is the light sensor value at time t.

Conditioning on both Li and Di lets it combine information from the light sen-
sor and the door sensor. This is an instance of sensor fusion. It is not neces-
sary to define any new mechanisms for sensor fusion given the belief-network

Figure 9.18: Posterior distribution over locations after the sequence of observa-
tions: observe door, move right, observe no door, move right, observe door. See
Example 9.32 (page 423). The probability is given to two decimal places.
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model; standard probabilistic inference combines the information from both
sensors. In this case, the sensors provide independent information, but a (dif-
ferent) belief network could model dependent information.

9.6.3 Algorithms for Monitoring and Smoothing

Standard belief-network algorithms, such as recursive conditioning or variable
elimination, can be used to carry out monitoring or smoothing. However, it
is possible to take advantage of the fact that time moves forward and that the
agent is getting observations in time and is interested in its state at the current
time.

In belief monitoring or filtering, an agent computes the probability of the
current state given the history of observations. The history can be forgotten.
In terms of the HMM of Figure 9.15 (page 422), for each time i, the agent com-
putes P(Si | o0, . . . , oi), the distribution over the state at time i given the obser-
vation of o0, . . . , oi. As in exact inference (page 407), a variable is introduced
and summed out to enable the use of known probabilities:

P(Si | o0, . . . , oi) ∝ P(Si, o0, . . . , oi)

= P(oi | Si)P(Si, o0, . . . , oi−1)

= P(oi | Si) ∑
Si−1

P(Si, Si−1, o0, . . . , oi−1)

= P(oi | Si) ∑
Si−1

P(Si | Si−1)P(Si−1, o0, . . . , oi−1)

∝ P(oi | Si) ∑
Si−1

P(Si | Si−1)P(Si−1 | o0, . . . , oi−1). (9.6)

Suppose the agent has computed the previous belief based on the observa-
tions received up until time i− 1. That is, it has a factor representing P(Si−1 |

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

Figure 9.19: Localization with multiple sensors
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o0, . . . , oi−1). This is just a factor on Si−1. To compute the next belief, it multi-
plies this by P(Si | Si−1), sums out Si−1, multiplies this by the factor P(oi | Si),
and normalizes.

Multiplying a factor on Si−1 by the factor P(Si | Si−1) and summing out
Si−1 is an instance of matrix multiplication (page 352). Multiplying the result
by P(oi | Si) is the dot product (page 352).

Example 9.34 Consider the domain of Example 9.32 (page 423). An ob-
servation of a door involves multiplying the probability of each location L by
P(door | Loc= L) and renormalizing. A move right involves, for each state, do-
ing a forward simulation of the move-right action in that state weighted by the
probability of being in that state.

Smoothing (page 422) is the problem of computing the probability distribu-
tion of a state variable in an HMM given past and future observations. The use
of future observations can make for more accurate predictions. Given a new
observation, it is possible to update all previous state estimates with one sweep
through the states using variable elimination; see Exercise 9.14 (page 456).

Recurrent neural networks (RNNs) (page 354) can be seen as neural net-
work representations of reasoning in a hidden Markov model. An RNN mod-
els how Si depends on oi and Si−1 using a differentiable function. They need
to be trained on data for the task being performed, typically smoothing. An
HMM is designed to be more modular (page 22); learning transition functions
and sensor models separately allows for different forms of reasoning, such as
smoothing, and the ability to modularly add sensors or modify the dynamics.

9.6.4 Dynamic Belief Networks

The state at a particular time need not be represented as a single variable. It is
often more natural to represent the state in terms of features.

A dynamic belief network (DBN) is a discrete time (page 53) belief net-
work with regular repeated structure. It is like a (hidden) Markov model, but
the states and the observations are represented in terms of features. If F is a fea-
ture, we write Ft as the random variable that represented the value of variable
F at time t. A dynamic belief network makes the following assumptions:

• The set of features is the same at each time.
• For any time t > 0, the parents of variable Ft are variables at time t or

time t− 1, such that the graph for any time is acyclic. The structure does
not depend on the value of t (except t = 0 is a special case).

• The conditional probability distribution of how each variable depends
on its parents is the same for every time t > 0. This is called a stationary
model.

Thus, a dynamic belief network specifies a belief network for time t = 0, and
for each variable Ft specifies P(Ft | parents(Ft)), where the parents of Ft are in
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the same or previous time steps. As in a belief network, directed cycles are not
allowed.

The model for a dynamic belief network is represented as a two-step belief
network, which represents the variables at the first two times (times 0 and 1).
That is, for each feature F there are two variables, F0 and F1. The set of parents
of F0, namely parents(F0), can only include variables for time 0. The resulting
graph must be acyclic. Associated with the network are the probabilities P(F0 |
parents(F0)) and P(F1 | parents(F1)).

The two-step belief network is unfolded into a belief network by replicating
the structure for subsequent times. In the unfolded network, P(Fi | parents(Fi)),
for i > 1, has exactly the same structure and the same conditional probability
values as P(F1 | parents(F1)).

Example 9.35 Suppose a trading agent (page 20) wants to model the dynam-
ics of the price of a commodity such as paper. To represent this domain, the
designer models variables affecting the price and the other variables. Suppose
the cost of pulp and the transportation costs directly affect the price of paper.
The transportation costs are affected by the weather. The pulp cost is affected
by the prevalence of tree pests, which in turn depend on the weather. Suppose
that each variable depends on its value at the previous time step. A two-stage
dynamic belief network representing these dependencies is shown in Figure
9.20 (page 429).

According to this figure, the variables are independent at time 0.
This two-stage dynamic belief network can be expanded into a regular dy-

namic belief network by replicating the nodes for each time step, and the par-
ents for future steps are a copy of the parents for the time 1 variables. An
expanded belief network for a horizon of 3 is shown in Figure 9.21 (page 429).
The subscripts represent the time that the variable is referring to.

9.6.5 Time Granularity

One of the problems with the definition of an HMM or a dynamic belief net-
work is that the model depends on the time granularity. The time granularity
specifies how often a dynamic system transitions from one state to the next.
The time granularity could either be fixed, for example each day or each thir-
tieth of a second, or it could be event based, where a time step occurs when
something interesting occurs. If the time granularity were to change, for exam-
ple from daily to hourly, the conditional probabilities would also change.

One way to model the dynamics independently of the time granularity is
to model continuous time, where for each variable and each value for the vari-
able, the following are specified:

• a distribution of how long the variable is expected to keep that value (e.g.,
an exponential decay) and

• what value it will transition to when its value changes.
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Weather
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costs

Tree 
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Cost 
pulp

Cost
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pulp

Cost
paper

time=0 time=1

Figure 9.20: Two-stage dynamic belief network for paper pricing
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Figure 9.21: Expanded dynamic belief network for paper pricing
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Given a discretization of time, where time moves from one state to the next
in discrete steps, a dynamic belief network can be constructed from this infor-
mation. If the discretization of time is fine enough, ignoring multiple value
transitions in each time step will result only in small errors.

9.6.6 Probabilistic Language Models

Markov chains are the basis of simple language models, which have proved to
be very useful in various natural language processing tasks in daily use.

Assume that a document is a sequence of sentences, where a sentence is a
sequence of words. Consider the sorts of sentences that people may speak to
a system or ask as a query to a help system. They may not be grammatical,
and often contain words such as “thx” or “zzz”, which may not be typically
thought of as words.

In the set-of-words model, a sentence (or a document) is treated as the
set of words that appear in the sentence, ignoring the order of the words or
whether the words are repeated. For example, the sentence “how can I phone
my phone” would be treated as the set {“can”, “how”, “I”, “my”, “phone”}.

To represent the set-of-words model as a belief network, as in Figure 9.22,
there is a Boolean random variable for each word. In this figure, the words
are independent of each other (but they do not have to be). This belief net-
work requires the probability of each word appearing in a sentence: P(”a”),
P(”aardvark”), . . . , P(”zzz”). To condition on the sentence “how can I phone
my phone”, all of the words in the sentence are assigned true, and all of the
other words are assigned false. Words that are not defined in the model are
either ignored, or are given a default (small) probability. The probability of
sentence S is (∏w∈S P(w)) ∗ (∏w �∈S(1− P(w))

)
.

A set-of-words model is not very useful by itself, but is often used as part
of a larger model, as in the following example.

Example 9.36 Suppose you want to develop a help system to determine
which help page users are interested in based on the keywords they give in a
query to a help system.

The system will observe the words that the user gives. Instead of modeling
the sentence structure, assume that the set of words used in a query will be
sufficient to determine the help page.

“aardvark” “zzz”“a” ...

domain(”a”) = domain(”aardvark) = · · · = domain(”zzz”) = {true, false}
Figure 9.22: Set-of-words language model
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The aim is to determine which help page the user wants. Suppose that the
user is interested in one and only one help page. Thus, it seems reasonable to
have a node H with domain the set of all help pages, {h1, . . . , hk}.

One way this could be represented is as a naive Bayes classifier. A naive
Bayes classifier is a belief network that has a single node – the class – that di-
rectly influences the other variables, and the other variables are independent
of each other given the class. Figure 9.23 shows a naive Bayes classifier for the
help system. The value of the class is the help page the user is interested in.
The other nodes represent the words used in a query. This network embodies
the independence assumption: the words used in a query depend on the help
page the user is interested in, and the words are conditionally independent of
each other given the help page.

This network requires P(hi) for each help page hi, which specifies how
likely it is that a user would want this help page given no information. This net-
work assumes the user is interested in exactly one help page, and so ∑i P(hi) =
1.

The network also requires, for each word wj and for each help page hi, the
probability P(wj | hi). These may seem more difficult to acquire but there are a
few heuristics available. The sum of these values should be the average num-
ber of words in a query. We would expect words that appear in the help page
to be more likely to be used when asking for that help page than words not in
the help page. There may also be keywords associated with the page that may
be more likely to be used. There may also be some words that are just used
more, independently of the help page the user is interested in. Example 10.5
(page 469) shows how to learn the probabilities of this network from experi-
ence.

To condition on the set of words in a query, the words that appear in the
query are observed to be true and the words that are not in the query are ob-
served to be false. For example, if the help text was “the zoom is absent”, the
words “the”, “zoom”, “is”, and “absent” would be observed to be true, and the
other words would be observed to be false. Once the posterior for H has been
computed, the most likely few help topics can be shown to the user.

Some words, such as “the” and “is”, may not be useful in that they have
the same conditional probability for each help topic and so, perhaps, would

H

"able" "absent" "add" "zoom". . .

Figure 9.23: Naive belief network with a set-of-words model for a help system
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be omitted from the model. Some words that may not be expected in a query
could also be omitted from the model.

Note that the conditioning included the words that were not in the query.
For example, if page h73 was about printing problems, you might expect that
people who wanted page h73 would use the word “print”. The non-existence of
the word “print” in a query is strong evidence that the user did not want page
h73.

The independence of the words given the help page is a strong assump-
tion. It probably does not apply to words like “not”, where which word “not”
is associated with is very important. There may even be words that are com-
plementary, in which case you would expect users to use one and not the other
(e.g., “type” and “write”) and words you would expect to be used together
(e.g., “go” and “to”); both of these cases violate the independence assumption.
It is an empirical question as to how much violating the assumptions hurts the
usefulness of the system.

In a bag-of-words or unigram model, a sentence is treated as a bag (multi-
set) of words, representing the number of times a word is used in a sentence,
but not the order of the words. Figure 9.24 shows how to represent a uni-
gram as a belief network. For the sequence of words, there is a variable Wi
for each position i, with domain of each variable the set of all words, such as
{”a”, ”aardvark”, . . . , ”zzz”}. The domain is often augmented with a symbol,
“⊥”, representing the end of the sentence, and with a symbol “?” representing
a word that is not in the model.

To condition on the sentence “how can I phone my phone”, the word W1 is
observed to be “how”, the variable W2 is observed to be “can”, etc. Word W7
is assigned ⊥. Both W4 and W6 are assigned the value “phone”. There are no
variables W8 onwards.

The unigram model assumes a stationary distribution, where the prior dis-
tribution of Wi is the same for each i. The value of P(Wi =w) is the probability
that a randomly chosen word is w. More common words have a higher proba-
bility than less common words.

In a bigram model, the probability of each word depends on the previous
word in the sentence. It is called a bigram model because it depends on pairs
of words. Figure 9.25 (page 433) shows the belief-network representation of a
bigram model. This needs a specification of P(Wi | Wi−1).

W2 ...W3 WnW1

domain(Wi) = {”a”, ”aarvark”, . . . , ”zzz”, ”⊥”, ”?”}
Figure 9.24: Bag-of-words or unigram language model
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To make W1 not be a special case, introduce a new word ⊥; intuitively ⊥
is the “word” between sentences. For example, P(”cat” | ⊥) is the probability
that the word “cat” is the first word in a sentence. P(⊥ | ”cat”) is the probability
that the sentence ends after the word “cat”.

In a trigram model, each triple of words is modeled. This is represented as a
belief network in Figure 9.26. This requires P(Wi | Wi−2, Wi−1); the probability
of each word given the previous two words.

In general, in an n-gram model, the probability of each word given the pre-
vious n− 1 words is modeled. This requires considering each sequence of n
words, and so the complexity of representing this as a table grows with wn,
where w is the number of words. Figure 9.27 shows some common unigram,
bigram, and trigram probabilities.

The conditional probabilities are typically not represented as tables, be-
cause the tables would be too large, and because it is difficult to assess the
probability of a previously unknown word, or the probability of the next word
given a previously unknown word or given an uncommon phrase. Instead,
one could use context-specific independence (page 385), such as, for trigram
models, represent the probability of the next word conditioned on some of the
pairs of words, and if none of these hold, use P(Wi | Wi−1), as in a bigram
model. For example, the phrase “frightfully green” is not common, and so to
compute the probability of the next word, P(W | ”frightfully”, ”green”), it is
typical to use P(W | ”green”), which is easier to assess and learn.

Transformers (page 360), when used in generative language models, are
n-gram models, where n – the window size of the transformer – is very large
(in GPT-3, n is 2048). A neural network, using attention, gives the probability
of the next word given the previous words in the window. Note that a trans-

W3 ...W3 WnW2W1

domain(Wi) = {”a”, ”aarvark”, . . . , ”zzz”, ”⊥”, ”?”}
Figure 9.25: Bigram language model

W3 ...W3 WnW2W1

domain(Wi) = {”a”, ”aarvark”, . . . , ”zzz”, ”⊥”, ”?”}
Figure 9.26: Trigram language model
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former model used in an encoder to find a representation for a text uses the
words after, as well as the words before, each word.

Any of these models could be used in the help system of Example 9.36
(page 430), instead of the set-of-words model used there. These models may
be combined to give more sophisticated models, as in the following example.

Example 9.37 Consider the problem of spelling correction as users type into
a phone’s onscreen keyboard to create sentences. Figure 9.28 gives a predictive
typing model that does this (and more).

Word P1
the 0.0464
of 0.0294
and 0.0228
to 0.0197
in 0.0156
a 0.0152
is 0.00851
that 0.00806
for 0.00658
was 0.00508

Word P2

same 0.01023
first 0.00733
other 0.00594
most 0.00558
world 0.00428
time 0.00392
two 0.00273
whole 0.00197
people 0.00175
great 0.00102

Word P3

time 0.15236
as 0.04638
way 0.04258
thing 0.02057
year 0.00989
manner 0.00793
in 0.00739
day 0.00705
kind 0.00656
with 0.00327

Unigram, bigram, and trigram probabilities derived from the Google books
Ngram viewer (https://books.google.com/ngrams/) for the year 2000. P1 is
P(Word) for the top 10 words, which are found by using the query “*” in the
viewer. P2 is part of a bigram model that represents P(Word | ”the”) for the
top 10 words. This is derived from the query “the *” in the viewer. P3 is part
of a trigram model; the probabilities given represent P(Word | ”the”, ”same”),
which is derived from the query “the same *” in the viewer.

Figure 9.27: Some of the most-likely n-grams

W2 ...W1

L11 Lk1L21 ... L12 Lk2L22 ...

W3

L13 Lk3L23 ...

domain(Wi) = {”a”, ”aarvark”, . . . , ”zzz”, ”⊥”, ”?”}
domain(Lji) = {”a”, ”b”, ”c”, . . . , ”z”}
Figure 9.28: Predictive typing model

https://books.google.com/ngrams/
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The variable Wi is the ith word in the sentence. The domain of each Wi
is the set of all words. This uses a bigram model for words, and assumes
P(Wi | Wi−1) is provided as the language model. A stationary model is typ-
ically appropriate.

The Lji variable represents the jth letter in word i. The domain of each Lji is
the set of characters that could be typed. This uses a unigram model for each
letter given the word, but it would not be a stationary model, as for example
the probability distribution of the first letter given the word “print” is different
from the probability distribution of the second letter given the word “print”.
We would expect P(Lji = c | Wi =w) to be close to 1 if the jth letter of word
w is c. The conditional probability could incorporate common misspellings
and common typing errors (e.g., switching letters, or if someone tends to type
slightly higher on the phone’s screen).

For example, P(L1j = ”p” | Wj = ”print”) would be close to 1, but not equal
to 1, as the user could have mistyped. Similarly, P(L2j = ”r” | Wj = ”print”)
would be high. The distribution for the second letter in the word, P(L2j |
Wj = ”print”), could take into account mistyping adjacent letters (“e” and “t”
are adjacent to “r” on the standard keyboard) and missing letters (maybe “i”
is more likely because it is the third letter in “print”). In practice, these prob-
abilities are typically extracted from data of people typing known sentences,
without needing to model why the errors occurred.

The word model allows the system to predict the next word even if no
letters have been typed. Then, as letters are typed, it predicts the word, based
on the previous words and the typed letters, even if some of the letters are
mistyped. For example, if the user types “I cannot pint”, it might be more
likely that the last word is “print” than “pint” because of the way the model
combines all of the evidence.

A topic model predicts the topics of a document from the sentences typed.
Knowing the topic of a document helps people find the document or similar
documents even if they do not know what words are in the document.

Example 9.38 Figure 9.29 shows a simple topic model based on a set-of-words
language model. There is a set of topics (four are given) which are a priori

tools food topics

"nut" "tuna""bolt" words

fish

“shark”“salmon”

finance

Figure 9.29: Simple topic model with a set-of-words. The thickness of the lines
indicates the strength of the connection. See Example 9.38

https://doi.org/10.1017/9781009258227.013


436 9. Reasoning with Uncertainty

independent of each other. In this model, the words are independent of each
other given the topic. A noisy-or (page 398) is used to model how each word
depends on the topics.

The noisy-or model can be represented by having a variable for each topic–
word pair where the word is relevant for the topic. For example, the tools bolt
variable represents the probability that the word bolt is in the document be-
cause the topic is tools. This variable has probability zero if the topic is not tools
and has the probability that the word would appear when the topic is tools (and
there are no other relevant topics). The word bolt would appear, with probabil-
ity 1 if tools bolt is true or if an analogous variable, food bolt, is true, and with a
small probability otherwise (the probability that it appears without one of the
topics). Thus, each topic–word pair where the word is relevant to the topic is
modeled by a single weight. In Figure 9.29 (page 435), the higher weights are
shown by thicker lines.

Given the words, the topic model is used to infer the distribution over top-
ics. Once a number of words that are relevant to a topic are given, the topic
becomes more likely, and so other words related to that topic also become more
likely. Indexing documents by the topic lets us find relevant documents even if
different words are used to look for a document.

This model is based on Google’s Rephil, which has 12,000,000 words (where
common phrases are treated as words), a million topics and 350 million topic–
word pairs with nonzero probability. In Rephil, the topics are structured hier-
archically into a tree.

It is possible to mix these patterns, for example by using the current topics
to predict the word in a predictive typing model with a topic model.

Models based on n-grams cannot represent all of the subtleties of natural
language, as exemplified by the following example.

Example 9.39 Consider the sentence

A tall person with a big hairy cat drank the cold milk.

In English, this is unambiguous; the person drank the milk. Consider how
an n-gram might fare with such a sentence. The problem is that the subject
(“person”) is far away from the verb (“drank”). It is also plausible that the cat
drank the milk. It is easy to think of variants of this sentence where the word
“person” is arbitrarily far away from the object of the sentence (“the cold milk”)
and so would not be captured by any n-gram, unless n was very large. Such
sentences can be handled using a hidden state as in a long short-term memory
(LSTM) (page 357) or by explicitly building a parse tree, as described in Section
15.7 (page 674).

9.7 Stochastic Simulation

Many problems are too big for exact inference, so one must resort to approx-
imate inference (page 404). Some of the most effective methods are based on
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generating random samples from the (posterior) distribution that the network
specifies.

Stochastic simulation is a class of algorithms based on the idea that a set
of samples can be mapped to and from probabilities. For example, the proba-
bility P(a) = 0.14 means that out of 1000 samples, about 140 will have a true.
Inference can be carried out by going from probabilities into samples and from
samples into probabilities.

The following sections consider three problems:

• how to generate samples
• how to infer probabilities from samples
• how to incorporate observations.

These form the basis for methods that use sampling to compute the posterior
distribution of a variable in a belief network, including rejection sampling, im-
portance sampling, particle filtering, and Markov chain Monte Carlo.

9.7.1 Sampling from a Single Variable

The simplest case is to generate the probability distribution of a single variable.
This is the base case the other methods build on.

From Probabilities to Samples

To generate samples from a single discrete or real-valued variable, X, first to-
tally order the values in the domain of X. For discrete variables, if there is no
natural order, just create an arbitrary ordering. Given this ordering, the cumu-
lative probability distribution is a function of x, defined by f (x) = P(X ≤ x).

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1

0

1

Figure 9.30: A cumulative probability distribution
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To generate a random sample for X, select a random number y in the do-
main [0, 1]. We select y from a uniform distribution to ensure that each number
between 0 and 1 has the same chance of being chosen. Let v be the value of
X that maps to y in the cumulative probability distribution. That is, v is the
element of domain(X) such that f (v) = y or, equivalently, v = f−1(y). Then,
X= v is a random sample of X, chosen according to the distribution of X.

Example 9.40 Consider a random variable X with domain {v1, v2, v3, v4}.
Suppose P(X= v1) = 0.3, P(X= v2) = 0.4, P(X= v3) = 0.1, and P(X= v4) =
0.2. First, totally order the values, say v1 < v2 < v3 < v4. Figure 9.30 (page 437)
shows P(X), the distribution for X, and f (X), the cumulative distribution for X.
Consider value v1; 0.3 of the domain of f maps back to v1. Thus, if a sample is
uniformly selected from the Y-axis, v1 has a 0.3 chance of being selected, v2 has
a 0.4 chance of being selected, and so forth.

From Samples to Probabilities

Probabilities can be estimated from a set of samples using the sample average.
The sample average of a proposition α is the number of samples where α is
true divided by the total number of samples. The sample average approaches
the true probability as the number of samples approaches infinity by the law
of large numbers.

Hoeffding’s inequality provides an estimate of the error of the sample
average, s, given n independent samples compared to the true probability, p.
|s− p| > ε means that the error is larger than ε, for 0 < ε < 1.

Proposition 9.3 (Hoeffding). Suppose p is the true probability, and s is the sample
average from n independent samples; then

P(|s− p| > ε) ≤ 2 exp(−2nε2).

This theorem can be used to determine how many samples are required to
guarantee a probably approximately correct (PAC) estimate of the probability.
To guarantee that the error is always less than some ε < 0.5, infinitely many
samples are required. However, if you are willing to have an error greater than
ε in δ of the cases, solve 2 exp(−2nε2) < δ for n, which gives

n >
− ln δ

2
2ε2 .

For example, suppose you want an error less than 0.1, 19 times out of 20; that
is, you are only willing to tolerate an error bigger than 0.1 in less than 5% of the
cases. You can use Hoeffding’s bound by setting ε to 0.1 and δ to 0.05, which
gives n > 184. The following table gives some required number n of examples
for various combinations of values for ε and δ:
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ε δ n
0.1 0.05 185
0.01 0.05 18445
0.1 0.01 265
0.01 0.01 26492

Notice that many more examples are required to get accurate probabilities
(small ε) than are required to get good approximations (small δ).

9.7.2 Forward Sampling

Using the cumulative distribution (page 437) to generate samples only works
for a single dimension, because all of the values must be put in a total order.
Sampling from a distribution defined by multiple variables is difficult in gen-
eral, but is straightforward when the distribution is defined using a belief net-
work.

Forward sampling is a way to generate a sample of every variable in a
belief network so that each sample is generated in proportion to its probability.
This enables us to estimate the prior probability of any variable.

Suppose X1, . . . , Xn is a total ordering of the variables so that the parents
of each variable come before the variable in the total order. Forward sampling
draws a sample of all of the variables by drawing a sample of each variable
X1, . . . , Xn in order. First, it samples X1 using the cumulative distribution, as
described above. For each of the other variables, due to the total ordering of
variables, when it comes time to sample Xi, it already has values for all of the
parents of Xi. It now samples a value for Xi from the distribution of Xi given the
values already assigned to the parents of Xi. Repeating this for every variable
generates a sample containing values for all of the variables. The probability
distribution of a query variable is estimated by considering the proportion of
the samples that have assigned each value of the variable.

Example 9.41 To create a set of samples for the belief network of Figure 9.3
(page 390), suppose the variables are ordered: Tampering, Fire, Alarm, Smoke,
Leaving, Report.

First the algorithm samples Tampering, using the cumulative distribution
(page 437). Suppose it selects Tampering= false. Then it samples Fire using
the same method. Suppose it selects Fire= true. Then it samples a value for
Alarm, using the distribution P(Alarm | Tampering= false, Fire= true). Suppose
it selects Alarm= true. Next, it samples a value for Smoke using P(Smoke |
Fire= true). And so on for the other variables. It has thus selected a value
for each variable and created the first sample of Figure 9.31 (page 440). Notice
that it has selected a very unlikely combination of values. This does not hap-
pen very often; it happens in proportion to how likely the sample is. It repeats
this until it has enough samples. In Figure 9.31 (page 440), it generated 1000
samples.
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The probability that Report= true is estimated from the proportion of the
samples where the variable Report has value true.

Forward sampling is used in (large) language models (page 364), to gen-
erate text. A neural network, such as an LSTM (page 357) or transformer
(page 360), is used to represent the probability of the next word given the pre-
vious words. Forward sampling then generates a sample of text. Different runs
produce different text, with a very low probability of repeating the same text.
Forward sampling is also used in game playing, where it can be used to predict
the distribution of outcomes of a game from a game position, given a proba-
bility distribution of the actions from a position, in what is called Monte Carlo
tree search; see Section 14.7.3 (page 636).

9.7.3 Rejection Sampling

Given some evidence e, rejection sampling estimates P(h | e) using the formula

P(h | e) =
P(h∧ e)

P(e)
.

This is computed by considering only the samples where e is true and by de-
termining the proportion of these in which h is true. The idea of rejection sam-
pling is that samples are generated as before, but any sample where e is false
is rejected. The proportion of the remaining, non-rejected, samples where h is
true is an estimate of P(h | e). If the evidence is a conjunction of assignments of
values to variables, a sample is rejected when any variable is assigned a value
different from its observed value.

Example 9.42 Figure 9.32 (page 441) shows how rejection sampling is used
to estimate P(tampering | smoke ∧ ¬report). Any sample with Smoke= false is
rejected. The sample is rejected without considering any more variables. Any

Sample Tampering Fire Alarm Smoke Leaving Report
s1 false true true true false false
s2 false false false false false false
s3 false true true true true true
s4 false false false false false true
s5 false false false false false false
s6 false false false false false false
s7 true false false true true true
s8 true false false false false true
. . .
s1000 true false true true false false

Figure 9.31: Sampling for a belief network
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sample with Report= true is rejected. The sample average from the remaining
samples (those marked with �) is used to estimate the posterior probability of
tampering.

Because P(smoke ∧ ¬report) = 0.0128, we would expect about 13 samples
out of the 1000 to have smoke ∧ ¬report true; the other 987 samples would have
smoke∧¬report false, and so would be rejected. Thus, 13 is used as n in Hoeffd-
ing’s inequality, which, for example, guarantees an error for any probability
computed from these samples of less than 0.25 in about 86% of the cases, which
is not very accurate.

The error in the probability of h depends on the number of samples that
are not rejected, which is proportional to P(e). Hoeffding’s inequality can be
used to estimate the error of rejection sampling, where n is the number of non-
rejected samples. Therefore, the error depends on P(e).

Rejection sampling does not work well when the evidence is unlikely. This
may not seem like that much of a problem because, by definition, unlikely
evidence is unlikely to occur. But, although this may be true for simple models,
for complicated models with complex observations, every possible observation
may be unlikely. Also, for many applications, such as in diagnosis, the user is
interested in determining the probabilities because unusual observations are
involved.

9.7.4 Likelihood Weighting

Instead of creating a sample and then rejecting it, it is possible to mix sampling
with inference to reason about the probability that a sample would be rejected.
In importance sampling methods, each sample has a weight, and the sample
average uses the weighted average. Likelihood weighting is a simple form
where the variables are sampled in the order defined by a belief network, and
evidence is used to update the weights. The weights reflect the probability that

Sample Tampering Fire Alarm Smoke Leaving Report
s1 false false true false �

s2 false true false true false false �

s3 false true true false �

s4 false true false true false false �

s5 false true true true true true �

s6 false false false true false false �

s7 true false false false �

s8 true true true true true true �

. . .
s1000 true false true false �

Figure 9.32: Rejection sampling for P(tampering | smoke∧ ¬report)
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a sample would not be rejected. More general forms of importance sampling
are explored in Section 9.7.5 (page 443).

Example 9.43 Consider the belief network of Figure 9.3 (page 390). In this
P(fire) = 0.01, P(smoke | fire) = 0.9, and P(smoke | ¬fire) = 0.01. Suppose
Smoke= true is observed, and another descendant of Fire is queried.

Starting with 1000 samples, approximately 10 will have Fire= true, and the
other 990 samples will have Fire= false. In rejection sampling, of the 990 with
Fire= false, 1%, which is approximately 10, will have Smoke= true and so will
not be rejected. The remaining 980 samples will be rejected. Of the 10 with
Fire= true, about 9 will not be rejected. Thus, about 98% of the samples are
rejected.

In likelihood weighing, instead of sampling Smoke and rejecting most sam-
ples, the samples with Fire= true are weighted by 0.9 and the samples with
Fire= false are weighted with 0.01. This potentially give a much better estimate
of any of the probabilities that use these samples.

1: procedure Likelihood weighting(B, e, Q, n):
2: Inputs
3: B: belief network
4: e: the evidence; a variable-value assignment to some of the variables
5: Q: query variable
6: n: number of samples to generate
7: Output
8: posterior distribution on Q
9: Local

10: array sample[var], where sample[var] ∈ domain(var)
11: real array counts[k] for k ∈ domain(Q), initialized to 0
12: repeat n times
13: sample := {}
14: weight := 1
15: for each variable X in B, in order do
16: if X = v is in e then
17: sample[X] := v
18: weight := weight ∗ P(X= v | parents(X))
19: else
20: sample[X] := a random sample from P(X | parents(X))

21: v := sample[Q]
22: counts[v] := counts[v] + weight
23: return counts/ ∑v counts[v]

Figure 9.33: Likelihood weighting for belief-network inference
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Figure 9.33 (page 442) shows the details of the likelihood weighting for
computing P(Q | e) for query variable Q and evidence e. The for loop (from line
15) creates a sample containing a value for all of the variables. Each observed
variable changes the weight of the sample by multiplying by the probability
of the observed value given the assignment of the parents in the sample. The
variables not observed are sampled according to the probability of the variable
given its parents in the sample. Note that the variables are sampled in an order
to ensure that the parents of a variable have been assigned in the sample before
the variable is selected.

To extract the distribution of the query variable Q, the algorithm maintains
an array counts, such that counts[v] is the sum of the weights of the samples
where Q= v. This algorithm can also be adapted to the case where the query
is some complicated condition on the values by counting the cases where the
condition is true and those where the condition is false.

Example 9.44 Consider using likelihood weighting to compute P(Tampering |
smoke∧ ¬report).

The following table gives a few samples. In this table, s is the sample; e
is ¬smoke ∧ report. The weight is P(e | s), which is equal to P(smoke | Fire) ∗
P(¬report | Leaving), where the values for Fire and Leaving are from the sample.

Tampering Fire Alarm Smoke Leaving Report Weight
false true false true true false 0.9 ∗ 0.25 = 0.225
true true true true false false 0.9 ∗ 0.99 = 0.891
false false false true true false 0.01 ∗ 0.25 = 0.0025
false true false true false false 0.9 ∗ 0.99 = 0.891

P(tampering | ¬smoke∧ report) is estimated from the weighted proportion of the
samples that have Tampering true.

9.7.5 Importance Sampling

Likelihood weighting is an instance of importance sampling. Importance sam-
plingin general has:

• Samples are weighted.

• The samples do not need to come from the actual distribution, but can be
from (almost) any distribution, with the weights adjusted to reflect the
difference between the distributions.

• Some variables can be summed out and some sampled.

This freedom to sample from a different distribution allows the algorithm to
choose better sampling distributions to give better estimates.

Stochastic simulation can be used to compute the expected value (page 383)
of real-valued variable f under probability distribution P using

EP(f ) = ∑
w

f (w) ∗ P(w)
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≈ 1
n ∑

s
f (s)

where s is a sample that is sampled with probability P, and n is the number of
samples. The estimate gets more accurate as the number of samples grows.

Suppose it is difficult to sample with the distribution P, but it is easy to
sample from a distribution Q. We adapt the previous equation to estimate the
expected value from P, by sampling from Q using

EP(f ) = ∑
w

f (w) ∗ P(w)

= ∑
w

f (w) ∗ (P(w)/Q(w)) ∗Q(w)

≈ 1
n ∑

s
f (s) ∗ P(s)/Q(s)

where the last sum is over n samples selected according to the distribution Q.
The distribution Q is called a proposal distribution. The only restriction on Q
is that it should not be zero for any cases where P is not zero (i.e., if Q(c) = 0
then P(c) = 0).

Recall (page 383) that for Boolean variables, with true represented as 1 and
false as 0, the expected value is the probability. So the methods here can be used
to compute probabilities.

The algorithm of Figure 9.33 (page 442) can be adapted to use a proposal
distribution as follows: in line 20, it should sample from Q(X | parents(X)),
and in a new line after that, it updates the value of weight by multiplying it by
P(X | parents(X))/Q(X | parents(X)).

Example 9.45 In the running alarm example, P(smoke) = 0.0189. As ex-
plained in Example 9.43 (page 442), if the algorithm samples according to the
prior probability, Smoke= true would only be true in about 19 samples out of
1000. Likelihood weighting ended up with a few samples with high weights
and many samples with low weights, even though the samples represented
similar numbers of cases.

Suppose, instead of sampling according to the probability, the proposal dis-
tribution with Q(fire) = 0.5 is used. Then Fire= true is sampled 50% of the
time. According to the model P(fire) = 0.01, thus each sample with Fire= true
is weighted by 0.01/0.5 = 0.02 and each sample with Fire= false is weighted by
0.99/0.5 = 1.98.

With importance sampling with Q as the proposal distribution, half of the
samples will have Fire= true, and the model specifies P(smoke | fire) = 0.9.
Given the evidence e, these will be weighted by 0.9 ∗ 0.02 = 0.018. The other
half of the samples will have A= false, and the model specifies P(smoke | ¬fire) =
0.01. These samples will have a weighting of 0.01 ∗ 1.98 = 0.0198. Notice how
all of the samples have weights of the same order of magnitude. This means
that the estimates from these are much more accurate.
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Importance sampling can also be combined with exact inference. Not all
variables need to be sampled. The variables not sampled can be summed out
by variable elimination.

The best proposal distribution is one where the samples have approximately
equal weight. This occurs when sampling from the posterior distribution. In
adaptive importance sampling, the proposal distribution is modified to ap-
proximate the posterior probability of the variable being sampled.

9.7.6 Particle Filtering

Importance sampling enumerates the samples one at a time and, for each sam-
ple, assigns a value to each variable. It is also possible to start with all of the
samples and, for each variable, generate a value for that variable for each sam-
ple. For example, for the data of Figure 9.31 (page 440), the same data could
be generated by generating all of the samples for Tampering before generat-
ing the samples for Fire. The particle filtering algorithm or sequential Monte
Carlo (SMC) generates all the samples for one variable before moving to the
next variable. It does one sweep through the variables, and for each variable
it does a sweep through all of the samples. This algorithm is advantageous
when variables are generated dynamically and when there are unboundedly
many variables, as in the sequential models (page 418). It also allows for a new
operation of resampling.

In particle filtering, the samples are called particles. A particle is a variable-
value dictionary, where a dictionary is a representation of a partial function
from keys into values; here the key is a variable and the particle maps to its
value. A particle has an associated weight. A set of particles is a population.

The algorithm starts with a population of n empty dictionaries. The algo-
rithm repeatedly selects a variable according to an ordering where a variable
is selected after its parents. If the variable is not observed, for each particle, a
value for the variable for that particle is sampled from the distribution of the
variable given the assignment of the particle. If the variable is observed, each
particle’s weight is updated by multiplying by the probability of the observa-
tion given the assignment of the particle.

Given a population of n particles, resampling generates a new popula-
tion of n particles, each with the same weight. Each particle is selected with
probability proportional to its weight. Resampling can be implemented in the
same way that random samples for a single random variable are generated
(page 437), but particles, rather than values, are selected. Some particles may
be selected multiple times and others might not be selected at all.

The particle filtering algorithm is shown in Figure 9.34 (page 446). Line
16 assigns X its observed value. Line 17, which is used when X is observed,
updates the weights of the particles according to the probability of the obser-
vation on X. Line 22 assigns X a value sampled from the distribution of X given
the values of its parents in the particle.
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This algorithm resamples after each observation. It is also possible to re-
sample less often, for example, after a number of variables are observed.

Importance sampling is equivalent to particle filtering without resampling.
The principal difference is the order in which the particles are generated. In
particle filtering, each variable is sampled for all particles, whereas, in impor-
tance sampling, each particle (sample) is sampled for all variables before the
next particle is considered.

Particle filtering has two main advantages over importance sampling. First,
it can be used for an unbounded number of variables, as in hidden Markov
models (page 420) and dynamic belief networks (page 427). Second, resam-
pling enables the particles to better cover the distribution over the variables.
Whereas importance sampling will result in some particles that have very low
probability, with only a few of the particles covering most of the probability
mass, resampling lets many particles more uniformly cover the probability

1: procedure Particle filtering(B, e, Q, n):
2: Inputs
3: B: belief network
4: e: the evidence; a variable-value assignment to some of the variables
5: Q: query variable
6: n: number of samples to generate
7: Output
8: posterior distribution on Q
9: Local

10: particles is a set of particles
11: array counts[k] where k in domain(Q)

12: particles := list of n empty particles
13: for each variable X in B, in order do
14: if X= v is observed in e then
15: for each part in particles do
16: part[X] := v
17: weight[part] := weight ∗ P(X= v | part[parents(X)])

18: particles := n particles selected from particles according to weight
19: else
20: for each part in particles do
21: sample v from distribution P(X | part[parents(X)])
22: part[X] := v
23: for each v in domain(Q) do
24: counts[v] := (number of part in particles s.th. part[Q] = v)/n
25: return counts

Figure 9.34: Particle filtering for belief-network inference

https://doi.org/10.1017/9781009258227.013


9.7. Stochastic Simulation 447

mass.

Example 9.46 Consider using particle filtering to compute P(tampering |
smoke ∧ report) for the belief network of Figure 9.3 (page 390). First gener-
ate the particles s1, . . . , s1000. Suppose it first samples Fire. Out of the 1000
particles, about 10 will have Fire= true and about 990 will have Fire= false (as
P(fire) = 0.01). It then absorbs the evidence Smoke= true. Those particles with
Fire= true will be weighted by 0.9 as P(smoke | fire) = 0.9 and those particles
with Fire= false will be weighted by 0.01 as P(smoke | ¬fire) = 0.01. It then re-
samples; each particle is chosen in proportion to its weight. The particles with
Fire= true will be chosen in the ratio 990 ∗ 0.01 : 10 ∗ 0.9. Thus, about 524 par-
ticles will be chosen with Fire= true, and the remainder with Fire= false. The
other variables are sampled, in turn, until Report is observed, and the parti-
cles are resampled. At this stage, the probability of Tampering= true will be the
proportion of the samples with tampering being true.

Note that in particle filtering the particles are not independent, so Hoeffding’s
inequality (page 438) is not directly applicable.

9.7.7 Markov Chain Monte Carlo

The previously described methods went forward through the network (par-
ents were sampled before children), and were not good at passing information
back through the network. The method described in this section can sample
variables in any order.

A stationary distribution (page 419) of a Markov chain (page 418) is a dis-
tribution of its variables that is not changed by the transition function of the
Markov chain. If the Markov chain mixes enough, there is a unique station-
ary distribution, which can be approached by running the Markov chain long
enough. The idea behind Markov chain Monte Carlo (MCMC) methods to
generate samples from a distribution (e.g., the posterior distribution given a
belief network) is to construct a Markov chain with the desired distribution as
its (unique) stationary distribution and then sample from the Markov chain;
these samples will be distributed according to the desired distribution. The
first few samples are typically discarded in a burn-in period, as these samples
may be far from the stationary distribution.

One way to create a Markov chain from a belief network with observations,
is to use Gibbs sampling. The idea is to clamp observed variables to the values
they were observed to have, and sample the other variables. Each variable is
sampled from the distribution of the variable given the current values of the
other variables. Note that each variable only depends on the values of the
variables in its Markov blanket (page 385). The Markov blanket of a variable
X in a belief network contains X’s parents, X’s children, and the other parents
of X’s children; these are all of the variables that appear in factors with X.

Figure 9.35 (page 448) gives pseudocode for Gibbs sampling. The only part
not defined is how to randomly sample from P(X | markov blanket(X)). This
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can be computed by noticing that for each value of X, the probability P(X |
markov blanket(X)) is proportional to the product of the values of the factors in
which X appears projected onto the current value of all of the other variables.

Example 9.47 Consider using particle filtering to compute P(Tampering |
smoke ∧ ¬report) for the belief network of Figure 9.3 (page 390). Figure 9.36
(page 449) shows a sequence of samples, where the underlined value is selected
at each step. Smoke and Report are clamped at true and false, respectively.

Sample s1 is generated at random and the variable Tampering is selected.
Fire and Alarm form the Markov blanket for Tampering, so a random sample for
P(Tampering | fire∧ ¬alarm) is drawn; suppose it is true. This gives sample s2.

Given s2, a random value from P(Fire | tampering ∧ ¬alarm ∧ smoke) is
drawn. Suppose it is true. This gives sample s3. Next a random value from
P(Alarm | tampering∧ fire∧ ¬leaving) is drawn; suppose it is true.

At the end, the estimate of probability of tampering is the proportion of true
cases in the samples after the burn-in period.

Gibbs sampling will approach the correct probabilities as long as there are
no zero probabilities. How quickly it approaches the distribution depends on

1: procedure Gibbs sampling(B, e, Q, n, burn in):
2: Inputs
3: B: belief network
4: e: the evidence; a variable-value assignment to some of the variables
5: Q: query variable
6: n: number of samples to generate
7: burn in: number of samples to discard initially
8: Output
9: posterior distribution on Q

10: Local
11: array sample[var], where sample[var] ∈ domain(var)
12: real array counts[k] for k ∈ domain(Q), initialized to 0
13: initialize sample[X] = e[X] if X observed, otherwise assign randomly
14: repeat burn in times
15: for each non-observed variable X, in any order do
16: sample[X] := a random sample from P(X | markov blanket(X))

17: repeat n times
18: for each non-observed variable X, in any order do
19: sample[X] := a random sample from P(X | markov blanket(X))

20: v := sample[Q]
21: counts[v] := counts[v] + 1
22: return counts/ ∑v counts[v]

Figure 9.35: Gibbs sampling for belief-network inference
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how quickly the probabilities mix (how much of the probability space is ex-
plored), which depends on how extreme the probabilities are. Gibbs sampling
works well when the probabilities are not extreme (very close to 0 or 1).

Example 9.48 As a problematic case for Gibbs sampling, consider a simple
example with three Boolean variables A, B, and C, with A as the parent of B,
and B as the parent of C. Suppose P(a) = 0.5, P(b | a) = 0.99, P(b | ¬a) = 0.01,
P(c | b) = 0.99, and P(c | ¬b) = 0.01. There are no observations and the query
variable is C. The two assignments with all variables having the same value
are equally likely and are much more likely than the other assignments. Gibbs
sampling will quickly get to one of these assignments, and will take a long
time to transition to the other assignments (as it requires some very unlikely
choices). If 0.99 and 0.01 were replaced by numbers closer to 1 and 0, it would
take even longer to converge.

9.8 Social Impact

The global positioning system (GPS) as used on modern smartphones has a
mean accuracy of about 5 meters radius under an open sky [van Diggelen and
Enge, 2015; U.S. Government, 2022]. GPS becomes less accurate in cities, where
buildings cause occlusion and reflection of GPS signals. Smartphones and self-
driving cars use probabilistic localization (page 423), which improves accuracy
by keeping track of the distribution over immediately preceding locations. Us-
ing hidden Markov models (page 420), current sensing information, with error
estimates, is combined with the distribution of the previous position to give a
distribution of the current position. You can tell if your phone does not com-
bine previous estimates with sensing; it re-estimates your position at each time
and the location estimation tends to jump around. For example, suppose you
are walking along the side of a river, as you walk under a bridge the GPS read-
ing becomes inaccurate, and can predict that you jump across the river. Keep-
ing track of the distribution of where you just were and taking into account

Sample Tampering Fire Alarm Smoke Leaving Report
s1 true true false true false false
s2 true true false true false false
s3 true true false true false false
s4 true true true true false false
s5 true true true true true false
s5 false true true true true false
. . .
s10000 false true true true true false

Figure 9.36: Gibbs sampling for P(tampering | smoke∧ ¬report)
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the accuracy of the signal can be used to give a much more accurate estimate
of location. It is unlikely you jumped across the river. A similar methodol-
ogy is used to guess activity in a smart watch, combining GPS, heart rate, and
movement; the different activities each make predictions, which can be used as
sensing information for a distribution of the activity of the wearer at each time.

For self-driving cars, accurate positioning is important as a single error can
take the vehicle on the wrong route. The most reliable way to do this is to only
travel on well-mapped routes. A mapping vehicle can pre-drive the routes
with all of the sensors (e.g., GPS, lidar, radar, sonar, vision), so the self-driving
car knows what sensor values to expect. The sensing needs to work under
all weather conditions. It also needs to recognize events for which action is
required, such as roadworks or someone running across the road. For a vehicle
to travel on unmapped routes (e.g., on a detour because of an accident ahead),
it needs to rely on more general capabilities. Techniques for positioning can
also work indoors, using vision without GPS, as shown by Viswanathan et al.
[2011] for an intelligent wheelchair.

Robots in a novel environment can simultaneously estimate location and
construct a map (known as simultaneous localization and mapping (SLAM)).
This is filtering (page 422) with a richer representation of a state. The state
now includes the map as well as the location, which makes the state space
enormous. Thrun et al. [2005] overview the use of probability in robotics.

9.9 Review

The following are the main points you should have learned from this chapter:

• Probability is a measure of belief in a proposition.
• The posterior probability is used to update an agent’s beliefs based on

evidence.
• A Bayesian belief network is a representation of conditional indepen-

dence of random variables.
• Exact inference can be carried out efficiently for sparse graphs (with low

treewidth) using recursive conditioning or variable elimination.
• A hidden Markov model or a dynamic belief network can be used for

probabilistic reasoning about sequences, such as changes over time or
words in sentences, with applications such as robot localization and ex-
tracting information from language.

• Stochastic simulation is used for approximate inference.

9.10 References and Further Reading

Introductions to probability from an AI perspective, and belief (Bayesian) net-
works, are by Pearl [1988], Koller and Friedman [2009], Darwiche [2009], and
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[Murphy, 2023]. Halpern [2003] overviews foundations of probability. van de
Meent et al. [2018] overview probabilistic programming (page 397).

Recursive conditioning is due to Darwiche [2001]. Variable elimination
for belief networks, also called bucket elimination, is presented in Zhang and
Poole [1994] and Dechter [1996]. Darwiche [2009] and Dechter [2019] compare
these and other methods. Bodlaender [1993] discusses treewidth. Choi et al.
[2020] overview probabilistic circuits.

For comprehensive reviews of information theory, see Cover and Thomas
[2006], MacKay [2003], and Grünwald [2007].

Brémaud [1999] describes theory and applications of Markov chains. HMMs
are described by Rabiner [1989]. Dynamic Bayesian networks were introduced
by Dean and Kanazawa [1989]. Markov localization and other issues on the re-
lationship of probability and robotics are described by Thrun et al. [2005]. The
use of particle filtering for localization is due to Dellaert et al. [1999].

Shannon and Weaver [1949] pioneered probabilistic models of natural lan-
guage and forecast many future developments. Manning and Schütze [1999]
and Jurafsky and Martin [2023] present probabilistic and statistical methods
for natural language. The topic model of Example 9.38 is based on Google’s
Rephil, described in the supplementary material of Murphy [2023].

For introductions to stochastic simulation, see Rubinstein [1981] and An-
drieu et al. [2003]. Likelihood weighting in belief networks is based on Hen-
rion [1988]. Importance sampling in belief networks is based on Cheng and
Druzdzel [2000], who also consider how to learn the proposal distribution.
There is a collection of articles on particle filtering in Doucet et al. [2001].

The annual Conference on Uncertainty in Artificial Intelligence, and the
general AI conferences, provide up-to-date research results.

9.11 Exercises

Exercise 9.1 Using only the axioms of probability and the definition of condi-
tional independence, prove Proposition 9.2 (page 384).

Exercise 9.2 Consider the belief network of Figure 9.37. This is the “Simple

Influenza Smokes

Bronchitis

Coughing Wheezing

FeverSoreThroat

Figure 9.37: A simple diagnostic belief network
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diagnostic example” in AIPython (aipython.org). For each of the following, first
predict the answer based on your intuition, then run the belief network to check
it. Explain the result you found by carrying out the inference.

(a) The posterior probabilities of which variables change when Smokes is ob-
served to be true? That is, for which X is P(X | Smoke= true) �= P(X).

(b) Starting from the original network, the posterior probabilities of which vari-
ables change when Fever is observed to be true? That is, specify the X where
P(X | Fever= true) �= P(X).

(c) Does the probability of Fever change when Wheezing is observed to be true?
That is, is P(Fever | Wheezing= true) �= P(Fever)? Explain why (in terms of
the domain, in language that could be understood by someone who did not
know about belief networks).

(d) Suppose Wheezing is observed to be true. Does the observing Fever change
the probability of Smokes? That is, is P(Smokes | Wheezing) �= P(Smokes |
Wheezing, Fever)? Explain why (in terms that could be understood by some-
one who did not know about belief networks).

(e) What could be observed so that subsequently observing Wheezing does not
change the probability of SoreThroat. That is, specify a variable or variables
X such that P(SoreThroat | X) = P(SoreThroat | X, Wheezing), or state that
there are none. Explain why.

(f) Suppose Allergies could be another explanation of Sore Throat. Change the
network so that Allergies also affects Sore Throat but is independent of the
other variables in the network. Give reasonable probabilities.

(g) What could be observed so that observing Wheezing changes the probability
of Allergies? Explain why.

(h) What could be observed so that observing Smokes changes the probability of
Allergies? Explain why.

Note that parts (a), (b), and (c) only involve observing a single variable.

Exercise 9.3 Consider the belief network of Figure 9.38 (page 453), which extends
the electrical domain to include an overhead projector. Answer the following
questions about how knowledge of the values of some variables would affect the
probability of another variable.

(a) Can knowledge of the value of Projector plugged in affect the belief in the
value of Sam reading book? Explain.

(b) Can knowledge of Screen lit up affect the belief in Sam reading book? Explain.
(c) Can knowledge of Projector plugged in affect your belief in Sam reading book

given that you have observed a value for Screen lit up? Explain.
(d) Which variables could have their probabilities changed if just Lamp works

was observed?
(e) If just Power in projector was observed, which variables could have their

probabilities changed?

Exercise 9.4 Kahneman [2011, p. 166] gives the following example.
A cab was involved in a hit-and-run accident at night. Two cab companies,

Green and Blue, operate in the city. You are given the following data:

https://doi.org/10.1017/9781009258227.013


9.11. Exercises 453

• 85% of the cabs in the city are Green and 15% are Blue.

• A witness identified the cab as Blue. The court tested the reliability of the
witness in the circumstances that existed on the night of the accident and
concluded that the witness correctly identifies each one of the two colors
80% of the time and fails 20% of the time.

What is the probability that the cab involved in the accident was Blue?

(a) Represent this story as a belief network. Explain all variables and condi-
tional probabilities. What is observed, what is the answer?

(b) Suppose there were three independent witnesses, two of whom claimed the
cab was Blue and one of whom claimed the cab was Green. Show the corre-
sponding belief network. What is the probability the cab was Blue? What if
all three claimed the cab was Blue?

(c) Suppose it was found that the two witnesses who claimed the cab was Blue
were not independent, but there was a 60% chance they colluded. (What
might this mean?) Show the corresponding belief network, and the relevant
probabilities. What is the probability that the cab is Blue (both for the case
where all three witnesses claim that the cab was Blue and the case where the
other witness claimed the cab was Green)?

(d) In a variant of this scenario, Kahneman [2011, p. 167] replaced the first
condition with: “The two companies operate the same number of cabs, but
Green cabs are involved in 85% of the accidents.” How can this new scenario
be represented as a belief network? Your belief network should allow obser-
vations about whether there is an accident as well as the color of the cab.
Show examples of inferences in your network. Make reasonable choices for
anything that is not fully specified. Be explicit about any assumptions you
make.

Exercise 9.5 Represent the same scenario as in Exercise 5.8 (page 225) using a
belief network. Show the network structure. Give all of the initial factors, making

Power_in_building Projector_plugged_in

Power_in_wire

Projector_lamp_on

Power_in_projector

Light_switch_on

Room_light_on

Sam_reading_book

Projector_switch_on

Lamp_works

Screen_lit_up Mirror_workingRay_is_awake

Ray says “screen is dark”

Figure 9.38: Belief network for an overhead projector
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reasonable assumptions about the conditional probabilities (they should follow
the story given in that exercise, but allow some noise). Give a qualitative explana-
tion of why the patient has spots and fever.

Exercise 9.6 In this question, you will build a belief-network representation of
the Deep Space 1 (DS1) spacecraft considered in Exercise 5.10 (page 225). Figure
5.14 (page 226) depicts a part of the actual DS1 engine design.

Consider the following scenario:

• Valves are open or closed.

• A value can be ok, in which case the gas will flow if the valve is open and
not if it is closed; broken, in which case gas never flows; stuck, in which case
gas flows independently of whether the valve is open or closed; or leaking, in
which case gas flowing into the valve leaks out instead of flowing through.

• There are three gas sensors that can detect whether some gas is leaking (but
not which gas); the first gas sensor detects gas from the rightmost valves
(v1, . . . , v4), the second sensor detects gas from the center valves (v5, . . . , v12),
and the third sensor detects gas from the leftmost valves (v13, . . . , v16).

(a) Build a belief-network representation of the valves that feed into engine e1.
Make sure there are appropriate probabilities.

(b) Test your model on some non-trivial examples.

Exercise 9.7 Consider the following belief network:

A B

C D

E F

with Boolean variables (A= true is written as a and A= false as ¬a, and similarly
for the other variable) and the following conditional probabilities:

P(a) = 0.9
P(b) = 0.2

P(c | a, b) = 0.1
P(c | a,¬b) = 0.8
P(c | ¬a, b) = 0.7

P(c | ¬a,¬b) = 0.4

P(d | b) = 0.1
P(d | ¬b) = 0.8

P(e | c) = 0.7
P(e | ¬c) = 0.2

P(f | c) = 0.2
P(f | ¬c) = 0.9.

(a) Compute P(e) using variable elimination (VE). You should first prune irrel-
evant variables. Show the factors that are created for a given elimination
ordering.

(b) Suppose you want to compute P(e | ¬f ) using VE. How much of the previ-
ous computation is reusable? Show the factors that are different from those
in part (a).
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Exercise 9.8 Sam suggested that the recursive conditioning algorithm only needs
to cache answers resulting from forgetting, rather than all answers. Is Sam’s sug-
gestion better (in terms of space or search space reduced) than the given code for
a single query? What about for multiple queries that share a cache? Give evidence
(either theoretical or empirical) for your results.

Exercise 9.9 Explain how to extend VE to allow for more general observations
and queries. In particular, answer the following:

(a) How can the VE algorithm be extended to allow observations that are dis-
junctions of values for a variable (e.g., of the form X = a∨X = b)?

(b) How can the VE algorithm be extended to allow observations that are dis-
junctions of values for different variables (e.g., of the form X = a∨ Y = b)?

(c) How can the VE algorithm be extended to allow for the probability on a set
of variables (e.g., asking for the P(X, Y | e))?

Exercise 9.10 In a nuclear research submarine, a sensor measures the temper-
ature of the reactor core. An alarm is triggered (A = true) if the sensor reading
is abnormally high (S = true), indicating an overheating of the core (C = true).
The alarm and/or the sensor could be defective (S ok = false, A ok = false), which
causes them to malfunction. The alarm system is modeled by the belief network
of Figure 9.39.

(a) What are the initial factors for this network? For each factor, state what it
represents and what variables it is a function of.

(b) Show how VE can be used to compute the probability that the core is over-
heating, given that the alarm does not go off; that is, P(c | ¬a). For each
variable eliminated, show which variable is eliminated, which factor(s) are
removed, and which factor(s) are created, including what variables each fac-
tor is a function of. Explain how the answer is derived from the final factor.

(c) Suppose we add a second, identical sensor to the system and trigger the
alarm when either of the sensors reads a high temperature. The two sen-
sors break and fail independently. Give the corresponding extended belief
network.

Exercise 9.11 This exercise continues Exercise 5.14 (page 228).

(a) Explain what knowledge (about physics and about students) a belief-network
model requires.

C S_ok

S A_ok

A

Figure 9.39: Belief network for a nuclear submarine
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(b) What is the main advantage of using belief networks over using abductive
diagnosis or consistency-based diagnosis in this domain?

(c) What is the main advantage of using abductive diagnosis or consistency-
based diagnosis over using belief networks in this domain?

Exercise 9.12 Extend Example 9.30 (page 420) so that it includes the state of the
animal, which is either sleeping, foraging, or agitated.

If the animal is sleeping at any time, it does not make a noise, does not move,
and at the next time point it is sleeping with probability 0.8 or foraging or agitated
with probability 0.1 each.

If the animal is foraging or agitated, it tends to remain in the same state of
composure (with probability 0.8), move to the other state of composure with prob-
ability 0.1, or go to sleep with probability 0.1.

If the animal is foraging in a corner, it will be detected by the microphone at
that corner with probability 0.5, and if the animal is agitated in a corner, it will
be detected by the microphone at that corner with probability 0.9. If the animal
is foraging in the middle, it will be detected by each of the microphones with
probability 0.2. If it is agitated in the middle, it will be detected by each of the mi-
crophones with probability 0.6. Otherwise, the microphones have a false positive
rate of 0.05.

(a) Represent this as a two-stage dynamic belief network. Draw the network,
give the domains of the variables and the conditional probabilities.

(b) What independence assumptions are embedded in the network?
(c) Implement either variable elimination or particle filtering for this problem.
(d) Does being able to hypothesize the internal state of the agent (whether it is

sleeping, foraging, or agitated) help localization? Explain why.

Exercise 9.13 Suppose Sam built a robot with five sensors and wanted to keep
track of the location of the robot, and built a hidden Markov model (HMM) with
the following structure (which repeats to the right):

...

(a) What probabilities does Sam need to provide? You should label a copy of
the diagram, if that helps explain your answer.

(b) What independence assumptions are made in this model?
(c) Sam discovered that the HMM with five sensors did not work as well as a

version that only used two sensors. Explain why this may have occurred.

Exercise 9.14 Consider the problem of filtering in HMMs (page 426).

(a) Give a formula for the probability of some variable Xj given future and past
observations. You can base this on Equation (9.6) (page 426). This should
involve obtaining a factor from the previous state and a factor from the
next state and combining them to determine the posterior probability of Xk.
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[Hint: Consider how VE, eliminating from the leftmost variable and elim-
inating from the rightmost variable, can be used to compute the posterior
distribution for Xj.]

(b) Computing the probability of all of the variables can be done in time lin-
ear in the number of variables by not recomputing values that were already
computed for other variables. Give an algorithm for this.

(c) Suppose you have computed the probability distribution for each state S1,
. . . , Sk, and then you get an observation for time k+ 1. How can the posterior
probability of each variable be updated in time linear in k? [Hint: You may
need to store more than just the distribution over each Si.]

Exercise 9.15 Which of the following algorithms suffers from underflow (real
numbers that are too small to be represented using double precision floats): rejec-
tion sampling, importance sampling, particle filtering? Explain why. How could
underflow be avoided?

Exercise 9.16

(a) What are the independence assumptions made in the naive Bayes classifier
for the help system of Example 9.36 (page 430).

(b) Are these independence assumptions reasonable? Explain why or why not.
(c) Suppose we have a topic-model network like the one of Figure 9.29 (page 435),

but where all of the topics are parents of all of the words. What are all of the
independencies of this model?

(d) Give an example where the topics would not be independent.

Exercise 9.17 How well does particle filtering work for Example 9.48 (page 449)?
Try to construct an example where Gibbs sampling works much better than par-
ticle filtering. [Hint: Consider unlikely observations after a sequence of variable
assignments.]

https://doi.org/10.1017/9781009258227.013


https://doi.org/10.1017/9781009258227.013


Chapter 10

Learning with Uncertainty

Learning without thought is labor lost; thought without learning is per-
ilous.

– Confucius [500 BCE]

It can scarcely be denied that the supreme goal of all theory is to make the
irreducible basic elements as simple and as few as possible without having
to surrender the adequate representation of a single datum of experience.

– Albert Einstein [1934]

In Chapters 7 and 8, learning was divorced from reasoning. An alternative is
to explicitly use probabilistic reasoning, as in Chapter 9, with data providing
evidence that can be conditioned on. This provides a theoretical basis for much
of machine learning, including regularization and measures of simplicity. This
chapter uses probability for supervised and unsupervised learning, as well as
learning of belief networks.

10.1 Probabilistic Learning

Training examples provide evidence that can be conditioned on. Bayes’ rule
(page 381) specifies how to determine the probability of model m given exam-
ples Es:

P(m | Es) =
P(Es | m) ∗ P(m)

P(Es)
. (10.1)

459
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The likelihood, P(Es | m), is the probability that this model would have pro-
duced this dataset. It is high when the model is a good fit to the data. The prior
probability, P(m), encodes a learning bias and specifies which models are a
priori more likely, and can be used to bias the learning toward simpler models.
The denominator, P(Es), is the partition function, a normalizing constant to
make sure that the probabilities sum to 1.

In Chapter 7, the aim was to fit the data as well as possible, using the max-
imum likelihood model – the model that maximizes P(Es | m) – but then we
had to use seemingly ad hoc regularization (page 302) to avoid overfitting and
better fit to test data. One problem with choosing the maximum likelihood
model is that, if the space of models is rich enough, a model exists that speci-
fies that this particular dataset will be produced, which has P(Es | m) = 1. For
example, a decision tree (page 281) can represent any discrete function, but can
overfit training data.

The model that maximizes P(m | Es) is called the maximum a posteri-
ori probability model, or MAP model. Because the denominator of Equation
(10.1) (page 459) is independent of the model, it may be ignored when choos-
ing the most likely model. Thus, the MAP model is the model that maximizes

P(Es | m) ∗ P(m) . (10.2)

It takes into account both the likelihood (fit to the data) and the prior, which
can be used as a learning bias, such as a preference for simpler models.

10.2 Bayesian Learning

Instead of just choosing the most likely hypothesis, it is typically more useful
to use the posterior probability distribution of hypotheses, in what is called
Bayesian learning.

Suppose Es is the set of training examples and a test example has inputs
X= x (written as x) and target Y. The aim is to compute P(Y | x ∧ Es). This
is the probability distribution of the target variable given the particular inputs
and the examples. The role of a model is to be the assumed generator of the
examples. If M is a set of disjoint and covering models:

P(Y | x∧ Es) = ∑
m∈M

P(Y ∧m | x∧ Es)

= ∑
m∈M

P(Y | m∧ x∧ Es) ∗ P(m | x∧ Es)

= ∑
m∈M

P(Y | m∧ x) ∗ P(m | Es) . (10.3)

The first two equalities follow from the definition of (conditional) probability
(page 378). The last equality relies on two assumptions: the model includes all
the information about the examples that is necessary for a particular prediction,
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P(Y | m∧ x∧Es) = P(Y | m∧ x), and the model does not change depending on
the inputs of the new example, P(m | x ∧ Es) = P(m | Es). Instead of choosing
the best model, Bayesian learning relies on model averaging, averaging over
the predictions of all the models, where each model is weighted by its posterior
probability given the training examples, as in Equation (10.3) (page 460).

P(m | Es) can be computed using Bayes’ rule (Equation (10.1)), in terms of
the prior P(Es), the likelihood P(Es | m), and a normalization term.

A common assumption is that examples Es = {e1, . . . , ek} are independent
and identically distributed (i.i.d.) given model m, which means examples ei
and ej, for i �= j, are independent given m:

P(Es | m) =
k

∏
i=1

P(ei | m) .

The i.i.d. assumption can be represented as the belief network of Figure 10.1. A
standard reasoning technique in such a network is to condition on the observed
ei and to either query an unobserved ej variable, which provides a probabilistic
prediction for unseen examples, or query m, which provides a distribution over
models.

The inference methods of the previous chapter could be used to compute
the posterior probabilities. However, the exact methods presented are only ap-
plicable when m is finite, because they involve enumerating the domains of
the variables. However, m is usually more complicated (often including real-
valued components) than these exact techniques can handle, and approxima-
tion methods are required. For some cases, the inference can be exact using
special-case algorithms.

The simplest case (Section 10.2.1) is to learn probabilities of a single discrete
variable. Bayesian learning can also be used for learning decision trees (Section
10.2.3 (page 471)), learning the structure and probabilities of belief networks
(Section 10.4 (page 481)), and more complicated cases.

10.2.1 Learning Probabilities

The simplest learning task is to learn a single Boolean random variable, Y, with
no input features, as in Section 7.2.2 (page 276). The aim is to learn the posterior

e1 e2 ek

m

...

Figure 10.1: The i.i.d. assumption as a belief network
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distribution of Y conditioned on the training examples.

Example 10.1 Consider the problem of predicting the next toss of a thumbtack
(drawing pin), where the outcomes Tails and Heads are as follows:

Tails Heads

Suppose you tossed a thumbtack a number of times and observed Es, a par-
ticular sequence of n0 instances of Tails and n1 instances of Heads. Assume the
tosses are independent, and that Heads occurs with probability φ. The likeli-
hood is

P(Es | φ) = φn1 ∗ (1− φ)n0 .

This is a maximum when the log-likelihood (page 274)

log P(Es | φ) = n1 ∗ log φ + n0 ∗ log(1− φ)

is a maximum, and the negation of the average log-likelihood, the categorical
log loss (page 273), is a minimum, which occur when φ = n1

n0+n1
.

Note that if n1 = 0, then φ is zero, which would indicate that Heads is
impossible; similarly, n1 = 0 would predict that Tails is impossible, which is an
instance of overfitting (page 297). A MAP model would also take into account
a prior.

Reverend Thomas Bayes [1763] had the insight to treat a probability as a
real-valued random variable. For a Boolean variable, Y, a real-valued variable,
φ, on the interval [0, 1] represents the probability of Y. Thus, by definition of φ,
P(Y= true | φ) = φ and P(Y= false | φ) = 1− φ.

Suppose, initially, an agent considers all values in the interval [0, 1] equally
likely to be the value of φ. This can be modeled with the variable φ having
a uniform distribution over the interval [0, 1]. This is the probability density
function labeled n0 = 0, n1 = 0 in Figure 10.2 (page 463).

The probability distribution of φ is updated by conditioning on observed
examples. Let the examples Es be the particular sequence of observations that
resulted in n1 occurrences of Y= true and n0 occurrences of Y= false. Bayes’
rule and the i.i.d. assumption gives

P(φ | Es) =
P(Es | φ) ∗ P(φ)

P(Es)
∝ φn1 ∗ (1− φ)n0 ∗ P(φ).

The denominator is a normalizing constant to ensure the area under the curve
is 1.
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Example 10.2 Consider the thumbtack of Example 10.1 (page 462) with a
uniform prior.

With a uniform prior and no observations, shown as the n0 = 1, n1 = 2 line
of Figure 10.2, the MAP estimate is undefined – every point is a maximum –
and the expected value (page 383) is 0.5.

When a single heads and no tails is observed, the distribution is a straight
line from point (0, 0) to point (1, 2). The most likely prediction – the MAP
estimate – is φ = 1. The expected value of the resulting distribution is φ = 2/3.

When two heads and one tails are observed, the resulting distribution is the
n0 = 1, n1 = 2 line of Figure 10.2. The mode is at 2/3 and the expected value is
3/5.

Figure 10.2 gives some posterior distributions of the variable φ based on
different sample sizes, given a uniform prior. The cases are (n0 = 1, n1 = 2),
(n0 = 2, n1 = 4), and (n0 = 4, n1 = 8). Each of these peak at the same place,
namely at 2

3 . More training examples make the curve sharper.
When eight heads and four tails are observed, the mode is at 2/3 and the

expected value is 5/14. Notice how the expected value for this case is closer to
the empirical proportion of heads in the training data than when n0 = 1, n1 = 2,
even though the modes are the same empirical proportion.

0.0 0.2 0.4 0.6 0.8 1.0
φ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
(φ
|E

s)

n0 = 0, n1 = 0
n0 = 1, n1 = 2
n0 = 2, n1 = 4
n0 = 4, n1 = 8

Figure 10.2: Beta distribution based on different samples
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The distribution of this example is known as the beta distribution; it is
parameterized by two counts, α0 and α1, and a probability φ. Traditionally,
the αi parameters for the beta distribution are one more than the counts; thus,
αi = ni + 1. The beta distribution is

Betaα0,α1(φ) =
φα1−1 ∗ (1− φ)α0−1

Z

where Z is a normalizing constant that ensures the integral over all values is 1.
Thus, the uniform distribution on [0, 1] is the beta distribution Beta1,1.

The mode – the value with the maximum probability – of the beta distribu-
tion Betaα0,α1 is φ = α0−1

α0+α0−2 .
The expected value of the beta distribution Betaα0,α1 is φ = α0

α0+α0
Thus, the expectation of the beta distribution with a uniform prior gives

Laplace smoothing (page 302). This shows that Laplace smoothing is optimal
for the thought experiment (page 302) where a probability was selected uni-
formly in [0,1], training and test data were generated using that probability,
and evaluated on test data.

The prior does not need to be the uniform distribution. A common prior is
to use a beta distribution for the prior of φ, such as

P(φ) = φc1−1 ∗ (1− φ)c0−1

corresponding to c1 pseudo-examples (page 301) with outcome true, and c0 false
pseudo-examples. In this case, the posterior probability given examples Es that
consists of a particular sequence of n0 false and n1 true examples is

P(φ | Es) ∝ φc1+n1−1 ∗ (1− φ)c0+n0−1.

In this case, the MAP estimate for φ, the probability of true, is

p =
c1 + n1 − 1

c0 + n0 + c1 + n1 − 2

and the expected value is

p =
c1 + n1

c0 + n0 + c1 + n1
.

This prior has the same form as the posterior; both are described in terms
of a ration of counts. A prior that has the same form as a posterior is called a
conjugate prior.

Note that Es is the particular sequence of observations made. If the obser-
vation was just that there were a total of n0 occurrences of Y = false and n1
occurrences of Y = true, you would get a different answer, because you would
have to take into account all the possible sequences that could have given this
count. This is known as the binomial distribution.
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In addition to using the posterior distribution of φ to derive the expected
value, it can be used to answer other questions such as: What is the probability
that the posterior probability, φ, is in the range [a, b]? In other words, derive
P((φ ≥ a ∧ φ ≤ b) | Es). This is the problem that Bayes [1763] solved in his
posthumously published paper. The solution published – although in much
more cumbersome notation because calculus had not been invented when it
was written – was∫ b

a pn ∗ (1− p)m−n∫ 1
0 pn ∗ (1− p)m−n

.

This kind of knowledge is used in poll surveys when it may be reported that
a survey is correct with an error of at most 5%, 19 times out of 20, and in a
probably approximately correct (PAC) (page 438) estimate. It guarantees an
error at most ε at least 1− δ of the time as follows:

• If an agent predicts a+b
2 , the midpoint of the range [a, b], it will have error

less than or equal to ε = b−a
2 , exactly when the hypothesis is in [a, b].

• Let δ = 1− P(φ ≥ a∧ φ ≤ b | Es). Then 1− δ is P(φ ≥ a∧ φ ≤ b | Es), so

• choosing the midpoint will result in an error at most ε in 1− δ of the time.

Hoeffding’s inequality (page 438) gives worst-case results, whereas the Bayesian
estimate gives the expected number. The worst case provides looser bounds
than the expected case.

Categorical Variables

Suppose Y is a categorical variable (page 272) with k possible values. A dis-
tribution over a categorical variable is called a multinomial distribution. The
Dirichlet distribution is the generalization of the beta distribution to cover cat-
egorical variables. The Dirichlet distribution with two sorts of parameters,
the “counts” α1, . . . , αk, and the probability parameters p1, . . . , pk, is

Dirichletα1,...,αk(p1, . . . , pk) =
∏k

j=1 p
αj−1
j

Z
where pi is the probability of the ith outcome (and so 0 ≤ pi ≤ 1) and αi is a
positive real number and Z is a normalizing constant that ensures the integral
over all the probability values is 1. You can think of ai as one more than the
count of the ith outcome, αi = ni + 1. The Dirichlet distribution looks like
Figure 10.2 (page 463) along each dimension (i.e., as each pj varies between 0
and 1).

For the Dirichlet distribution, the expected value outcome i (averaging over
all pj) is

αi

∑j αj
.

https://doi.org/10.1017/9781009258227.014


466 10. Learning with Uncertainty

The reason that the αi parameters are one more than the counts in the defini-
tions of the beta and Dirichlet distributions is to make this formula simple.

Suppose an agent must predict a value for Y with domain {y1, . . . , yk}, and
there are no inputs. The agent starts with a positive pseudocount ci for each
yi. These counts are chosen before the agent has seen any of the data. Suppose
the agent observes training examples with ni data points having Y= yi. The
probability of Y is estimated using the expected value

P(Y= yi) =
ci + ni

∑i′ ci′ + ni′
.

When the dataset is empty (all ni = 0), the ci are used to estimate probabilities.
An agent does not have to start with a uniform prior; it could start with any
prior distribution. If the agent starts with a prior that is a Dirichlet distribution,
its posterior will be a Dirichlet distribution.

Thus, the beta and Dirichlet distributions provide a justification for using
pseudocounts (page 301) for estimating probabilities. A pseudocount of 1 cor-
responds to Laplace smoothing (page 302).

Probabilities from Experts

The use of pseudocounts also gives us a way to combine expert knowledge
and data. Often a single agent does not have good data but may have access to
multiple experts who have varying levels of expertise and who give different
probabilities.

There are a number of problems with obtaining probabilities from experts:

• experts’ reluctance to give an exact probability value that cannot be re-
fined

• representing the uncertainty of a probability estimate
• combining the estimates from multiple experts
• combining expert opinion with actual data.

Rather than expecting experts to give probabilities, the experts can provide
counts. Instead of giving a real number for the probability of A, an expert
gives a pair of numbers as 〈n, m〉 that is interpreted as though the expert had
observed n occurrences of A out of m trials. Essentially, the experts provide not
only a probability, but also an estimate of the size of the dataset on which their
estimate is based.

The counts from different experts can be combined together by adding the
components to give the pseudocounts for the system. You should not necessar-
ily believe an expert’s sample size, as people are often overconfident in their
abilities. Instead, the size can be estimated taking into account the experiences
of the experts. Whereas the ratio between the counts reflects the probability,
different levels of confidence are reflected in the absolute values. Consider dif-
ferent ways to represent the probability 2/3. The pair 〈2, 3〉, with two positive
examples out of three examples, reflects extremely low confidence that would
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quickly be dominated by data or other experts’ estimates. The pair 〈20, 30〉 re-
flects more confidence – a few examples would not change it much, but tens of
examples would. Even hundreds of examples would have little effect on the
prior counts of the pair 〈2000, 3000〉. However, with millions of data points,
even these prior counts would have little impact on the resulting probability
estimate.

10.2.2 Probabilistic Classifiers

A Bayes classifier is a probabilistic model that is used for supervised learning.
A Bayes classifier is based on the idea that the role of a class is to predict the
values of features for members of that class. Examples are grouped in classes
because they have common values for some of the features. The learning agent
learns how the features depend on the class and uses that model to predict the
classification of a new example.

The simplest case is the naive Bayes classifier, which makes the indepen-
dence assumption that the input features are conditionally independent of each
other given the classification. The independence of the naive Bayes classifier is
embodied in a belief network where the features are the nodes, the target fea-
ture (the classification) has no parents, and the target feature is the only parent
of each input feature. This belief network requires the probability distributions
P(Y) for the target feature, or class, Y and P(Xi | Y) for each input feature
Xi. For each example, the prediction is computed by conditioning on observed
values for the input features and querying the classification. Multiple target
variables can be modeled and learned separately.

Example 10.3 Suppose an agent wants to predict the user action given the
data of Figure 7.1 (page 268). For this example, the user action is the classi-
fication. The naive Bayes classifier for this example corresponds to the belief
network of Figure 10.3. The input features form variables that are children of
the classification.

The model of Figure 10.3 corresponds to m in Figure 10.1.

Given an example with inputs X1 = v1, . . . , Xk = vk, Bayes’ rule (page 381) is
used to compute the posterior probability distribution of the example’s classi-

User_action

Author Thread Length Where_read

Figure 10.3: Belief network corresponding to a naive Bayes classifier
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fication, Y:

P(Y | X1 = v1, . . . , Xk = vk)

=
P(X1 = v1, . . . , Xk = vk | Y) ∗ P(Y)

P(X1 = v1, . . . , Xk = vk)

=
P(Y) ∗∏k

i=1 P(Xi = vi | Y)

∑Y P(Y) ∗∏k
i=1 P(Xi = vi | Y)

where the denominator is a normalizing constant to ensure the probabilities
sum to 1.

Unlike many other models of supervised learning, the naive Bayes classi-
fier can handle missing data where not all features are observed; the agent
conditions on the features that are observed, which assumes the data is miss-
ing at random (page 498). Naive Bayes is optimal – it makes no independence
assumptions beyond missing at random – if only a single Xi is observed. As
more of the Xi are observed, the accuracy depends on how independent the Xi
are given Y.

If Y is Boolean and every Xi is observed, naive Bayes is isomorphic to a
logistic regression (page 290) model; see page 400 for a derivation. They have
identical predictions when the logistic regression weight for Xi is the logarithm
of the likelihood ratio, log P(Xi | h)/P(Xi | ¬h). They are typically learned
differently – but don’t need to be – with logistic regression trained to minimize
log loss and naive Bayes trained for the conditional probabilities to be the MAP
model or the expected value, given a prior.

To learn a classifier, the distributions of P(Y) and P(Xi | Y) for each input
feature can be learned from the data. Each conditional probability distribution
P(Xi | Y) may be treated as a separate learning problem for each value of Y, for
example using beta or Dirichlet distributions (page 461).

Example 10.4 Suppose an agent wants to predict the user action given the
data of Figure 7.1 (page 268). For this example, the user action is the classi-
fication. The naive Bayes classifier for this example corresponds to the belief
network of Figure 10.3 (page 467). The training examples are used to deter-
mine the probabilities required for the belief network.

Suppose the agent uses the empirical frequencies as the probabilities for
this example. (Thus, it is not using any pseudocounts.) The maximum likeli-
hood probabilities that can be derived from these data are

P(User action= reads) = 9/18 = 0.5
P(Author= known | User action= reads) = 2/3
P(Author= known | User action= skips) = 2/3
P(Thread= new | User action= reads) = 7/9
P(Thread= new | User action= skips) = 1/3
P(Length= long | User action= reads) = 0
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P(Length= long | User action= skips) = 7/9
P(Where read= home | User action= reads) = 4/9
P(Where read= home | User action= skips) = 4/9 .

Based on these probabilities, the features Author and Where read have no pre-
dictive power because knowing either does not change the probability that the
user will read the article.

If the maximum likelihood probabilities are used, some conditional proba-
bilities may be zero. This means that some features become predictive: know-
ing just one feature value can rule out a category. It is possible that some combi-
nations of observations are impossible, and the classifier will have a divide-by-
zero error if these are observed. See Exercise 10.1 (page 487). This is a problem
not necessarily with using a Bayes classifier, but rather with using empirical
frequencies as probabilities.

The alternative to using the empirical frequencies is to incorporate pseudo-
counts (page 301). Pseudocounts can be engineered to have desirable behavior,
before any data is observed and as more data is acquired.

Example 10.5 Consider how to learn the probabilities for the help system of
Example 9.36 (page 430), where a helping agent infers what help page a user is
interested in based on the words in the user’s query to the help system. Let’s
treat the query as a set of words (page 430).

The learner must learn P(H). It could start with a pseudocount (page 301)
for each hi. Pages that are a priori more likely should have a higher pseudo-
count.

Similarly, the learner needs the probability P(wj | hi), the probability that
word wj will be used given the help page is hi. Because you may want the sys-
tem to work even before it has received any data, the prior for these probabili-
ties should be carefully designed, taking into account the frequency of words in
the language, the words in the help page itself, and other information obtained
by experience with other (help) systems.

Assume the following positive counts, which are observed counts plus suit-
able pseudocounts:

• ci the number of times hi was the correct help page

• s = ∑i ci the total count

• uij the number of times hi was the correct help page and word wj was used
in the query.

From these counts an agent can estimate the required probabilities

P(hi) = ci/s
P(wj | hi) = uij/ci

from which P(H | q), the posterior distribution of help pages conditioned
on the set of words q in a user’s query, can be computed; see Example 10.3
(page 488). It is necessary to use the words not in the query as well as the
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words in the query. For example, if a help page is about printing, the work
“print” may be very likely to be used. The fact that “print” is not in a query is
strong evidence that this is not the appropriate help page.

The system could present the help page(s) with the highest probability
given the query.

When a user claims to have found the appropriate help page, the counts for
that page and the words in the query are updated. Thus, if the user indicates
that hi is the correct page, the counts s and ci are incremented, and for each word
wj used in the query, uij is incremented. This model does not use information
about the wrong page. If the user claims that a page is not the correct page, this
information is not used.

The biggest challenge in building such a help system is not in the learning
but in acquiring useful data. In particular, users may not know whether they
have found the page they were looking for. Thus, users may not know when to
stop and provide the feedback from which the system learns. Some users may
never be satisfied with a page. Indeed, there may not exist a page they are satis-
fied with, but that information never gets fed back to the learner. Alternatively,
some users may indicate they have found the page they were looking for, even
though there may be another page that was more appropriate. In the latter case,
the correct page may end up with its counts so low, it is never discovered. See
Exercise 10.2 (page 487).

Although there are some cases where the naive Bayes classifier does not
produce good results, it is extremely simple, easy to implement, and often
works very well. It is a good method to try for a new problem.

In general, the naive Bayes classifier works well when the independence
assumption is appropriate, that is, when the class is a good predictor of the
other features and the other features are independent given the class. This
may be appropriate for natural kinds, where the classes have evolved because
they are useful in distinguishing the objects that humans want to distinguish.
Natural kinds are often associated with nouns, such as the class of dogs or the
class of chairs.

The naive Bayes classifier can be expanded in a number of ways:

• Some input features could be parents of the classification and some be
children. The probability of the classification given its parents could be
represented as a decision tree or a squashed linear function or a neural
network.

• The children of the classification do not have to be modeled as indepen-
dent. In a tree-augmented naive Bayes (TAN) network, the children of
the class variable are allowed to have zero or one other parents as long
as the resulting graph is acyclic. This allows for a simple model that
accounts for interdependencies among the children, while retaining effi-
cient inference, as the tree structured in the children has a small treewidth
(page 417).
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• Structure can be incorporated into the class variable. A latent tree model
decomposes the class variable into a number of latent variables that are
connected together in a tree structure. Each observed variable is a child
of one of the latent variables. The latent variables allow a model of the
dependence between the observed variables.

10.2.3 Probabilistic Learning of Decision Trees

The previous examples did not need the prior on the structure of models, as all
the models were equally complex. However, learning decision trees (page 281)
requires a bias, typically in favor of smaller decision trees. The prior probability
provides this bias.

If there are no examples with the same values for the input features but
different values for the target feature, there are always multiple decision trees
that fit the data perfectly. For every assignment of values that did not appear
in the training set, there are decision trees that perfectly fit the training set,
and make opposite predictions on the unseen examples. See the no-free-lunch
theorem (page 315). If there is a possibility of noise, none of the trees that
perfectly fit the training set may be the best model.

Example 10.6 Consider the data of Figure 7.1 (page 268), where the learner is
required to predict the user’s actions.

One possible decision tree is the one given on the left of Figure 7.8 (page 282).
Call this decision tree d2; the subscript being the depth. The likelihood of the
data is P(Es | d2) = 1. That is, d2 accurately fits the data.

Another possible decision tree is the one with no internal nodes, and a sin-
gle leaf that predicts reads with probability 1

2 . This is the most likely tree with
no internal nodes, given the data. Call this decision tree d0. The likelihood of
the data given this model is

P(Es | d0) =

(
1
2

)9
∗
(

1
2

)9
≈ 1.5 ∗ 10−6.

Another possible decision tree is one on the right of Figure 7.8 (page 282),
with one split on Length and with probabilities on the leaves given by P(reads |
Length= long) = 0 and P(reads | Length= short) = 9

11 . Note that 9
11 is the

empirical frequency of reads among the training set with Length= short. Call
this decision tree d1a. The likelihood of the data given this model is

P(Es | d1a) = 17 ∗
(

9
11

)9
∗
(

2
11

)2
≈ 0.0543.

These are just three of the possible decision trees. Which is best depends on
the prior on trees. The likelihood of the data is multiplied by the prior proba-
bility of the decision trees to determine the posterior probability of the decision
tree.
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10.2.4 Description Length

To find a most likely model m given examples Es – a model that maximizes
P(m | Es) – you can apply Bayes’ rule, ignore the denominator (which doesn’t
depend on m), and so maximize P(Es | m) ∗P(m); see formula (10.2) (page 460).
Taking the negative of the logarithm (base 2), means you can minimize

− log2 P(Es | m)− log2 P(m).

This can be interpreted in terms of information theory (page 275). The term
− log2 P(Es | m) is the number of bits it takes to describe the data given the
model m. The term − log2 P(m) is the number of bits it takes to describe the
model. A model that minimizes this sum is a minimum description length
(MDL) model. The MDL principle is to choose the model that minimizes the
number of bits it takes to describe both the model and the data given the model.

One way to think about the MDL principle is that the aim is to communicate
the data as succinctly as possible. To communicate the data, first communicate
the model, then communicate the data in terms of the model. The number of
bits it takes to communicate the data using a model is the number of bits it takes
to communicate the model plus the number of bits it takes to communicate the
data in terms of the model.

As the logarithm function is monotonically increasing, the MAP model
is the same as the MDL model. Choosing a model with the highest poste-
rior probability is the same as choosing a model with a minimum description
length.

The description length provides common units for probabilities and model
complexity; they can both be described in terms of bits.

Example 10.7 In Example 10.6 (page 471), the definition of the priors on de-
cision trees was left unspecified. The notion of a description length provides a
basis for assigning priors to decision trees.

One code for a tree for a Boolean output with Boolean input features might
be as follows. A decision tree is either 0 followed by a fixed-length probability,
or 1 followed by a bit string representing a condition (an input feature) fol-
lowed by the tree when the condition is false followed by the tree for when the
condition is true. The condition might take �log2 m�, where m is the number
of input features. The probability could either be a fixed-length bit string, or
depend on the data (see below). See Exercise 10.8 (page 489).

It is often useful to approximate the description length of the model. One
way to approximate the description length is to consider just representing the
probabilistic parameters of the model. Let |t| be the number of probabilistic
parameters of the model t. For a decision tree with probabilities at the leaves,
|t| is the number of leaves. For a linear function or a neural network, |t| is the
number of numerical parameters.

Suppose |Es| is the number of training examples. There are at most |Es|+ 1
different probabilities the model needs to distinguish, because that probability
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is derived from the counts, and there can be from 0 to |Es| examples with a
particular value true in the dataset. It takes log2(|Es|+ 1) ≈ log2(|Es|) bits to
distinguish these probabilities. Thus, the problem of finding the MDL model
can be approximated by minimizing

− log2 P(Es | t) + |t| ∗ log2(|Es|).

This value is the Bayesian information criteria (BIC) score.

10.3 Unsupervised Learning

This chapter has so far considered supervised learning, where target features
are observed in the training data. In unsupervised learning, the target features
are not given in the training examples.

One general method for unsupervised learning is clustering, which parti-
tions the examples into clusters. Each cluster predicts feature values for the
examples in the cluster. The best clustering is the one that minimizes the pre-
diction error, such as squared error or log loss.

Often the term class is used as a semantically meaningful term, but while
you might want the clusters to be semantically meaningful, they are not al-
ways.

Example 10.8 A diagnostic assistant may want to group treatments into
groups that predict the desirable and undesirable effects of the treatment. The
assistant may not want to give a patient a drug because similar drugs may have
had disastrous effects on similar patients.

A tutoring agent may want to cluster students’ learning behavior so that
strategies that work for one member of a cluster may work for other members.

In hard clustering, each example is placed definitively in a cluster. The
cluster is then used to predict the feature values of the example. The alternative
to hard clustering is soft clustering, in which each example has a probability
distribution over clusters. The prediction of the values for the features of an
example is the weighted average of the predictions of the clusters the example
is in, weighted by the probability of the example being in the cluster. Soft
clustering is described in Section 10.3.2 (page 478).

10.3.1 k-Means

The k-means algorithm is used for hard clustering. The training examples, Es,
and the number of clusters, k, are given as input. It requires the value of each
feature to be a (real) number, so that differences in values make sense.

The algorithm constructs k clusters, a prediction of a value for each feature
for each cluster, and an assignment of examples to clusters.
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Suppose the input features, X1, . . . , Xn, are observed for each example. Let
Xj(e) be the value of input feature Xj for example e. Associate a cluster with
each integer c ∈ {1, . . . , k}.

The k-means algorithm constructs

• a function cluster : Es → {1, . . . , k} that maps each example to a cluster
(if cluster(e) = c, example e is said to be in cluster c)

• a function prediction(j, c) that returns the predicted value of each element
of cluster c on feature Xj.

Example e is thus predicted to have value prediction(j, cluster(e)) for feature Xj.
The aim is to find the functions cluster and prediction that minimize the sum

of squared loss (page 270):

∑
e∈Es

n

∑
j=1

(
prediction(j, cluster(e))−Xj(e)

)2 .

To minimize the squared loss, the prediction of a cluster should be the mean
of the prediction of the examples in the cluster; see Figure 7.5 (page 277). Find-
ing an optimal clustering is NP-hard. When there are only a few examples, it is
possible to enumerate the assignments of examples to clusters. For more than
a few examples, there are too many partitions of the examples into k clusters
for exhaustive search to be feasible.

The k-means algorithm iteratively improves the squared loss. Initially, it
randomly assigns the examples to clusters. Then it carries out the following
two steps:

• For each cluster c and feature Xj, make prediction(j, c) be the mean value
of Xj(e) for each example e in cluster c:

∑
e:cluster(e)=c

Xj(e)

|{e : cluster(e) = c}|
where the denominator is the number of examples in cluster c.

• Reassign each example to a cluster: assign each example e to a cluster c
that minimizes

n

∑
j=1

(
prediction(j, c)−Xj(e)

)2 .

These two steps are repeated until the second step does not change the assign-
ment of any example.

An algorithm that implements k-means is shown in Figure 10.4 (page 475).
It constructs sufficient statistics to compute the mean of each cluster for each
feature, namely
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• cc[c] is the number of examples in cluster c
• fs[j, c] is the sum of the value for Xj(e) for examples in cluster c.

These are sufficient statistics because they contain all of the information from
the data necessary to compute cluster(e) and prediction(j, c). The current values
of fs and cc are used to determine the next values (in fs new and cc new).

The random initialization could be assigning each example to a cluster at
random, selecting k points at random to be representative of the clusters, or
assigning some, but not all, of the examples to construct the initial sufficient
statistics. The latter two methods may be more useful if the dataset is large, as
they avoid a pass through the whole dataset for initialization.

An assignment of examples to clusters is stable if an iteration of k-means
does not change the assignment. Stability requires that arg min in the definition

1: procedure k-means(Xs, Es, k)
2: Inputs
3: Xs set of features, X = {X1, . . . , Xn}
4: Es set of training examples
5: k number of clusters
6: Output
7: cluster: function from examples to clusters
8: predicion: function from feature and cluster to a value for that feature
9: Local

10: integer cc[c], cc new[c] � old and new cluster count for cluster c
11: real fs[j, c], fs new[j, c] � sum of feature Xj for cluster c
12: Boolean stable
13: Initialize fs and cc randomly based on data
14: define prediction(j, c) = fs[j, c]/cc[c] � estimate of X̂j(c)
15: define cluster(e) = arg minc ∑n

j=1
(
prediction(j, c)−Xj(e)

)2

16: repeat
17: fs new and cc new initialized to be all zero
18: for each example e ∈ Es do
19: c := cluster(e)
20: cc new[c]+ = 1
21: for each feature Xj ∈ Xs do
22: fs new[j, c]+ = Xj(e)

23: stable := (fs new = fs) and (cc new = cc)
24: fs := fs new
25: cc := cc new
26: until stable
27: return cluster, prediction

Figure 10.4: k-Means for unsupervised learning
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of cluster gives a consistent value for each example in cases where more than
one cluster is minimal. This algorithm has reached a stable assignment when
each example is assigned to the same cluster in one iteration as in the previous
iteration. When this happens, fs and cluster count do not change, and so the
Boolean variable stable becomes true.

This algorithm will eventually converge to a stable local minimum. This
is easy to see because the sum-of-squares error keeps reducing and there are
only a finite number of reassignments. This algorithm often converges in a few
iterations.

Example 10.9 Suppose an agent has observed the 〈X, Y〉 pairs

〈0.7, 5.1〉, 〈1.5, 6.1〉, 〈2.1, 4.5〉, 〈2.4, 5.5〉, 〈3.1, 4.4〉, 〈3.5, 5.1〉, 〈4.5, 1.5〉,
〈5.2, 0.7〉, 〈5.3, 1.8〉, 〈6.2, 1.7〉, 〈6.7, 2.5〉, 〈8.5, 9.2〉, 〈9.1, 9.7〉, 〈9.5, 8.5〉.

These data points are plotted in Figure 10.5(a). The agent wants to cluster the
data points into two clusters (k = 2).

In Figure 10.5(b), the points are randomly assigned into the clusters; one
cluster is depicted as + and the other as ∗. The mean of the points marked
with + is 〈4.6, 3.65〉, shown with ⊕. The mean of the points marked with ∗ is
〈5.2, 6.15〉, shown with �.

In Figure 10.5(c), the points are reassigned according to the closer of the
two means. After this reassignment, the mean of the points marked with + is
then 〈3.96, 3.27〉. The mean of the points marked with ∗ is 〈7.15, 8.34〉.

In Figure 10.5(d), the points are reassigned to the closest mean. This assign-
ment is stable in that no further reassignment will change the assignment of the
examples.

A different initial assignment to the points can give different clustering.
One clustering that arises in this dataset is for the lower points (those with a Y-
value less than 3) to be in one cluster, and for the other points to be in another
cluster.

Running the algorithm with three clusters (k = 3) typically separates the
data into the top-right cluster, the left-center cluster, and the lower cluster.
However, there are other possible stable assignments that could be reached,
such as having the top three points in two different clusters, and the other
points in another cluster.

Some stable assignments may be better, in terms of sum-of-squares error,
than other stable assignments. To find the best assignment, it is often useful
to try multiple starting configurations, using a random restart (page 147) and
selecting a stable assignment with the lowest sum-of-squares error. Note that
any permutation of the labels of a stable assignment is also a stable assignment,
so there are invariably multiple local and global minima.

One problem with the k-means algorithm is that it is sensitive to the relative
scale of the dimensions. For example, if one feature is height in centimeters, an-
other feature is age, and another is a binary ({0, 1}) feature, the different values
need to be scaled so that they can be compared. How they are scaled relative
to each other affects the clusters found. It is common to scale the dimensions
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to between 0 and 1 or with a mean of 0 and a variance of 1, but this assumes
that all dimensions are relevant and independent of each other.

Finding an appropriate number of clusters is a classic problem in trading
off model complexity and fit to data. One solution is to use the Bayesian in-
formation criteria (BIC) score (page 473), similar to its use in decision trees
where the number of clusters is used instead of the number of leaves. While it
is possible to construct k + 1 clusters from k clusters, the optimal division into
three clusters, for example, may be quite different from the optimal division
into two clusters.
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Figure 10.5: A trace of the k-means algorithm for k = 2 for Example 10.9
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10.3.2 Expectation Maximization for Soft Clustering

A hidden variable or latent variable is a probabilistic variable that is not ob-
served in a dataset. A Bayes classifier can be the basis for unsupervised learn-
ing by making the class a hidden variable.

The expectation maximization (EM) algorithm can be used to learn proba-
bilistic models with hidden variables. Combined with a naive Bayes classifier
(page 467), it does soft clustering, similar to the k-means algorithm, but where
examples are probabilistically in clusters.

As in the k-means algorithm, the training examples and the number of clus-
ters, k, are given as input.

Given the data, a naive Bayes model is constructed where there is a vari-
able for each feature in the data and a hidden variable for the class. The class
variable is the only parent of the other features. This is shown in Figure 10.6.
The class variable has domain {1, 2, . . . , k}, where k is the number of classes.
The probabilities needed for this model are the probability of the class C and
the probability of each feature given C. The aim of the EM algorithm is to learn
probabilities that best fit the data.

The EM algorithm conceptually augments the data with a class feature, C,
and a count column. Each original example gets mapped into k augmented
examples, one for each class. The counts for these examples are assigned so
that they sum to 1.

For four features and three classes, the example 〈X1 = t, X2 = f , X3 = t, X4 = t〉
is mapped into the three tuples, shown in the table on the left of Figure 10.7
(page 479). EM works by iteratively determining the count from the model,
and the model from the count.

The EM algorithm repeats the following two steps:

• E step. Update the augmented counts based on the probability distri-
bution. For each example 〈X1 = v1, . . . , Xn = vn〉 in the original data, the
count associated with 〈X1 = v1, . . . , Xn = vn, C= c〉 in the augmented data
is updated to

P(C= c | X1 = v1, . . . , Xn = vn).

Data Model � Probabilities
X1 X2 X3 X4
t f t t
f t t f
f f t t

· · ·

C

X1 X2 X3 X4

P(C)
P(X1 | C)
P(X2 | C)
P(X3 | C)
P(X4 | C)

Figure 10.6: EM algorithm: Bayes classifier with hidden class
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This step involves probabilistic inference. If multiple examples have the
same values for the input features, they can be treated together, with the
probabilities multiplied by the number of examples. This is an expecta-
tion step because it computes the expected values.

• M step. Infer the probabilities for the model from the augmented data.
Because the augmented data has values associated with all the variables,
this is the same problem as learning probabilities from data in a naive
Bayes classifier (page 467). This is a maximization step because it com-
putes the maximum likelihood estimate or the maximum a posteriori
probability (MAP) (page 460) estimate of the probability.

The EM algorithm starts with random probabilities or random counts. EM
will converge to a local maximum of the likelihood of the data.

This algorithm returns a probabilistic model, which is used to classify an
existing or new example. An example is classified using

P(C= c | X1 = v1, . . . , Xn = vn)

=
P(C= c) ∗∏n

i=1 P(Xi = vi | C= c)
∑c′ P(C= c′) ∗∏n

i=1 P(Xi = vi | C= c′)
.

The algorithm does not need to store the augmented data, but can maintain
a set of sufficient statistics, which is enough information to compute the re-
quired probabilities. Assuming categorical features, sufficient statistics for this
algorithm are

• cc, the class count, a k-valued array such that cc[c] is the sum of the counts
of the examples in the augmented data with class= c

• fc, the feature count, a three-dimensional array; for i from 1 to n, for each
value v in domain(Xi), and for each class c, fc[i, v, c] is the sum of the counts
of the augmented examples t with Xi(t) = v and class(t) = c.

In each iteration, it sweeps through the data once to compute the sufficient
statistics. The sufficient statistics from the previous iteration are used to infer
the new sufficient statistics for the next iteration.

X1 X2 X3 X4 C Count
...

...
...

...
...

...
t f t t 1 0.4
t f t t 2 0.1
t f t t 3 0.5
...

...
...

...
...

...

E-step
←−

M-step
−→

P(C)
P(X1 | C)
P(X2 | C)
P(X3 | C)
P(X4 | C)

Figure 10.7: EM algorithm for unsupervised learning
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The probabilities required of the model can be computed from cc and fc:

P(C= c) =
cc[c]
|Es|

where |Es| is the number of examples in the original dataset (which is the same
as the sum of the counts in the augmented dataset).

P(Xi = v | C= c) =
fc[i, v, c]

cc[c]
.

The algorithm of Figure 10.8 computes the sufficient statistics. Evaluat-
ing P(C= c | X1 = v1, . . . , Xn = vn) in line 17 relies on the counts in cc and fc.
This algorithm has glossed over how to initialize the counts. One way is for
P(C | X1 = v1, . . . , Xn = vn) to return a random distribution for the first itera-
tion, so the counts come from the data. Alternatively, the counts can be as-
signed randomly before seeing any data. See Exercise 10.7 (page 488).

1: procedure EM(Xs, Es, k)
2: Inputs
3: Xs set of features, Xs = {X1, . . . , Xn}
4: Es set of training examples
5: k number of classes
6: Output
7: sufficient statistics for probabilistic model on X
8: Local
9: real cc[c], cc new[c] # old and new class count

10: real fc[i, v, c], fc new[i, v, c] # old and new feature count
11: real dc # class probability for current example and class
12: Boolean stable
13: repeat
14: cc new[c] and fc new[i, v, c] initialized to be all zero
15: for each example 〈v1, . . . , vn〉 ∈ Es do
16: for each c ∈ [1, k] do
17: dc := P(C= c | X1 = v1, . . . , Xn = vn)
18: cc new[c] := cc new[c] + dc
19: for each i ∈ [1, n] do
20: fc new[i, vi, c] := fc new[i, vi, c] + dc
21: stable := (cc ≈ cc new) and (fc ≈ fc new)
22: cc := cc new
23: fc := fc new
24: until stable
25: return cc,fc

Figure 10.8: EM for unsupervised learning
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The algorithm will eventually converge when cc and fc do not change sig-
nificantly in an iteration. The threshold for the approximately equal in line 21
can be tuned to trade off learning time and accuracy. An alternative is to run
the algorithms for a fixed number of iterations.

Example 10.10 Consider Figure 10.7 (page 479).
When example 〈x1,¬x2, x3, x4〉 is encountered in the dataset, the algorithm

computes

P(C= c | x1 ∧ ¬x2 ∧ x3 ∧ x4)

∝ P(X1 = 1 | C= c) ∗ P(X2 = 0 | C= c) ∗ P(X3 = 1 | C= c)
∗ P(X4 = 1 | C= c) ∗ P(C= c)

=
fc[1, 1, c]

cc[c]
∗ fc[2, 0, c]

cc[c]
∗ fc[3, 1, c]

cc[c]
∗ fc[4, 1, c]

cc[c]
∗ cc[c]
|Es|

∝
fc[1, 1, c] ∗ fc[2, 0, c] ∗ fc[3, 1, c] ∗ fc[4, 1, c]

cc[c]3

for each class c and normalizes the results. Suppose the value computed for
class 1 is 0.4, class 2 is 0.1, and class 3 is 0.5 (as in the augmented data in Figure
10.7). Then cc new[1] is incremented by 0.4, cc new[2] is incremented by 0.1,
etc. Values fc new[1, 1, 1], fc new[2, 0, 1], etc. are each incremented by 0.4. Next,
fc new[1, 1, 2], fc new[2, 0, 2] are each incremented by 0.1, etc.

Notice the similarity with the k-means algorithm. The E step (probabilisti-
cally) assigns examples to classes, and the M step determines what the classes
predict.

As long as k > 1, EM, like k-means, virtually always has multiple local and
global maxima. In particular, any permutation of the class labels will give the
same probabilities. To try to find a global maximum, multiple restarts can be
tried, and a model with the lowest log-likelihood returned.

10.4 Learning Belief Networks

A belief network (page 385) gives a probability distribution over a set of ran-
dom variables. We cannot always expect an expert to be able to provide an
accurate model; often we want to learn a network from data.

Learning a belief network from data has many variants, depending on how
much prior information is known and how complete the dataset is. The com-
plexity of learning depends on whether all of the variables are known (or need
to be invented), whether the structure is given, and whether all variables are
observed, which can vary by example.

The simplest case occurs when a learning agent is given the structure of
the model and all variables have been observed. The agent must learn the
conditional probabilities, P(Xi | parents(Xi)), for each variable Xi. Learning
the conditional probabilities is an instance of supervised learning (page 262),
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where Xi is the target feature and the parents of Xi are the input features. Any
of the methods of Chapter 7, Chapter 8, or Section 10.1 (page 459) can be used
to learn the conditional probabilities.

10.4.1 Hidden Variables

The next simplest case is where the model is given, but not all variables are
observed. A hidden variable or a latent variable is a variable in a belief net-
work whose value is not observed for any of the examples. That is, there is no
column in the data corresponding to that variable.

Example 10.11 Figure 10.9 shows a typical case. Assume that all the variables
are binary with domain {f , t}. The model contains a hidden variable E that is in
the model but not the dataset. The aim is to learn the parameters of the model
that includes the hidden variable E. There are 10 parameters to learn.

Note that, if E was not part of the model, the algorithm would have to learn
P(A), P(B), P(C | AB), P(D | ABC), which has 14 parameters. The reason for
introducing hidden variables is, paradoxically, to make the model simpler and,
therefore, less prone to overfitting.

The expectation maximization (EM) algorithm for learning belief networks
with hidden variables is essentially the same as the EM algorithm for cluster-
ing (page 478). The E step, depicted in Figure 10.10 (page 483), involves prob-
abilistic inference for each example to infer the probability distribution of the
hidden variable(s) given the observed variables for that example. The M step
of inferring the probabilities of the model from the augmented data is the same
as in the fully observable case discussed in the previous section, but, in the
augmented data, the counts are not necessarily integers.

10.4.2 Missing Data

Data can be incomplete in ways other than having an unobserved variable. A
dataset could simply be missing the values of some variables for some of the
examples. When some of the values of the variables are missing, one must be

Model Data � Probabilities

A B

E

C D

A B C D
t f t t
f t t t
t t f t

· · ·

P(A)
P(B)
P(E | A, B)
P(C | E)
P(D | E)

Figure 10.9: Deriving probabilities with a hidden variable
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very careful in using the dataset because the missing data may be correlated
with the phenomenon of interest.

A simple case is when only categorical variables with no parents that are
not themselves queried have missing values. A probability distribution from
which other variables can be queried can be modeled by adding an extra value
“missing” to the domain of the variables with missing values. This can also
be modeled by having a 0/1 indicator variable (page 286) for each value in the
domain of the variable, where all of the indicator variables are 0 if the value is
missing.

Example 10.12 Consider a case where someone volunteers information about
themself. If someone has a sibling, they are likely to volunteer that; if they do
not have a sibling, it is unusual for them to state that. Similarly, if someone
doesn’t have anxiety, they are unlikely to mention anxiety, but might mention
that they are not anxious. There are too many ailments and other conditions
that humans have for them to mention the ones they don’t have. Suppose there
is a model of when someone fears isolation (f ) that depends on whether they
have a sibling (S) and whether they have anxiety (A). A logistic regression
model could be

P(f ) = sigmoid(w0 + w1 ∗ (S= true) + w2 ∗ (S= false)
+ w3 ∗ (A= true) + w4 ∗ (A= false))

where S= true has value 1 when S is reported to be true, and S= false has value
1 when S is reported to be false, and both have value 0 when the value is miss-
ing. The learned bias, w0, is the value used when both S and A are missing.

In general, missing data cannot be ignored, as in the following example.

Example 10.13 Suppose there is a drug that is a (claimed) treatment for a
disease that does not actually affect the disease or its symptoms. All it does
is make sick people sicker. Suppose patients were randomly assigned to the

A B C D E Count
...

...
...

...
...

...
t f t t t 0.71
t f t t f 0.29
f f t t f 4.2
...

...
...

...
...

...
f t t t f 2.3

E-step
←−

M-step
−→

P(A)
P(B)
P(E | A, B)
P(C | E)
P(D | E)

Figure 10.10: EM algorithm for belief networks with hidden variables; E is a hidden
variable. The E-step computes P(E | A, B, C, D) for each example, and the M-step
learns probabilities from complete data
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treatment, but the sickest people dropped out of the study, because they became
too sick to participate. The sick people who took the treatment were sicker and
so would drop out at a faster rate than the sick people who did not take the
treatment. Thus, if the patients with missing data are ignored, it looks like the
treatment works; there are fewer sick people among the people who took the
treatment and remained in the study!

Handling missing data requires more than a probabilistic model that mod-
els correlation. It requires a causal model of how the data is missing; see Section
11.2 (page 497).

10.4.3 Structure Learning

Suppose a learning agent has complete data and no hidden variables, but is
not given the structure of the belief network. This is the setting for structure
learning of belief networks.

There are two main approaches to structure learning:

• The first is to use the definition of a belief network in terms of condi-
tional independence (page 385). Given a total ordering of variables, the
parents of a variable X are defined to be a subset of the predecessors of
X in the total ordering that render the other predecessors independent
of X. Using the definition directly has two main challenges: the first is
to determine the best total ordering; the second is to find a way to mea-
sure independence. It is difficult to determine conditional independence
when there is limited data.

• The second method is to have a score for networks, for example, using
the MAP model (page 460), which takes into account fit to the data and
model complexity. Given such a measure, it is feasible to search for the
structure that minimizes this error.

This section presents the second method, often called a search and score method.
Assume that the data is a set Es of examples, where each example has a

value for each variable. The aim of the search and score method is to choose a
model m that maximizes

P(m | Es) ∝ P(Es | m) ∗ P(m).

The likelihood, P(Es | m), is the product of the probability of each example. Us-
ing the product decomposition, the product of each example given the model
is the product of the probability of each variable given its parents in the model.
Thus

P(Es | m) ∗ P(m) =

(
∏
e∈Es

P(e | m)

)
∗ P(m)

=

(
∏
e∈Es

∏
Xi

Pe
m(Xi | par(Xi, m))

)
∗ P(m)
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where par(Xi, m) denotes the parents of Xi in the model m, and Pe
m(·) denotes

the probability of example e as specified in the model m.
This is maximized when its logarithm is maximized. When taking loga-

rithms, products become sums:

log P(Es | m) + log P(m) =

(
∑

e∈Es
∑
Xi

log Pe
m(Xi | par(Xi, m))

)
+ log P(m).

To make this approach feasible, assume that the prior probability of the model
decomposes into components for each variable. That is, we assume the proba-
bility of the model decomposes into a product of probabilities of local models
for each variable. Let m(Xi) be the local model for variable Xi.

Thus, we want to maximize(
∑

e∈Es
∑
Xi

log Pe
m(Xi | par(Xi, m))

)
+ ∑

Xi

log P(m(Xi))

= ∑
Xi

(
∑

e∈Es
log Pe

m(Xi | par(Xi, m))

)
+ ∑

Xi

log P(m(Xi))

= ∑
Xi

(
∑

e∈Es
log Pe

m(Xi | par(Xi, m)) + log P(m(Xi))

)
.

Each variable could be optimized separately, except for the requirement
that a belief network is acyclic. However, if you had a total ordering of the
variables, there is an independent supervised learning problem to predict the
probability of each variable given the predecessors in the total ordering. To
approximate log P(m(Xi)), the BIC score (page 473) can be used. To find a
good total ordering of the variables, a learning agent could search over total
orderings, using search techniques such as local search (page 146) or branch-
and-bound search (page 105).

10.4.4 General Case of Belief Network Learning

The general case has unknown structure, hidden variables, and missing data;
we may not even know which variables should be part of the model. Two main
problems arise. The first is the problem of missing data discussed earlier. The
second is computational; although there may be a well-defined search space,
it is prohibitively large to try all combinations of variable ordering and hidden
variables. If one only considers hidden variables that simplify the model (as is
reasonable), the search space is finite, but enormous.

One can either select the best model (e.g., the model with the highest pos-
terior probability) or average over all models. Averaging over all models gives
better predictions, but it is difficult to explain to a person who may have to
understand or justify the model.
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10.5 Social Impact

Most modern mail systems use spam filters to filter out unwanted email. A
common form of spam filtering analyzes the content of the message and the
subject to determine the probability that the email should be classified as junk.
What is junk to one person might not be junk to another; determining what is
junk requires feedback from the user. A user can only give a limited amount of
feedback, so data-hungry approaches, like deep learning, trained on the user’s
feedback are not appropriate.

A standard way to implement content-based spam filtering is to use a naive
Bayes classifier (page 467), where the classification is Boolean (spam or not
spam). The features can include words, phrases, capitalization, and punctua-
tion. Because the unnormalized probability is a product and taking logs gives
a sum, the decision can be seen as a sum of weights for each feature that has a
different prediction for spam and non-spam.

The advantage of thinking about this in terms of probability is that it en-
ables learning from user feedback. In particular, having an informed prior,
and using, for example, beta (page 464) or Dirichlet (page 465) distributions,
allows the model to work initially with no feedback, using the priors, and then
to learn from personalized feedback. How quickly the model adapts to new
data is controlled by the prior counts, the sum of which is an expected sample
size. The expected sample size controls how much new experience is weighted
compared to the prior model, and can be tuned for good user experience. One
way to think about this is that it can use data from everyone (in the prior) but
weight personalized data for each user much more.

There is no perfect way to control spam when there is an adversary trying to
thwart the spam filter. The issue of acting with adversaries (and other agents)
is explored more in Chapter 14.

10.6 Review

The main points you should have learned from this chapter are:

• Bayes’ rule provides a way to incorporate prior knowledge into learning
and a way to trade off fit-to-data and model complexity.

• Bayesian learning replaces making a prediction from the best model with
finding a prediction by averaging over all of the models conditioned on
the data.

• EM and k-means are iterative methods for unsupervised learning that
learn the parameters of models with hidden variables (including the case
in which the classification is hidden).

• The probabilities and the structure of belief networks can be learned from
complete data. The probabilities can be derived from counts. The struc-
ture can be learned by searching for the best model given the data.
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• Missing values cannot just be ignored. Why values are missing is impor-
tant to be modeled and often needs to be determined from extra informa-
tion.

• Bayesian techniques can help solve the practical problem of eliminating
spam email.

10.7 References and Further Reading

Bayesian learning is overviewed by Jaynes [2003], MacKay [2003], Howson and
Urbach [2006], and Ghahramani [2015]. See also books on Bayesian statistics
such as Gelman et al. [2020], [McElreath, 2020], or, for more rigor, Gelman et al.
[2013]. Murphy [2022, 2023] provides a comprehensive coverage of the topics
of this chapter.

Bayes classifiers are discussed by Duda et al. [2001] and Langley et al.
[1992]. TAN networks are described by Friedman et al. [1997], who also discuss
how the naive Bayes classifier can be generalized to allow for more appropriate
independence assumptions. Latent tree models are described by Zhang [2004].
Bayesian learning of decision trees is described in Buntine [1992]. Grünwald
[2007] discusses the MDL principle.

The k-means algorithm was invented by 1957 by Lloyd [1982]. Schubert
[2022] discusses how to choose the number of clusters. EM is due to Dempster
et al. [1977]. Unsupervised learning is discussed by Cheeseman et al. [1988].

For an overview of learning belief networks, see Heckerman [1999], Dar-
wiche [2009], and Koller and Friedman [2009]. The Bayesian information crite-
ria is due to Schwarz [1978]. Our definition (page 473) is slightly different; the
definition of Schwarz is justified by a more complex Bayesian argument.

10.8 Exercises

Exercise 10.1 Try to construct an artificial example where a naive Bayes classifier
can give divide-by-zero error in test cases when using empirical frequencies as
probabilities. Specify the network and the (non-empty) training examples. [Hint:
You can do it with two features, say A and B, and a binary classification, say C,
that has domain {0, 1}. Construct a dataset where the empirical probabilities give
P(a|C = 0) = 0 and P(b|C = 1) = 0.] What observation is inconsistent with the
model?

Exercise 10.2 Consider designing a help system based on Example 10.5 (page 469).
Discuss how your implementation can handle the following issues, and if it can-
not, whether it is a major problem.

(a) What should be the initial uij counts? Where might this information be ob-
tained?

(b) What if the most likely page is not the correct page?
(c) What if users cannot find the correct page?
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(d) What if users mistakenly think they have the correct page?
(e) Can some pages never be found?
(f) What should it do with common words that are independent of the help

page?
(g) What about words that affect the meaning, such as “not”?
(h) How should it handle words it has never seen before?
(i) How can new help pages be incorporated?

Exercise 10.3 Consider the help system of Example 10.5 (page 469).

(a) Using the c1 and wij counts in that example, give the probability of P(H | q),
the distribution over help pages given q, the set of words in a user query.
Note that this probability needs to also depend on the words not in q.

(b) How can this be computed in time proportional to the number of words in
q, rather than the size of the vocabulary. [Hint: Consider the probability of
H given no words were in the query – which is not the prior of H – and then
adjust for the words in the query.]

Exercise 10.4 Suppose you have designed a help system based on Example 10.5
(page 469) and much of the underlying system which the help pages are about has
changed. You are now very unsure about which help pages will be requested, but
you may have a good model of which words will be used given the help page.
How can the help system be changed to take this into account? [Hint: You may
need different counts for P(hi) and P(wj | hi).]

Exercise 10.5 Consider the unsupervised data of Figure 10.5 (page 477).

(a) How many different stable assignments of examples to classes does the k-
means algorithm find when k = 2? [Hint: Try running the algorithm on the
data with a number of different starting points, but also think about what
assignments of examples to classes are stable.] Do not count permutations
of the labels as different assignments.

(b) Estimate how many different stable assignments there are when k = 3.
(c) Estimate many different stable assignments there are when k = 4.
(d) Why might someone suggest that three is the natural number of classes in

this example? Give a definition for “natural” number of classes, and use this
data to justify the definition.

Exercise 10.6 Suppose the k-means algorithm is run for an increasing sequence
of values for k, and that it is run for a number of times for each k to find the
assignment with a global minimum error. Is it possible that a number of values of
k exist for which the error plateaus and then has a large improvement (e.g., when
the errors for k = 3, k = 4, and k = 5 are about the same, but the error for k = 6 is
much lower)? If so, give an example. If not, explain why.

Exercise 10.7 To initialize the EM algorithm in Figure 10.8 (page 480) consider
two alternatives:

(a) allow P to return a random distribution the first time through the loop
(b) initialize cc and fc to random values.
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By running the algorithm on some datasets, determine which, if any, of these al-
ternatives is better in terms of log loss (page 276) of the training data, as a function
of the number of loops through the dataset. Does it matter if cc and fc are not
consistent with the semantics (counts that should be equal are not)?

Exercise 10.8 Consider the code for decision trees in Example 10.7 (page 472),
and the Bayesian information criteria (BIC) (page 473) for decision trees. Consider
the three cases: the BIC, the decision tree code with a 32-bit representation for
probabilities, and the decision tree code that uses log2(|Es|) bits to represent a
probability.

(a) For each case, how many extra bits does introducing a split incur?
(b) Which method has the biggest preference for smaller trees?
(c) For each of the three methods, is there a value of γ in the decision tree learner

(Figure 7.9 (page 284)) that corresponds to that method? If so, give it, if not,
why not?
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Chapter 11

Causality

The word cause is not in the vocabulary of standard probability theory.
It is an embarrassing yet inescapable fact that probability theory, the of-
ficial mathematical language of many empirical sciences, does not permit
us to express sentences such as “Mud does not cause rain”; all we can
say are that the two events are mutually correlated, or dependent – mean-
ing that if we find one, we can expect to encounter the other. Scientists
seeking causal explanations for complex phenomenon or rationales for pol-
icy decisions must therefore supplement the language of probability with
a vocabulary for causality, one in which the symbolic representation for
“Mud does not cause rain” is distinct from the symbolic representation
for “Mud is independent of rain”. Oddly, such distinctions have yet to be
incorporated into standard scientific analysis.

– Judea Pearl [2009]

In the example from Pearl (above), mud and rain are correlated, but the re-
lationship between mud and rain is not symmetric. Creating mud (e.g., by
pouring water on dirt) does not make rain. However, if you were to cause
rain (e.g., by seeding clouds), mud will result. There is a causal relationship
between mud and rain: rain causes mud, and mud does not cause rain. This
causal relationship holds even when you ignore the other necessary conditions,
such as the existence of dirt, and the absence of a cover on the dirt to prevent
it getting wet. It also depends on the level of abstraction: arguably, rain causes
dirt to get wet, which in turn makes mud.

It is known that ice-cream consumption and drowning deaths are positively
correlated. But that doesn’t mean that if one wanted to reduce drowning deaths
one should ban ice-cream.

As another example, taking marijuana and taking hard drugs are positively
correlated. This has led to the theory that marijuana is a gateway drug; taking
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marijuana leads to harder drugs. But the correlation doesn’t tell us what hap-
pens when you intervene to force taking marijuana false or true. It is indeed
possible that the use of hard drugs will decrease if you give people marijuana.
You can get indirect evidence from places where marijuana has been legalized,
but you can’t determine the causal relationship just from passive observation,
without making assumptions that go beyond the data.

A causal model (page 218) is a model that predicts the effects of interven-
tions, where an intervention on a variable is the action of setting the variable
to a particular value, in some way other than manipulating other variables in
the model. For example, when a light is connected to a switch, as in Example
5.34 (page 218), intervening to make the light off might involve unscrewing the
bulb or breaking it, if these are not modeled, but would not include flipping
the switch, if the switch position is part of the model.

A causal model is obtained from observational data, interventional data,
and modeling assumptions. Observational data alone is not sufficient to deter-
mine causality; knowing a probability distribution is not enough information
to determine the consequences of actions. Drug manufacturers, for example,
spend billions of dollars on controlled randomized trials in order to determine
causality; namely, the effects of giving someone a drug.

This is not referring to “the (unique) cause” of an effect, but all of the factors
that together lead to the effect. An effect typically has multiple causes. For ex-
ample, to cause mud, you need water, dirt, and for them to actually mix. None
by itself is the cause. The variables in a causal model need not be observable;
most of the challenges arise because some variables cannot be observed.

11.1 Probabilistic Causal Models

A direct cause of variable Y is a variable X such that intervening on X, holding
all other variables constant, can affect Y. For example, if making rain would
affect whether there is mud, with all other variables fixed, then rain is a direct
cause of mud. If making mud does not affect rain, then mud is not a direct
cause of rain.

Assume that there are no causal cycles. Examples of apparent causal cycles,
such as poverty causes sickness and sickness causes poverty, are handled by
considering time – each variable is about an event at some time; sickness at one
time causes poverty at a future time, and poverty at one time causes sickness
at future times.

Suppose you knew the direct causes of a variable and have not made any
observations. The only way to affect the variable is to intervene on that vari-
able or affect one of its direct causes. A variable is not independent of the vari-
ables it eventually causes, but is independent of the other variables given its
direct causes. This is exactly the independence assumption of a belief network
(page 385) when the causes of each variable are before it in the total ordering of
variables; thus, a belief network is an appropriate representation for a causal
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model. All of the reasoning in a belief network followed from that indepen-
dence, and so is applicable to causal models.

A structural causal model defines a causal mechanism for each modeled
variable. A causal mechanism defines a conditional probability for a variable
given its parents, where the probability of the variable when the parents are
set to some values by intervention is the same as it is when the parents are
observed to have those values. For example, P(light on | switch up) is a causal
mechanism if the probability that the light is on is the same when intervening to
make the light switch up as it is when observing it is up. P(switch up | light off )
would not be a causal mechanism if observing the light off results in a differ-
ent belief about the switch than intervening to make the light off. Any of the
representations for conditional probability (page 394) can be used to represent
causal mechanisms. A structural causal model defines a causal network, a be-
lief network where the probability of each variable given its parents is the same
when the parents are observed as when they are intervened on.

The following example is based on Pearl [2009, p. 15]:

Example 11.1 Suppose some grass can be wet because of rain or a sprinkler.
Whether it rains depends on the season. Whether the sprinkler was on also
depends on the season. Wet grass causes it to be shiny and causes my shoes to
get wet. A belief network for this story is given in Figure 11.1(a). Observing the
sprinkler is on (or off) tells us something about the season (e.g., the sprinkler is
more likely to be on during the dry season than the wet season), which in turn
affects our belief in rain.

However, turning the sprinkler on or off does not affect (our belief in) the
season. To model this intervention, replace the mechanism for the sprinkler,

Rain Sprinkler

Wet Grass

Grass Shiny

Season

Shoes Wet

Rain Sprinkler

Wet Grass

Grass Shiny

Season

Shoes Wet

(a) (b)

Figure 11.1: Causal network causes of wet grass (a) and intervening by turning on
the sprinkler (b)
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namely P(Sprinkler | Season), with P(Sprinkler), a deterministic conditional
probability distribution (with probability 1 that the sprinkler is in the position
selected), resulting in the network of Figure 11.1(b). This has the same prob-
abilities for the season and rain as in (a) with no observations, but different
probabilities for the remaining variables, as the probability the sprinkler is on
has changed.

Example 11.2 As discussed at the start of this chapter, taking marijuana and
taking hard drugs are positively correlated. One possible causal relationship is
given in Figure 11.2. A parametrization for this that fits the story below is given
at AIPython (aipython.org). The side-effects may be ill effects or satisfying cu-
riosity, both of which (for the point of this example) may decrease the appetite
for hard drugs. Observing taking marijuana increases the probability of being
drug prone and having side-effects, which in turn can increase the probability
that the person takes hard drugs. This means that taking marijuana and taking
hard drugs would be positively correlated. However, intervening to give some-
one marijuana would only increase the probability of side-effects (providing no
information about whether they are drug prone), which in turn may decrease
the probability that they take hard drugs. Similarly, depriving someone of mar-
ijuana (which would be an intervention making taking marijuana false) would
increase the probability that they take hard drugs. You could debate whether
this is a reasonable model, but with only observational data about the correla-
tion between taking marijuana and taking hard drugs, it is impossible to infer
the effect of intervening on taking marijuana.

11.1.1 Do-notation

The do-notation adds interventions to the language of probability:

P(x | do(z), y)

where x, y, and z are propositions (possibly using complex formulas including
conjunction) is the probability that x is true after doing z and then observing y.

Takes_Marijuana

Side_Effects

Takes_Hard_Drugs

Drug_Prone

Figure 11.2: Possible causal graph for marijuana as a gateway drug
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(Intervening after observing is counterfactual reasoning (page 508) because the
intervention could make the observation no longer true.)

Example 11.3 Consider Example 11.1 (page 493), with the belief network of
Figure 11.1(a) (page 493). The probability that the shoes are wet given the sprin-
kler is (observed to be) on is

P(shoes wet | sprinkler)

which can be answered with standard probabilistic inference, as covered in
Chapter 9. Observing the sprinkler is on can provide information about the
season; Sprinkler and Season have an arc between them in Figure 11.1(a).

The probability that shoes are wet given you turned the sprinkler on

P(shoes wet | do(sprinkler))

can be answered using probabilistic inference in the network of Figure 11.1(b)
conditioned on Sprinkler= true. Intervening on Sprinkler has no effect on Season,
because they are independent in this network.

The probability that the shoes are wet given that you turned the sprinkler
on and then observed the grass was not shiny is given by

P(shoes wet | do(sprinkler), ¬grass shiny)

which can be answered by conditioning on sprinkler and¬grass shiny, and query-
ing Shoes wet in the graph of Figure 11.1(b).

The use of the do-notation allows you to ask questions about the manipu-
lated graphs in terms of the original graph.

11.1.2 D-separation

The definition of a belief network – each variable is independent of the vari-
ables that are not its descendants given its parents – implies independencies
among the variables. The graphical criterion used to determine independence
is called d-separation.

In a belief network, there are three ways two arcs can meet at a node, as
shown in Figure 11.3 (page 496), where an arc involving A and B meets an arc
involving B and C. Assuming that all arrows represent true dependency (the
conditional probabilities do not imply more independencies than the graph):

(a) In a chain (A → B → C), A and C are dependent if B is not observed, and
are independent given B. This is the same independence as the chain in
the opposite direction (A ← B ← C).

(b) In a fork (A ← B → C), A and C are dependent if B is not observed, and
are independent given B. This is the same independence structure as the
chain; the chain and fork cannot be distinguished by observational data.
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(c) In a collider (A → B ← C), A and C are dependent given B or one of its
descendants. A and C are independent if B and none of its descendants
are observed.

Consider a path p between two nodes in a directed acyclic graph, where
the path can follow arcs in either direction. Recall that a path (page 84) is a
sequence of nodes where adjacent nodes in the sequence are connected by an
arc. A set of nodes Z blocks path p if and only if

• p contains a chain (A → B → C or A ← B ← C) or a fork (A ← B → C)
such that B is in Z, or

• p contains a collider (A → B ← C) such that B is not in Z and no descen-
dant of B is in Z.

Nodes X and Y are d-separated by nodes Z if Z blocks every path from X
to Y.

Example 11.4 Consider the belief network of Figure 11.4. There are two paths
between X and Y, both of which must be blocked for X and Y to be d-separated.

• X and Y are not d-separated by {} because the top path is not blocked.

• X and Y are d-separated by {K} because both paths are blocked

A

B

C

B

A C

A C

B

(a) chain (b) fork (c) collider

Figure 11.3: Three types of meetings between arcs

X

M

N

L

P

Y

K

J

Figure 11.4: A belief network to demonstrate d-separation
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• X and Y are not d-separated by {K, N} because the bottom path is not
blocked because N is observed.

• X and Y are d-separated by {K, N, P} because both paths are blocked.

These independencies can be determined just from the graphical structure with-
out considering the conditional distributions.

It can be proved that in a belief network, X and Y are independent given
Z for all conditional probability distributions if and only if X and Y are d-
separated by Z.

There can be independencies that hold even when d-separation doesn’t
hold, due to the actual numbers in the conditional distributions. However,
these are unstable in that changing the distribution slightly makes the vari-
ables dependent.

11.2 Missing Data

When data is missing some values for some features, the missing data cannot
be ignored. Example 10.13 (page 483) gives an example where ignoring miss-
ing data leads to wrong conclusions. Making inference from missing data is a
causality problem, as it cannot be solved by observation, but requires a causal
model.

A missingness graph, or m-graph for short, is used to model data where
some values might be missing. Start with a belief network model of the do-
main. In the m-graph, all variables in the original graph exist with the same
parents. For each variable V that could be observed with some values missing,
the m-graph contains two extra variables:

• M V, a Boolean variable that is true when V’s value is missing. The par-
ents of this node can be whatever variables the missingness is assumed
to depend on.

• A variable V∗, with domain dom(V) ∪ {missing}, where missing is a new
value (not in the domain of V). The only parents of V∗ are V and M V.
The conditional probability table contains only 0 and 1, with the 1s being

P(V∗=missing | M V = true) = 1
P(V∗= v | M V = false∧V = v) = 1.

If the value of V is observed to be v, then V∗= v is conditioned on. If the
value for V is missing, V∗=missing is conditioned on. Note that V∗ is always
observed and conditioned on, and V is never conditioned on, in this aug-
mented model. When modeling a domain, the parents of M V specify what
the missingness depends on.
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Example 11.5 Example 10.13 (page 483) gives a problematic case of a drug
that just makes people sicker and so drop out, giving missing data. A graphical
model for it is shown in Figure 11.5. Assume Take drug is Boolean and the do-
mains of Sick before and Sick after are {well, sick, very sick}. Then the domain of
Sick after∗ is {well, sick, very sick, missing}. The variable M Sick after is Boolean.

Suppose there is a dataset from which to learn, with Sick before and Take drug
observed for each example, and some examples have Sick after observed and
some have it missing. To condition the m-graph on an example, all of the vari-
ables except Sick after are conditioned on. Sick after∗ has the value of Sick after
when it is observed, and has value missing otherwise.

You might think that you can learn the missing data using expectation max-
imization (EM) (page 482), with Sick after as a hidden variable. There are, how-
ever, many probability distributions that are consistent with the data. All of the
missing cases could have value well for Sick after, or they all could be very sick;
you can’t tell from the data. EM can converge to any one of these distributions
that are consistent with the data. Thus, although EM may converge, it does not
converge to something that makes predictions that can be trusted.

To determine appropriate model parameters, one should find some data
about the relationship between Sick after and M Sick after. When doing a hu-
man study, the designers of the study need to try to find out why people
dropped out of the study. These cases cannot just be ignored.

A distribution is recoverable or identifiable from missing data if the distri-
bution can be accurately measured from the data, even with parts of the data
missing. Whether a distribution is recoverable is a property of the underlying
graph. A distribution that is not recoverable cannot be reconstructed from ob-
servational data, no matter how large the dataset. The distribution in Example
11.5 is not recoverable.

Data is missing completely at random (MCAR) if V and M V are indepen-
dent. If the data is missing completely at random, the examples with missing
values can be ignored. This is a strong assumption that rarely occurs in prac-
tice, but is often implicitly assumed when missingness is ignored.

A weaker assumption is that a variable Y is missing at random (MAR),
which occurs when Y is independent of M Y given the observed variables Vo.
That is, when P(Y | Vo, M Y) = P(Y | Vo). This occurs when the reason the

Sick_after

Sick_before Take_drug

Sick_after*

M_Sick_after

Figure 11.5: Missingness graph for Example 11.5
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data is missing can be observed. The distribution over Y and the observed
variables is recoverable by P(Y, Vo) = P(Y | Vo, M Y = false)P(Vo). Thus, the
non-missing data is used to estimate P(Y | Vo) and all of the data is used to
estimate P(Vo).

Example 11.6 Suppose you have a dataset of education and income, where
the income values are often missing, and have modeled that income depends
on education. You want to learn the joint probability of Income and Education.

If income is missing completely at random, shown in Figure 11.6(a), the
missing data can be ignored when learning the probabilities:

P(Income, Education) = P(Income∗, Education | M Income = false)

since M Income is independent of Income and Education.
If income is missing at random, shown in Figure 11.6(b), the missing data

cannot be ignored when learning the probabilities, however

P(Income, Education)
= P(Income | Education) ∗ P(Education)
= P(Income | Education∧M Income = false) ∗ P(Education)
= P(Income∗ | Education∧M Income = false) ∗ P(Education).

Both of these can be estimated from the data. The first probability can ignore
the examples with Income missing, and the second cannot.

If Income is missing not at random, as shown in Figure 11.6(c), which is
similar to Figure 11.5 (page 498), the probability P(Income, Education) cannot
be learned from data, because there is no way to determine whether those who
don’t report income are those with very high income or very low income. While
algorithms like EM converge, what they learn is fiction, converging to one of
the many possible hypotheses about how the data could be missing.

The main points to remember are:

Income

Education

Income*

M_Income

Income

Education

Income*

M_Income

Income

Education

Income*

M_Income

(a) (b) (c)

Figure 11.6: Missing data. Education is observed but Income might have missing
values: (a) completely at random, (b) missing at random, (c) missing not at
random
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• You cannot learn from missing data without making modeling assump-
tions.

• Some distributions are not recoverable from missing data, and some are.
It depends on the independence structure of the underlying graph.

• If the distribution is not recoverable, a learning algorithm still may be
able to learn parameters, but the resulting distributions should not be
trusted.

11.3 Inferring Causality

You cannot determine the effect of intervention from observational data. How-
ever, you can infer causality if you are prepared to make assumptions. A prob-
lem with inferring causality is that there can be confounders, other variables
correlated with the variables of interest. A confounder between X and Y is a
variable Z such that P(Y | X, do(Z)) �= P(Y | X) and P(X | do(Z)) �= P(X). A
confounder can account for the correlation between X and Y by being a com-
mon cause of both.

Example 11.7 Consider the effect of a drug on a disease. The effect of the
drug cannot be determined by considering the correlation between taking the
drug and the outcome. The reason is that the drug and the outcome can be
correlated for other reasons than just the effect of the drug. For example, the
severity of a disease and the gender of the patient may be correlated with both,
and so potential confounders. If the drug is only given to the sickest people,
the drug may be positively correlated with a poor outcome, even though the
drug might work very well – it makes each patient less sick than they would
have been if they were not given the drug.

The story of how the variables interact could be represented by the network
of Figure 11.7. In this figure, the variable Drug could represent whether the
patient was given the drug or not. Whether a patient is given a drug depends
on the severity of the disease (variable Severity) and the gender of the person
(variable Gender). You might not be sure whether Gender is a confounder, but
because there is a possibility, it can be included to be safe.

Drug

Gender

Outcome

Severity

Figure 11.7: Measuring the effectiveness of a drug
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From observational data, P(outcome | drug) can be determined, but to deter-
mine whether a drug is useful requires P(outcome | do(drug)), which is poten-
tially different because of the confounders. The important part of the network
of Figure 11.7 (page 500) are the missing nodes and arcs; this assumes that there
are no other confounders.

In a randomized controlled trial one variable (e.g., a drug) is given to pa-
tients at random, selected using a random number generator, independently of
its parents (e.g., independently of how severe the disease is). In a causal net-
work, this is modeled by removing the arcs into that variable, as it is assumed
that the random number generator is not correlated with other variables. This
then allows us to determine the effect of making the variable true with all con-
founders removed.

11.3.1 Backdoor Criterion

If one is prepared to commit to a model, in particular to identify all possible
confounders, it is possible to determine causal knowledge from observational
data. This is appropriate when you identify all confounders and enough of
them are observable.

Example 11.8 In Example 11.7 (page 500), there are three reasons why the
drug and outcome are correlated. One is the direct effect of the drug on the out-
come. The others are due to the confounders of the severity of the disease and
the gender of the patient. The aim to measure the direct effect. If the severity
and gender are the only confounders, you can adjust for them by considering
the effect of the drug on the outcome for each severity and gender separately,
and weighting the outcome appropriately:

P(Outcome | do(Drug))

= ∑
Severity

∑
Gender

P(Severity) ∗ P(Gender)

∗ P(Outcome | do(Drug), Severity, Gender)

= ∑
Severity

∑
Gender

P(Severity) ∗ P(Gender)

∗ P(Outcome | Drug, Severity, Gender).

The last step follows because Drug, Severity, Gender are all the parents of Outcome,
for which, because of the assumption of a causal network, observing and doing
have the same effect. These can all be judged without acting.

This analysis relies on the assumptions that severity and gender are the
only confounders and both are observable.

The previous example is a specific instance of the backdoor criterion. A
set of variables Z satisfies the backdoor criterion for X and Y with respect to
directed acyclic graph G if
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• Z can be observed

• no node in Z is a descendant of X, and

• Z blocks (page 496) every path between X and Y that contains an arrow
into X.

If Z satisfies the backdoor criterion, then

P(Y | do(X)) = ∑
Z

P(Y | X, Z) ∗ P(Z).

The aim is to find an observable set of variables Z which blocks all spurious
paths from X to Y, leaves all directed paths from X to Y, and doesn’t create any
new spurious paths. If Z is observable, the above formula can be estimated
from observational data.

It is often challenging, or even impossible, to find a Z that is observable.
For example, even though “drug prone” in Example 11.2 (page 494) blocks all
paths in Figure 11.2, because it cannot be measured, it is not useful.

11.3.2 Do-calculus

The do-calculus tells us how probability expressions involving the do-operator
can be simplified. It is defined in terms of the following three rules:

• If Z blocks (page 496) all of the paths from W to Y in the graph obtained
after removing all of the arcs into X:

P(Y | do(X), Z, W) = P(Y | do(X), Z).

This rule lets us remove observations from a conditional probability. This
is effectively d-separation in the manipulated graph.

• If Z satisfies the backdoor criterion, for X and Y:

P(Y | do(X), Z) = P(Y | X, Z).

This rule lets us convert an intervention into an observation.

• If there are no directed paths from X to Y, or from Y to X:

P(Y | do(X)) = P(Y).

This only can be used when there are no observations, and tells us that the
only effects of an intervention are on the descendants of the intervened
variable.

These three rules are complete in the sense that all cases where interventions
can be reduced to observations follow from applications of these rules.
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11.3.3 Front-Door Criterion

Sometimes the backdoor criterion is not applicable because the confounding
variables are not observable. One case where it is still possible to derive the
effect of an action is when there is an intermediate, mediating variable or vari-
ables between the intervention variable and the effect, and where the mediat-
ing variable is not affected by the confounding variables, given the intervention
variable. This case is covered in the front-door criterion.

Consider the generic network of Figure 11.8, where the aim is to predict
P(E | do(C)), where the confounders U are unobserved and the intermediate
mediating variable M is independent of U given C. This pattern can be created
by collecting all confounders into U, and all mediating variables into M, and
marginalizing other variables to fit the pattern.

The backdoor criterion is not applicable here, because U is not observed.
When M is observed and is independent of U given C, the do-calculus can be
used to infer the effect on E of intervening on C.

Let’s first introduce M and marginalize it out, as in belief network inference:

P(E | do(C)) = ∑
M

P(E | do(C), M) ∗ P(M | do(C))

= ∑
M

P(E | do(C), do(M)) ∗ P(M | do(C)) (11.1)

= ∑
M

P(E | do(C), do(M)) ∗ P(M | C) (11.2)

= ∑
M

P(E | do(M)) ∗ P(M | C). (11.3)

Step (11.1) follows using the second rule of the do-calculus because C blocks the
backdoor between M and E. Step (11.2) uses the second rule of the do-calculus
as {} satisfies the backdoor criterion between C and M; there are no backdoors
between C and M, given nothing is observed. Step (11.3) uses the third rule of
the do-calculus as there are no causal paths from C to E in the graph obtained
by removing the arcs into M (which is the effect of do(M)).

The intervention on C does not affect P(E | do(M)). This conditional proba-
bility can be computed by introducing C and marginalizing it from the network

C

U

EM

Figure 11.8: A generic network showing the front-door criterion
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of Figure 11.8. The C is not intervened on, so let’s give it a new name, C′:

P(E | do(M)) = ∑
C′

P(E | do(M), C′) ∗ P(C′ | do(M)).

As C′ closes the backdoor between M and E, by the second rule, and there are
no backdoors between M and C:

P(E | do(M)) = ∑
C′

P(E | M, C′) ∗ P(C′ | do(M))

= ∑
C′

P(E | M, C′) ∗ P(C′).

Thus, P(E | do(C)) reduces to observable quantities only:

P(E | do(C)) = ∑
M

P(M | C) ∗∑
C′

P(E | M, C′) ∗ P(C′).

Thus the intervention on M can be inferred from observable data only as long
as C is observable and the mediating variable M is observable and independent
of all confounders given C.

One of the lessons from this is that it is possible to make causal conclusions
from observational data and assumptions on causal mechanisms. Indeed, it is
not possible to make causal conclusions without assumptions on causal mech-
anisms. Even randomized trials require the assumption that the randomizing
mechanism is independent of the effects.

11.3.4 Simpson’s Paradox

Simpson’s paradox occurs when considering subpopulations gives different
conclusions than considering the population as a whole. This is a case where
different conclusions are drawn from the same data, depending on an under-
lying causal model.

Example 11.9 Consider the following (fictional) dataset of 1000 students,
500 of whom were using a particular method for learning a concept (the treat-
ment variable T), and whether they were judged to have understood the con-
cept (evaluation E) for two subpopulations (one with C= true and one with
C= false):

C T E= true E= false Rate
true true 90 10 90/(90 + 10) = 90%
true false 290 110 290/(290 + 110) = 72.5%
false true 110 290 110/(110 + 290) = 27.5%
false false 10 90 10/(10 + 90) = 10%

where the integers are counts, and the rate is the proportion that understood
(E= true). For example, there were 90 students with C= true, T = true, and
E= true, and 10 students with C= true, T = true, and E= false, and so 90% of
the students with C= true, T = true have E= true.
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For both subpopulations, the understanding rate for those who used the
method is better than for those who didn’t use the method. So it looks like the
method works.

Combining the subpopulations gives

T E= true E= false Rate
true 200 300 200/(200 + 300) = 40%
false 300 200 300/(300 + 200) = 60%

where the understanding was better for the students who didn’t use the method.
For making decisions for a student, it isn’t clear whether it is better to de-

termine whether the condition is true of the student, in which case it is better
to use the method, or to ignore the condition, in which case it is better not to
use the method. The data doesn’t tell us which is the correct answer.

In the previous example, the data does not specify what to do. You need to
go beyond the data by building a causal model.

Example 11.10 In Example 11.9, to make a decision on whether to use the
method, consider whether C is a cause for T or T is a cause of C. Note that these
are not the only two cases; more complicated cases are beyond the scope of this
book.

In Figure 11.9(a), C is used to select which treatment was chosen (e.g., C
might be the student’s prior knowledge). In this case, the data for each condi-
tion is appropriate, so based on the data of Example 11.9, it is better to use the
method.

In Figure 11.9(b), C is a consequence of the treatment, such as whether the
students learned a particular technique. In this case, the aggregated data is
appropriate, so based on the data of Example 11.9, it is better not to use the
method.

The best treatment is not only a function of the data, but also of the assumed
causality.

C

T

E

T

E

C

(a) (b)

Figure 11.9: Two of the possible causal models for Simpson’s paradox
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11.4 Instrumental Variables

Sometimes it is difficult to manipulate a variable; for example, someone car-
rying out a medical trial can’t force someone to take a drug, all they can do is
try to convince them, for example by paying them. An instrumental variable
is a variable that can be used as a surrogate for a variable that is difficult to
manipulate. Observable or controllable variable Z is an instrumental variable
for variable X in predicting Y if:

• Z is independent of the possible confounders (page 500) between X and
Y. One way to ensure independence is to randomize Z.

• Y is independent of Z given X. The only way for Z to affect Y is to affect
X.

• There is a strong association between Z and X.

The variable Z can be used to manipulate X, thus giving an artificial experi-
ment. There is no causation between X and Y that holds for all conditional
probabilities in this setup, so the do-calculus cannot be used to infer causation.
However, based on the actual probabilities, some bounds can be inferred, as in
the following example.

Example 11.11 Suppose you wanted to know the effect of a drug on a disease,
that is, you want to compute P(Disease | do(Drug)), how likely is the disease if
someone takes the drug versus not taking the drug. You create a randomized
experiment where some people are assigned the drug and some are assigned a
placebo. However, some people might not take the pill prescribed for them.

Figure 11.10 shows a model of the relationship between being assigned a
drug and taking a drug, and the effect on a disease. You don’t know what the
possible confounders are, and so can’t measure them. The participants were
assigned the drug randomly and so that is independent of the confounders. The
participants did not know whether they were assigned the drug or a placebo, so
it is reasonable to assume that assignment is also independent of the outcome
given the drug.

The do-calculus does not help here; the propensity to not take the drug
might be highly correlated with the outcome. The people who would not take

Drug

Confounders

Outcome

Assigned

Figure 11.10: Assigned is an instrumental variable for Drug: an experiment pro-
vides P(Outcome | do(Assigned)); the aim is to estimate P(Outcome | do(Drug))
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the drug might be those who would have a good (or bad) outcome. There is no
method that can produce an answer based only on the graphical model.

Consider the following fictional data:

Assigned Drug Outcome Count
true true good 300
true true bad 50
true false good 25
true false bad 125
false true good 0
false true bad 0
false false good 100
false false bad 400

No one who was not assigned the drug, actually took it, which is reasonable
for a clinical trial for a new drug.

While you may not be able to determine P(Outcome= good | do(Drug= true)),
it is possible to bound the effect by considering what would have happened to
the non-compliers (those assigned the drug who did not take it). The following
analysis ignores regularization, and so is expected to overfit.

At one extreme, none of the non-compliers would have had a good out-
come if they had been forced to take the drug. In this case, 300 of the patients
would have a good outcome. Thus, intervening on the drug would have re-
sulted in 300/500 having a good outcome.

At the other extreme, all of the non-compliers would have had a good out-
come if they had been forced to take the drug. In this case, 450 of the patients
would have a good outcome. Thus, intervening on the drug would result in
450/500 having a good outcome.

Putting the two extremes together gives

0.6 ≤ P(Outcome= good | do(Drug = true)) ≤ 0.9.

Because there was full compliance of those not assigned the drug:

P(Outcome= good | do(Drug = false)) = 0.2.

In this analysis, the outcome of those that were assigned the drug and
didn’t take it was ignored, but the non-compliance cannot be ignored. Just
removing non-compliant people from the sample, resulting in the conclusion
that the outcome was good with probability 3/4 when the drug was taken,
would be equivalent to assuming there are no confounders, which may not be
a reasonable assumption.

It is often useful to consider the effect of the drug as the difference between
(or ratio of) the outcome when the drug was taken and the outcome when the
drug was not taken.

It is also possible to make other assumptions to allow for inference from
instrumental variables. A common assumption for real-valued variables is that
each variable is a linear function of its parents. Solving for the coefficients can
give a unique solution.
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11.5 Counterfactual Reasoning

The preceding analysis was for intervening before observing. The other case
is observing then intervening. When the intervention is different from what
actually happened, this is counterfactual reasoning, which is asking “what if
something else were true?” Here we use a more general notion of counterfac-
tual, where you can ask “what if x were true?” without knowing whether x
were true.

Pearl [2009] created the following example.

Example 11.12 Consider a case of a firing squad, where a captain can give an
order to a number of shooters who can each shoot to kill. One reason for using
a firing squad is that each shooter can think “I wasn’t responsible for killing the
prisoner, because the prisoner would be dead even if I didn’t shoot.”

Suppose the captain has some probability of giving the order. The shooters
each probabilistically obey the order to shoot or the order to not shoot. Assume
they deviate from orders with low probabilities. The prisoner is dead if any of
the shooters shoot.

One counterfactual is “if the second shooter shot, what would have hap-
pened if the second shooter had not shot?” The fact that the second shooter
shot means that the order probably was given, and so the first shooter proba-
bly also shot, so the prisoner would probably be dead. The following analysis
shows how to construct the probability distribution for the variables in the re-
sulting situation.

Another counterfactual query is “if the prisoner died, what would have
happened if the second shooter had not shot?” In a narrow reading, this might
not be a counterfactual, as the second shooter might not have actually shot.
However, this case is also covered below.

Counterfactual reasoning is useful when you need to assign blame. For
example, in a self-driving car that has an accident, it might be useful to ask
what would have happened if it had turned left instead of braking or if it had
used its horn, when it sensed something on the road. If there is nothing it could
have done, perhaps the accident was not its fault. Assigning blame is used in
the law to provide penalties for those who make bad choices (e.g., would a
death have occurred if they did not do some action), in the hope that they and
others will make better decisions in the future.

Suppose you have a causal network (page 493). To model observing O, and
asking “what if a” consists of three steps:

1. Determining what must be true for O to be observed. This is an instance
of abduction (page 214).

2. Intervening to make a true.

3. Querying the resulting model, using the posterior probabilities from the
first step.
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This can be implemented by constructing an appropriate belief network,
from which queries from the counterfactual situation can be made. The con-
struction of the belief network for the counterfactual “what if a”, where a is one
of the values for variable A, is as follows:

• Represent the problem using a causal network, where conditional prob-
abilities are in terms of a deterministic system with stochastic inputs
(page 397), such as a probabilistic logic program (page 397) or a proba-
bilistic program (page 397).

• Create a node A′ with the same domain as A but with no parents (A′ is
called a primed variable below).

• For each descendant D of A in the original model, create a node D′ shar-
ing the same parents and conditional probability as D, apart from any
descendant of A, for which the primed version is used.

• Condition on A′= a and condition on the observations of the initial situ-
ation using unprimed variables.

The primed variables are the variables for the counterfactual scenario. The
non-primed variables are for the original scenario. Variables that are not a
descendant of A have no primed version and are the same in the original and
the counterfactual scenario. This includes all probabilistic variables, because of
the representation for conditional probabilities.

Any of the original variables can be conditioned on to give the initial sit-
uation, and any primed variables can be queried to answer queries about the
counterfactual situation. Any belief network inference algorithm (page 404)
can be used to compute the posterior probabilities.

Example 11.13 Figure 11.11(a) shows a model of a firing squad as in Example
11.12 (page 508). The captain can give an order to two shooters who can shoot
to kill; when one of them shoots, the prisoner dies. Order is true when the

S1 S2

Dead

OrderS1_o

S1_n

S2_o

S2_n

S1 S2

Dead

Order
S1_o

S1_n

S2_o

S2_n

Dead’

S2’

(a) (b)

S1 S2

Dead

Order
S1_o

S1_n
S2_o S2_n

Dead’

S2’

(c)

Order’

S1’

Figure 11.11: Causal network for firing squad example: (a) original; (b) what if
shooter 2 shot (or didn’t shoot); (c) what if the order was given (or not given)
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order is given to shoot. S1 is true when shooter 1 shoots to kill. S1 o is true
when shooter 1 would follow the order to shoot and S1 n is true when shooter
1 would shoot when the order is not to shoot. Thus, shooter 1 shoots when the
order is given and S1 o is true or when the order is not given and S1 n is true:

s1 ↔ order∧ s1 o∨ ¬order∧ s1 n

where order means Order= true, and similarly for other variables. The model
for the second shooter is similar.

Figure 11.11(b) shows the network used when considering the alternative
“what if shooter 2 did shoot?” or “what if shooter 2 did not shoot?” In this case
there is a new variable S2′ that is true when shooter 2 shot in the alternative
scenario. Everything in the alternative scenario is the same as in the initial
scenario, except that the consequences of shooter 2 shooting might be different.
In this case, the variable Dead′ represents the proposition that the prisoner is
dead in the second scenario.

The counterfactual “the second shooter shot; what is the probability that the
prisoner would be dead if the second shooter did not shoot?” can be computed
by querying

P(dead′ | s2∧ ¬s2′)

in the network of Figure 11.11(b).
The counterfactual “the prisoner is dead; what is the probability that the

prisoner would be dead if the second shooter did not shoot?” can be computed
by querying

P(dead′ | dead∧ ¬s2′)

in the network of Figure 11.11(b).
Figure 11.11(c) shows the counterfactual network for “what if the order was

not given”. The counterfactual “shooter 1 didn’t shoot and the prisoner was
dead; what is the probability the prisoner is dead if the order was not given?”
can be answered with the query

P(dead′ | ¬s1∧ dead∧ ¬order′)

in the network of Figure 11.11(c).

11.6 Social Impact

Randomized clinical trials are conducted for each new drug or medical device
to demonstrate safety and efficacy for the European Medicines Agency (EMA)
and the U.S. Food and Drug Administration (USFDA), for example, to approve
it. Moore et al. [2020] estimated the median cost of clinical trials for 101 thera-
peutic drugs approved by USFDA in 2015–17 was US$48 million per approved
drug. The aim of a clinical trial for a drug is to assess the effects of intervening
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to give someone the drug. The effects include both the beneficial and harmful
effects, where the benefits have to outweigh the harms.

The main assumption behind a randomized clinical trial is that the random
assignment of the drug means that there are no confounders. Missing data
(page 497) – when some patients drop out of the trial – makes the naive analysis
of such data problematic. The conductors of the trial need to find out why the
patients dropped out, or to consider the worst case (similar to the analysis of
instrumental variables, page 506).

Randomized controlled trials are a standard mechanism in much of science,
including the social sciences, however they may not be appropriate or possible
in all situations. For example, a randomized trial to gauge the impact of an
intervention in schools might be unethical because, although the study might
provide information that can help future students, some of the students in the
trial are not being provided with the best education available. It is also difficult
to only vary a single condition in a study on students. The tools of causal anal-
ysis and making causal assumptions explicit should enable more cases where
the effect of interventions can be inferred. Explicit assumptions are open to
scrutiny and debate.

One of the promising ways to explain a prediction of an otherwise in-
scrutable method, such as a neural network, is a counterfactual explanation.
Given a prediction, a minimal counterfactual explanation is a minimal change
to the inputs that would result in a different conclusion. For example, if some-
one was denied a loan, it is reasonable to ask for the smallest changes that
would have resulted in the loan being approved. There are generally many
minimal changes that could have resulted in a different conclusion.

11.7 Review

• The do-notation extends the language of conditional probability to in-
clude intervention on some variables and observing other variables.

• A causal network is a belief network where P(X | parents(X)) = P(X |
do(parents(X))) for each variable X – intervening on the parents of a vari-
able has the same effect as observing them.

• D-separation characterizes which conditional independencies follow from
the independencies of a directed graphical model (belief network). The
do-calculus extends d-separation to include interventions.

• The do-calculus can be used to show cases where the effect of interven-
tions can be computed from observational data, including the backdoor
and front-door criteria.

• There are cases, such as in Simpson’s paradox, where the probabilistic
inferences depend on the causal model and not just the data.
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• Counterfactual reasoning can be used to answer “what-if” queries.

• Causal assumptions can be used to go beyond randomized clinical trials,
if the assumptions are accepted.

11.8 References and Further Reading

Pearl and Mackenzie [2018] provide a readable overview of causality and its
historical context. For a more technical description, see Pearl [2009], Spirtes
et al. [2001] and Veitch and D’Amour [2023]. Geffner et al. [2022] overview the
work of Judea Pearl, one of the pioneers of causality in AI, and include many
papers on causality.

Huang and Valtorta [2006] and Shpitser and Pearl [2008] independently
showed that the do-calculus is complete; it completely characterizes when in-
terventions impact probabilities given only the causal structure.

Modeling missing data is discussed by Rubin [1976], Little and Rubin [1987],
Marlin et al. [2011], and Mohan et al. [2013]. Mohan [2022] provides an overview.

11.9 Exercises

Exercise 11.1 Suppose Kim has a camper van (a mobile home) and likes to keep
it at a comfortable temperature and noticed that the energy use depended on the
elevation. Kim knows that the elevation affects the outside temperature. Kim likes
the camper warmer at higher elevation. Note that not all of the variables directly
affect electrical usage.

(a) Show how this can be represented as a causal network, using the variables
Elevation, Electrical Usage, Outside Temperature, and Thermostat Setting.

(b) Give an example where intervening has an effect different from conditioning
for this network.

Exercise 11.2 Exercise 9.2 (page 451) asked to intuitively explore independence
in Figure 9.37. For parts (c), (d), and (e) of Exercise 9.2, express the question in
terms of conditional independence, and use d-separation (page 495) to infer the
answer. Show your working.

Exercise 11.3 Consider the causal network of Figure 11.12 (page 513). For each
part, explain why the independence holds or doesn’t hold, using the definition of
d-separation. The independence asked needs to hold for all probability distribu-
tions (which is what d-separation tells us).

(a) Is J independent of A given {} (i.e., given no observations)?
(b) Is J independent of A given {G} (i.e., given only G is observed)?
(c) Is J independent of A given {F}?
(d) Is J independent of A given {G, F} (i.e., given only G and F are observed)?
(e) Is G independent of J given {}?
(f) Is G independent of J given {I}?
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(g) Is G independent of J given {B}?
(h) Is G independent of J given {B, I}?
(i) What needs to be observed, and what needs to be not observed for G to be

independent of J? Give a complete characterization.

Exercise 11.4 Consider the causal network of Figure 11.12. The following can be
answered intuitively or using the do-calculus. Explain your reasoning:

(a) Does P(I | B) = P(I | do(B))?
(b) Does P(I | G) = P(J | do(G))?
(c) Does P(I | G, B) = P(J | do(G), B)?
(d) Does P(B | I) = P(B | do(I))?

Exercise 11.5 Bickel et al. [1975] report on gender biases for graduate admissions
at UC Berkeley. This example is based on that case, but the numbers are fictional.

There are two departments, which we will call dept#1 and dept#2 (so Dept is
a random variable with values dept#1 and dept#2), which students can apply to.
Assume students apply to one, but not both. Students have a gender (male or fe-
male), and are either admitted or not. Consider the table of the percent of students
in each category of Figure 11.13.

In the semantics of possible worlds, we will treat the students as possible
worlds, with the measure of a set of worlds corresponding to the number of stu-
dents in the set.

A

E

G

B

H

F
D

I

C

J

Figure 11.12: An example causal network

Dept Gender Admitted Percent
dept#1 male true 32
dept#1 male false 18
dept#1 female true 7
dept#1 female false 3
dept#2 male true 5
dept#2 male false 14
dept#2 female true 7
dept#2 female false 14

Figure 11.13: Fictional counts for students in departments
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(a) What is P(Admitted= true | Gender=male)?
What is P(Admitted= true | Gender= female)?
Which gender is more likely to be admitted?

(b) What is P(Admitted= true | Gender=male, Dept= dept#1)?
What is P(Admitted= true | Gender= female, Dept= dept#1)?
Which gender is more likely to be admitted to dept#1?

(c) What is P(Admitted= true | Gender=male, Dept= dept#2)?
What is P(Admitted= true | Gender= female, Dept= dept#2)?
Which gender is more likely to be admitted to dept#2?

(d) This is an instance of Simpson’s paradox. Why is it a paradox? Explain why
it happened in this case.

(e) Does this provide evidence that the university has a bias against women?
See Section 11.3.4 (page 504).

(f) Give another scenario where Simpson’s paradox occurs.

Exercise 11.6 Suppose someone provided the source code for a recursive condi-
tioning (page 409) program that computes conditional probabilities in belief net-
works. Your job is to use it to build a program that also works for interventions,
that is for queries of the form P(Y | do(a1, . . . , ak), b1, . . . , bm). Explain how you
would proceed.

Exercise 11.7 Consider a two-variable causal network with Boolean variables A
and B, where A is a parent of B, and the following conditional probabilities:

P(a) = 0.2
P(b | a) = 0.9
P(b | ¬a) = 0.3.

Consider the counterfactual: “B is observed to be true; what is the probability of B
if A was false?”

Draw the belief network that can be used to answer this question. Give all
(conditional) probabilities. What needs to be conditioned on and what is queried
to answer this counterfactual question? What is the resulting answer? (This can
be done by hand or using any belief network implementation.)

https://doi.org/10.1017/9781009258227.015


Part IV

Planning and Acting with
Uncertainty

How can an agent plan and act, relaxing the assumption that it
knows the effects of its actions and the current state of the world?

https://doi.org/10.1017/9781009258227.016


https://doi.org/10.1017/9781009258227.016


Chapter 12

Planning with Uncertainty

In retrospect... it is interesting to note that the original problem that
started my research is still outstanding – namely the problem of planning
or scheduling dynamically over time, particularly planning dynamically
under uncertainty. If such a problem could be successfully solved it could
eventually through better planning contribute to the well-being and sta-
bility of the world.

– George B. Dantzig (1991)

An agent that is not omniscient cannot just plan a fixed sequence of steps, as
was assumed in Chapter 6. Planning must take into account the fact that an
agent in the real world does not know what will actually happen when it acts,
nor what it will observe in the future. An agent should plan to react to its
environment.

What an agent should do at any time depends on what it will do in the
future. For example, in a medical situation, sometimes tests hurt patients, but
they are useful because they enable future actions. When an agent cannot pre-
cisely predict the effects of its actions, what it will do in the future depends on
what it does now and what it will observe before it acts.

With uncertainty, an agent typically cannot guarantee to satisfy its goals,
and even trying to maximize the probability of achieving a goal may not be
sensible. For example, an agent whose goal is to minimize the probability of
injury in a car accident would not get into a car or walk down a sidewalk or
even go to the ground floor of a building, each of which increases the probabil-
ity of being injured in a car accident, however slightly. An agent that does not
guarantee to satisfy a goal can fail in many ways, some of which may be much
worse than others.

This chapter is about how to take planning, reacting, observing, succeed-
ing, and failing into account simultaneously. As George Dantzig, the inventor

517
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518 12. Planning with Uncertainty

of linear programming, points out in the quote above, planning under uncer-
tainty is essential for an intelligent agent.

An agent’s decision on what to do at any time (see Figure 2.10 (page 68))
depends on:

• The agent’s ability. The agent has to select from the actions available to it.
• What the agent believes and observes. An agent might like to condition its

action on what is true in the world, but it only has access to the world via
its sensors. When an agent has to decide what to do, it only has access
to what it has remembered and what it observes (page 55). Sensing the
world updates an agent’s beliefs. Beliefs and observations are the only
information about the world available to an agent at any time.

• The agent’s preferences. When an agent must reason with uncertainty, it
has to consider not only what is most likely to happen but also what may
happen. Some possible outcomes may have much worse consequences
than others. The simple notion of a goal, considered in Chapter 6, is not
adequate when reasoning under uncertainty because the designer of an
agent has to trade off between different outcomes that may occur. For
example, if an action results in a good outcome most of the time, but
sometimes results in a disastrous outcome, it must be compared with per-
forming an alternative action that results in the good outcome less often
and the disastrous outcome less often and some mediocre outcome most
of the time. Decision theory specifies how to trade off the desirability of
outcomes with the probabilities of those outcomes.

12.1 Preferences and Utility

What an agent decides to do should depend on its preferences. This section
specifies some intuitive properties of preferences and gives some consequences
of those properties. The properties are axioms of rationality. You should con-
sider whether each axiom is reasonable for a rational agent to follow; if you
accept them all as reasonable, you should accept their consequences. If you do
not accept the consequences, you need to give up one or more of the axioms.

12.1.1 Axioms for Rationality

An agent chooses actions based on their outcomes. Outcomes are whatever
the agent has preferences over. If an agent does not prefer any outcome to any
other outcome, it does not matter what the agent does. Initially, let’s consider
outcomes without considering the associated actions. Assume there are only a
finite number of outcomes.

Let’s define a preference relation over outcomes. Suppose o1 and o2 are
outcomes. Outcome o1 is weakly preferred to outcome o2, written o1  o2, if
outcome o1 is at least as desirable as outcome o2.
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We write o1 � o2 to mean the negation of o1  o2, that is, o1 is not weakly
preferred to outcome o2.

Define o1 ∼ o2 to mean o1  o2 and o2  o1. That is, o1 ∼ o2 means outcomes
o1 and o2 are equally preferred. In this case, we say that the agent is indifferent
between o1 and o2.

Define o1 ! o2 to mean o1  o2 and o2 � o1. That is, the agent weakly
prefers outcome o1 to outcome o2, but does not weakly prefer o2 to o1, and is
not indifferent between them. In this case, we say that outcome o1 is strictly
preferred to outcome o2.

Typically, an agent does not know the outcome of its actions. A lottery is
defined to be a finite distribution over outcomes, written

[p1 : o1, p2 : o2, . . . , pk : ok]

where each oi is an outcome and each pi is a non-negative real number such
that ∑i pi = 1. The lottery specifies that outcome oi occurs with probability pi.
In all that follows, assume that outcomes may include lotteries. This includes
lotteries where the outcomes are also lotteries (called lotteries over lotteries).

Axiom 12.1. (Completeness) An agent has preferences between all pairs of outcomes:

o1  o2 or o2  o1.

The rationale for this axiom is that an agent must act; if the actions avail-
able to it have outcomes o1 and o2 then, by acting, it is explicitly or implicitly
preferring one outcome over the other.

Axiom 12.2. (Transitivity) Preferences are transitive:

if o1  o2 and o2 ! o3 then o1 ! o3.

To see why this is reasonable, suppose it is false, in which case o1  o2 and
o2 ! o3 and o3  o1. Because o2 is strictly preferred to o3, the agent should
be prepared to pay some amount to get from o3 to o2. Suppose the agent has
outcome o2; then o1 is at least as good so the agent would just as soon have o1.
o3 is at least as good as o1, so the agent would just as soon have o3 as o1. Once
the agent has o3, it is again prepared to pay to get to o2. It has gone through
a cycle of preferences and paid money to end up where it is. This cycle that
involves paying money to go through it is known as a money pump because,
by going through the loop enough times, the amount of money that an agent
must pay can exceed any finite amount. It seems reasonable to claim that being
prepared to pay money to cycle through a set of outcomes is irrational; hence,
a rational agent should have transitive preferences.

It follows from the transitivity and completeness axioms that transitivity
holds for mixes of ! and  , so that if o1  o2 and o2  o3, then o1  o3 and if
one or both of the preferences in the premise of the transitivity axiom is strict,
then the conclusion is strict. Thus, if o1 ! o2 and o2  o3, then o1 ! o3. See
Exercise 12.1 (page 573).
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Axiom 12.3. (Monotonicity) An agent prefers a larger chance of getting a better out-
come than a smaller chance of getting the better outcome, other things being equal.
That is, if o1 ! o2 and p > q, then

[p : o1, (1− p) : o2] ! [q : o1, (1− q) : o2].

Note that, in this axiom,! between outcomes represents the agent’s prefer-
ence, whereas > between p and q represents the familiar comparison between
numbers.

The following axiom specifies that lotteries over lotteries only depend on
the outcomes and probabilities.

Axiom 12.4. (Decomposability) (“no fun in gambling”) An agent is indifferent be-
tween lotteries that have the same probabilities over the same outcomes, even if one or
both is a lottery over lotteries. For example:

[p : o1,(1− p) : [q : o2, (1− q) : o3]]

∼ [p : o1, (1− p) ∗ q : o2, (1− p) ∗ (1− q) : o3].

Also o1 ∼ [1 : o1, 0 : o2] for any outcomes o1 and o2.

This axiom specifies that it is only the outcomes and their probabilities that
define a lottery. If an agent had a preference for gambling, that would be part
of the outcome space.

These four axioms imply some structure on the preference between out-
comes and lotteries. Suppose that o1 ! o2 and o2 ! o3. Consider whether the
agent would prefer

• o2 or
• the lottery [p : o1, (1− p) : o3]

for different values of p ∈ [0, 1]. When p = 1, the agent prefers the lottery
(because, by decomposability, the lottery is equivalent to o1 and o1 ! o2). When
p = 0, the agent prefers o2 (because the lottery is equivalent to o3 and o2 ! o3).
At some stage, as p is varied, the agent’s preferences flip between preferring o2
and preferring the lottery. Figure 12.1 (page 521) shows how the preferences
must flip as p is varied. On the X-axis is p and the Y-axis shows which of o2 or
the lottery is preferred. The following proposition formalizes this intuition.

Proposition 12.1. If an agent’s preferences are complete, transitive, and follow the
monotonicity axiom, and if o1 ! o2 and o2 ! o3, there exists a number p2 such that
0 ≤ p2 ≤ 1 and

• for all p < p2, the agent prefers o2 to the lottery (i.e., o2 ! [p : o1, (1− p) : o3])
and
• for all p > p2, the agent prefers the lottery (i.e., [p : o1, (1− p) : o3] ! o2).
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Proof. By monotonicity and transitivity, if o2  [p : o1, (1− p) : o3] for any p,
then, for all p′ < p, o2 ! [p′ : o1, (1− p′) : o3]. Similarly, if [p : o1, (1− p) : o3]  
o2 for any p, then, for all p′ > p, [p′ : o1, (1− p′) : o3] ! o2.

By completeness, for each value of p, either o2 ! [p : o1, (1− p) : o3], o2 ∼
[p : o1, (1− p) : o3], or [p : o1, (1− p) : o3] ! o2. If there is some p such that
o2 ∼ [p : o1, (1 − p) : o3], then the theorem holds. Otherwise, a preference
for either o2 or the lottery with parameter p implies preferences for either all
values greater than p or for all values less than p. By repeatedly subdividing
the region that we do not know the preferences for, we will approach, in the
limit, a value filling the criteria for p2.

The preceding proposition does not specify what the preference of the agent
is at the point p2. The following axiom specifies that the agent is indifferent at
this point.

Axiom 12.5. (Continuity) Suppose o1 ! o2 and o2 ! o3, then there exists a p2 ∈ [0, 1]
such that

o2 ∼ [p2 : o1, (1− p2) : o3].

The next axiom specifies that replacing an outcome in a lottery with an
outcome that is not worse, cannot make the lottery worse.

Axiom 12.6. (Substitutability) If o1  o2 then the agent weakly prefers lotteries that
contain o1 instead of o2, everything else being equal. That is, for any number p and
outcome o3:

[p : o1, (1− p) : o3]  [p : o2, (1− p) : o3].

A direct corollary of this is that outcomes to which the agent is indifferent
can be substituted for one another, without changing the preferences.

0 1

o2

[ p:o1,1,1-p:o3 ]

p2

Probability p  in lottery

Preferred
Outcome

Figure 12.1: The preference between o2 and the lottery, as a function of p

https://doi.org/10.1017/9781009258227.017


522 12. Planning with Uncertainty

Proposition 12.2. If an agent obeys the substitutability axiom and o1 ∼ o2, then the
agent is indifferent between lotteries that only differ by o1 and o2. That is, for any
number p and outcome o3, the following indifference relation holds:

[p : o1, (1− p) : o3] ∼ [p : o2, (1− p) : o3].

This follows because o1 ∼ o2 is equivalent to o1  o2 and o2  o1, and we
can use substitutability for both cases.

An agent is defined to be rational if it obeys the completeness, transitivity,
monotonicity, decomposability, continuity, and substitutability axioms.

It is up to you to determine if this technical definition of rationality matches
your intuitive notion of rationality. In the rest of this section, we show more
consequences of this definition.

Although preferences may seem to be complicated, the following theorem
shows that a rational agent’s value for an outcome can be measured by a real
number. Those value measurements can be combined with probabilities so
that preferences with uncertainty can be compared using expectation. This is
surprising for two reasons:

• It may seem that preferences are too multifaceted to be modeled by a sin-
gle number. For example, although one may try to measure preferences
in terms of dollars, not everything is for sale or easily converted into dol-
lars and cents.

• One might not expect that values could be combined with probabilities.
An agent that is indifferent between the money $(px + (1− p)y) and the
lottery [p : $x, (1− p)$y] for all monetary values x and y and for all p ∈
[0, 1] is known as an expected monetary value (EMV) agent. Most people
are not EMV agents, because they have, for example, a strict preference
between $1,000,000 and the lottery [0.5 : $0, 0.5 : $2, 000, 000]. (Think
about whether you would prefer a million dollars or a coin toss where
you would get nothing if the coin lands heads or two million if the coin
lands tails.) Money cannot be simply combined with probabilities, so it
may be surprising that there is a value that can be.

Proposition 12.3. If an agent is rational, then for every outcome oi there is a real
number u(oi), called the utility of oi, such that

• oi ! oj if and only if u(oi) > u(oj) and
• utilities are linear with probabilities

u([p1 : o1, p2 : o2, . . . , pk : ok]) = p1u(o1) + p2u(o2) + · · ·+ pku(ok).

Proof. If the agent has no strict preferences (i.e., the agent is indifferent between
all outcomes), then define u(o) = 0 for all outcomes o.

Otherwise, choose the best outcome, obest, and the worst outcome, oworst,
and define, for any outcome o, the utility of o to be the value p such that

o ∼ [p : obest, (1− p) : oworst].
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The first part of the proposition follows from substitutability and monotonicity.
To prove the second part, any lottery can be reduced to a single lottery

between obest and oworst by replacing each oi by its equivalent lottery between
obest and oworst, and using decomposability to put it in the form [p : obest, (1− p) :
oworst], with p equal to p1u(o1) + p2u(o2) + · · ·+ pku(ok). The details are left as
an exercise.

Thus, an ordinal preference that follows the axioms is a cardinal prefer-
ence (page 31) where utility defines the values to be compared.

In this proof the utilities are all in the range [0, 1], but any linear scaling
gives the same result. Sometimes [0, 100] is a good scale to distinguish it from
probabilities, and sometimes negative numbers are useful to use when the out-
comes have costs. In general, a program should accept any scale that is intu-
itive to the user.

A linear relationship does not usually exist between money and utility, even
when the outcomes have a monetary value. People often are risk averse when
it comes to money: they would rather have $n in their hand than some random-
ized setup where they expect to receive $n but could possibly receive more or
less.

Example 12.1 Figure 12.2 shows a possible money–utility relationship for
three agents. The topmost line represents an agent that is risk averse, with
a concave utility function. The agent with a straight-line plot is risk neutral.
The lowest line represents an agent with a convex utility function that is risk
seeking.

Figure 12.2: Money–utility relationships for agents with different risk profiles
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The risk-averse agent in Figure 12.2 would rather have $300,000 than a 50%
chance of getting either nothing or $1,000,000, but would prefer the gamble
on the million dollars to $275,000. This can be seen by checking the value for
utility = 0.5. They would also require more than a 73% chance of winning a
million dollars to prefer this gamble to half a million dollars.

For the risk-averse agent, u($999, 000) ≈ 0.9997. Thus, given this utility
function, the risk-averse agent would be willing to pay $1000 to eliminate a
0.03% chance of losing all of their money. This is why insurance companies
exist. By paying the insurance company, say, $600, the risk-averse agent can
change the lottery that is worth $999,000 to them into one worth $1,000,000
and the insurance companies expect to pay out, on average, about $300, and
so expect to make $300. The insurance company can get its expected value by
insuring enough houses. It is good for both parties.

Rationality does not impose any conditions on what the utility function
looks like.

Example 12.2 Figure 12.3 shows a possible money–utility relationship for
Chris who really wants a toy worth $30, but would also like one worth $20,
and would like both even better. Apart from these, money does not matter
much to Chris. Chris is prepared to take risks. For example, if Chris had $29,
Chris would be very happy to bet $9 against a single dollar of another agent
on a fair bet, such as a coin toss. This is reasonable because that $9 is not much
use to Chris, but the extra dollar would enable Chris to buy the $30 toy. Chris
does not want more than $60, because then Chris will worry about it being lost
or stolen.

Figure 12.3: Possible money–utility relationship from Example 12.2
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Challenges to Expected Utility

There have been a number of challenges to the theory of expected utility. The
Allais Paradox, presented in 1953 [Allais and Hagen, 1979], is as follows.
Which would you prefer of the following two alternatives?

A: $1m – one million dollars
B: lottery [0.10 : $2.5m, 0.89 : $1m, 0.01 : $0].

Similarly, what would you choose between the following two alternatives?

C: lottery [0.11 : $1m, 0.89 : $0]
D: lottery [0.10 : $2.5m, 0.9 : $0].

It turns out that many people prefer A to B, and prefer D to C. This choice is
inconsistent with the axioms of rationality. To see why, both choices can be
put in the same form:

A,C: lottery [0.11 : $1m, 0.89 : X]
B,D: lottery [0.10 : $2.5m, 0.01 : $0, 0.89 : X].

In A and B, X is a million dollars. In C and D, X is zero dollars. Concentrat-
ing just on the parts of the alternatives that are different seems intuitive, but
people seem to have a preference for certainty.

Tversky and Kahneman [1974], in a series of human experiments, showed
how people systematically deviate from utility theory. One such deviation is
the framing effect of a problem’s presentation. Consider the following.

• A disease is expected to kill 600 people. Two alternative programs have
been proposed:

Program A: 200 people will be saved
Program B: with probability 1/3, 600 people will be saved, and with

probability 2/3, no one will be saved.

Which program would you favor?
• A disease is expected to kill 600 people. Two alternative programs have

been proposed:

Program C: 400 people will die
Program D: with probability 1/3, no one will die, and with probability

2/3, 600 will die.

Which program would you favor?

Tversky and Kahneman showed that 72% of people in their experiments
chose program A over program B, and 22% chose program C over program
D. However, these are exactly the same choice, just described in a different
way.

Prospect theory (page 528), developed by Kahneman and Tversky, is an
alternative to expected utility that better fits human behavior.
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12.1.2 Factored Utility

Utility for an agent is a function of outcomes or states. Representing utilities in
terms of features or variables typically results in more compact representations
that are easier to reason with and more natural to acquire.

Suppose each outcome can be described in terms of features X1, . . . , Xn. An
additive utility is one that can be decomposed into a sum of terms:

u(X1, . . . , Xn) = f1(X1) + · · ·+ fn(Xn).

Such a decomposition is making the assumption of additive independence.
When this can be done, it greatly simplifies preference elicitation – the

problem of acquiring preferences from the user. This decomposition is not
unique, because adding a constant to one of the terms and subtracting it from
another gives the same utility. A canonical representation for additive util-
ity has a unique decomposition. Canonical forms are easier to acquire as each
number can be acquired without considering the other numbers. To put addi-
tive utility into canonical form, for each feature Xi, define a local utility function
ui(Xi) that has a value of 0 for the value of Xi in the worst outcome and 1 for
the value of Xi in the best outcome, and a non-negative real weight, wi. The wi
weights should sum to 1. The utility as a function of the variables is

u(X1, . . . , Xn) = w1 ∗ u1(X1) + · · ·+ wn ∗ un(Xn).

To elicit such a utility function requires eliciting each local utility function and
assessing the weights. Each feature, if it is relevant, must have a best value for
an agent and a worst value for the agent. Assessing the local functions and
weights can be done as follows. Consider just X1; the other features then can
be treated analogously. For feature X1, values x1 and x′1 for X1, and fixed values
x2, . . . , xn for X2, . . . , Xn:

u(x1, x2, . . . , xn)− u(x′1, x2, . . . , xn) = w1 ∗ (u1(x1)− u1(x′1)). (12.1)

The weight w1 can be derived when x1 is the best outcome and x′1 is the worst
outcome (because then u1(x1) − u1(x′1) = 1). The values of u1 for the other
values in the domain of X1 can be computed using Equation (12.1), making x′1
the worst outcome (as then u1(x′1) = 0).

Assuming additive independence entails making a strong independence
assumption. In particular, in Equation (12.1), the difference in utilities must be
the same for all values x2, . . . , xn for X2, . . . , Xn.

Additive independence is often not a good assumption. Consider binary
features X and Y, with domains {x0, x1} and {y0, y1}.

• Two values of X and Y are complements if having both is better than
the sum of having the two separately. More formally, values x1 and y1 are
complements if getting one when the agent has the other is more valuable
than when the agent does not have the other:

u(x1, y1)− u(x0, y1) > u(x1, y0)− u(x0, y0).
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• Two values are substitutes if having both is not worth as much as the
sum of having each one. More formally, values x1 and y1 are substitutes
if getting one when the agent has the other is less valuable than getting
one when the agent does not have the other:

u(x1, y0)− u(x0, y0) > u(x1, y1)− u(x0, y1).

Example 12.3 For a purchasing agent in the travel domain, consider the utility
function for having a plane booking for a particular day and a hotel booking
for the same day:

Plane Hotel Utility
true true 100
true false 0
false true 10
false false 20

Thus

u(plane, hotel)− u(¬plane, hotel) = 90
> u(plane,¬hotel)− u(¬plane,¬hotel) = −20.

Thus, a plane booking and a hotel booking are complements: one without the
other does not give a good outcome.

If the person taking the holiday would enjoy one outing, but not two, on
the same day, the two outings on the same day would be substitutes.

Additive utility assumes there are no substitutes or complements. When
there is interaction, we require a more sophisticated model, such as a general-
ized additive independence model, which represents utility as a sum of terms,
where each term can be a factor over multiple variables. Elicitation of the gen-
eralized additive independence model is much more involved than eliciting an
additive model, because a variable can appear in many factors.

For Boolean features, it is possible to represent arbitrary utility using the
analogy to the canonical representation (page 401) for probability. This ex-
tends the additive utility to allow weights for the conjunctions of atoms (which
corresponds to the product when true is 1 and false is 0), including a bias term.
Complements have a positive weight for the conjunction, and substitutes have
a negative weight for the conjunction.

Example 12.4 Consider Example 12.3. The utility for a plane and a hotel for
the same day, as shown in the table, can be represented using

utility(Plane, Hotel) = w0 + w1 ∗ Plane + w2 ∗Hotel + w3 ∗ Plane ∗Hotel

where w0 = 20, w1 = −20, w2 = −10, w3 = 110.
For the two trips in Example 12.3, where the person does not want both,

the weight for the product term would be negative.
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It is common to start with representing just the simpler interactions, such as
only representing the weights of single atoms and some pairwise products, and
only introducing products of more atoms when necessary. If all conjunctions
were included, there would be 2n weights for n propositions, which is the same
as a table of all combinations of truth values. The canonical representation is
useful when many of the weights are zero, and so don’t need to be represented
at all.

12.1.3 Prospect Theory

Utility theory is a normative theory of rational agents that is justified by a set of
axioms. Prospect theory is a descriptive theory of people that seeks to describe
how humans make decisions. A descriptive theory is evaluated by making
observations of human behavior and by carrying out controlled psychology
experiments.

Rather than having preferences over outcomes, prospect theory considers
the context of the preferences. The idea that humans do not perceive absolute
values, but values in context, is well established in psychology. Consider the
Müller-Lyer illusion shown in Figure 12.4. The horizontal lines are of equal
length, but in the context of the other lines, they appear to be different. As
another example, if you have one hand in cold water and one in hot water, and
then put both into warm water, the warm water will feel very different to each
hand. People’s preferences also depend on context. Prospect theory is based on
the observation that it is not the outcomes that people have preferences over;
what matters is how much the choice differs from the current situation.

The relationship between money and value that is predicted by prospect
theory is shown in Figure 12.5 (page 529). Rather than having the absolute
wealth on the x-axis, this graph shows the difference from the current wealth.
The origin of the x-axis is the current state of the person’s wealth. This position
is called the reference point. Prospect theory predicts:

• For gains, people are risk averse. This can be seen as the curve above the
current wealth is concave.

• For losses, people are risk seeking. This can be seen as the curve below
the current wealth is convex.

Figure 12.4: Human perception of length depends on the context
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• Losses are approximately twice as bad as gains. The slope for losses is
steeper than that for gains.

It is not just money that has such a relationship, but anything that has value.
Prospect theory makes different predictions about how humans will act than
does utility theory, as in the following examples from Kahneman [2011, pp.
275, 291].

Example 12.5 Consider Anthony and Betty:

• Anthony’s current wealth is $1 million.

• Betty’s current wealth is $4 million.

They are both offered the choice between a gamble and a sure thing.

• Gamble: equal chance to end up owning $1 million or $4 million.

• Sure thing: own $2 million.

Utility theory predicts that, assuming they have the same utility curve, An-
thony and Betty will make the same choice, as the outcomes are identical. Util-
ity theory does not take into account the current wealth. Prospect theory makes
different predictions for Anthony and Betty. Anthony is making a gain and so
will be risk averse, and so will probably go with the sure thing. Betty is making
a loss, and so will be risk seeking and go with the gamble. Anthony will be
happy with the $2 million, and does not want to risk being unhappy. Betty will
be unhappy with the $2 million, and has a chance to be happy if she takes the
gamble.

Example 12.6 Twins Andy and Bobbie, have identical tastes and identical
starting jobs. There are two jobs that are identical, except that

• job A gives a raise of $10,000

• job B gives an extra day of vacation per month.

$

psychological
value

GainsLosses

Figure 12.5: Money–value relationship for prospect theory
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They are each indifferent to the outcomes and toss a coin. Andy takes job A,
and Bobbie takes job B.

Now the company suggests they swap jobs with a $500 bonus.
Utility theory predicts that they will swap. They were indifferent and now

can be $500 better off by swapping.
Prospect theory predicts they will not swap jobs. Given they have taken

their jobs, they now have different reference points. Andy thinks about losing
$10,000. Bobbie thinks about losing 12 days of holiday. The loss is much worse
than the gain of the $500 plus the vacation or salary. They each prefer their own
job.

Empirical evidence supports the hypothesis that prospect theory is better
than utility theory in predicting human decisions. However, just because it
better matches a human’s choices does not mean it is the best for an artificial
agent. An artificial agent that must interact with humans should, however, take
into account how humans reason. For the rest of this chapter we assume utility
theory as the basis for an artificial agent’s decision making and planning.

12.2 One-Off Decisions

Basic decision theory applied to intelligent agents relies on the following as-
sumptions:

• Agents know what actions they can carry out.
• The effect of each action can be described as a probability distribution

over outcomes.
• An agent’s preferences are expressed by utilities of outcomes.

It is a consequence of Proposition 12.3 (page 522) that, if agents only act for one
step, a rational agent should choose an action with the highest expected utility.

Example 12.7 Consider the problem of the delivery robot in which there is
uncertainty in the outcome of its actions. In particular, consider the problem
of going from position o109 in Figure 3.1 (page 81) to the mail position, where
there is a chance that the robot will slip off course and fall down the stairs.
Suppose the robot can get pads that will not change the probability of an acci-
dent but will make an accident less severe. Unfortunately, the pads add extra
weight. The robot could also go the long way around, which would reduce the
probability of an accident but make the trip much slower.

Thus, the robot has to decide whether to wear the pads and which way
to go (the long way or the short way). What is not under its direct control
is whether there is an accident, although this probability can be reduced by
going the long way around. For each combination of the agent’s choices and
whether there is an accident, there is an outcome ranging from severe damage
to arriving quickly without the extra weight of the pads.
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Whose Values?

Any computer program or person who acts or gives advice is using some
value system to judge what is important and what is not.

Alice . . . went on “Would you please tell me, please, which way I ought
to go from here?”

“That depends a good deal on where you want to get to,” said the
Cat.

“I don’t much care where –” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

– Lewis Carroll (1832–1898)
Alice’s Adventures in Wonderland, 1865

We all, of course, want computers to work on our value system, but they can-
not act according to everyone’s value system. When you build programs to
work in a laboratory, this is not usually a problem. The program acts accord-
ing to the goals and values of the program’s designer, who is also the pro-
gram’s user. When there are multiple users of a system, you must be aware of
whose value system is incorporated into a program. If a company sells a med-
ical diagnostic program to a doctor, does the advice the program gives reflect
the values of society, the company, the doctor, the patient, or whoever is pay-
ing (all of whom may have very different value systems)? Does it determine
the doctor’s or the patient’s values?

For autonomous cars, do the actions reflect the utility of the owner or the
utility of society? Consider the choice between injuring n people walking
across the road or injuring m family members by swerving to miss the pedes-
trians. How do the values of the lives trade off for different values of n and
m, and different chances of being injured or killed? Drivers who most want to
protect their family would have different trade-offs than the pedestrians. This
situation has been studied using trolley problems, where the trade-offs are
made explicit and people give their moral opinions. See Section 2.4 (page 71).

If you want to build a system that gives advice to someone, you should
find out what is true as well as what their values are. For example, in a med-
ical diagnostic system, the appropriate procedure depends not only on pa-
tients’ symptoms but also on their priorities. Are they prepared to put up
with some pain in order to be more aware of their surroundings? Are they
willing to put up with a lot of discomfort to live longer? What risks are they
prepared to take? Always be suspicious of a program or person that tells you
what to do if it does not ask you what you want to do! As builders of pro-
grams that do things or give advice, you should be aware of whose value sys-
tems are incorporated into the actions or advice. If people are affected, their
preferences should be taken into account, or at least they should be aware of
whose preferences are being used as a basis for decisions.
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In one-off decision making, a decision variable is used to model an agent’s
choice. A decision variable is like a random variable, but it does not have an
associated probability distribution. Instead, an agent gets to choose a value
for a decision variable. A possible world specifies values for both random
and decision variables. Each possible world has an associated utility. For each
combination of values to decision variables, there is a probability distribution
over the random variables. That is, for each assignment of a value to each
decision variable, the measures of the worlds that satisfy that assignment sum
to 1.

Figure 12.6 shows a decision tree that depicts the different choices available
to the agent and the outcomes of those choices. To read the decision tree, start
at the root (on the left in this figure). For the decision nodes, shown as squares,
the agent gets to choose which branch to take. For each random node, shown
as a circle, the agent does not get to choose which branch will be taken; rather,
there is a probability distribution over the branches from that node. Each leaf
corresponds to a world, which is the outcome if the path to that leaf is followed.

Example 12.8 In Example 12.7 (page 530) there are two decision variables,
one corresponding to the decision of whether the robot wears pads and one to
the decision of which way to go. There is one random variable, whether there
is an accident or not. Eight possible worlds correspond to the eight paths in the
decision tree of Figure 12.6.

What the agent should do depends on how important it is to arrive quickly,
how much the pads’ weight matters, how much it is worth to reduce the dam-
age from severe to moderate, and the likelihood of an accident.

w6 - severe damage

wear pads

don't wear pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident

accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight

Figure 12.6: A decision tree for the delivery robot. Square boxes represent decisions
that the robot can make. Circles represent random variables that the robot cannot
observe before making its decision
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The proof of Proposition 12.3 (page 522) specifies how to measure the desir-
ability of the outcomes. Suppose we decide to have utilities in the range [0,100].
First, choose the best outcome, which would be w5, and give it a utility of 100.
The worst outcome is w6, so assign it a utility of 0. For each of the other worlds,
consider the lottery between w6 and w5. For example, w0 may have a utility of
35, meaning the agent is indifferent between w0 and [0.35 : w5, 0.65 : w6], which
is slightly better than w2, which may have a utility of 30. w1 may have a utility
of 95, because it is only slightly worse than w5.

Example 12.9 In medical diagnosis, decision variables correspond to various
treatments and tests. The utility may depend on the costs of tests and treat-
ment and whether the patient gets better, stays sick, or dies, and whether they
have short-term or chronic pain. The outcomes for the patient depend on the
treatment the patient receives, the patient’s physiology, and the details of the
disease, which may not be known with certainty.

The same approach holds for diagnosis of artifacts such as airplanes; engi-
neers test components and fix them. In airplanes, you may hope that the utility
function is to minimize accidents (maximize safety), but the utility incorpo-
rated into such decision making is often to maximize profit for a company and
accidents are simply costs taken into account.

In a one-off decision, the agent chooses a value for each decision variable
simultaneously. This can be modeled by treating all the decision variables as a
single composite decision variable, D. The domain of this decision variable is
the cross product of the domains of the individual decision variables.

Each world ω specifies an assignment of a value to the decision variable D
and an assignment of a value to each random variable. Each world has a utility,
given by the variable u.

A single decision is an assignment of a value to the decision variable. The
expected utility of single decision D = di is E(u | D = di), the expected value
(page 383) of the utility conditioned on the value of the decision. This is the
average utility of the worlds, where the worlds are weighted according to their
probability:

E(u | D = di) = ∑
ω:D(ω)=di

u(ω) ∗ P(ω)

where D(ω) is the value of variable D in world ω, u(ω) is the value of utility
in ω, and P(ω) is the probability of world ω.

An optimal single decision is the decision whose expected utility is maxi-
mal. That is, D = dmax is an optimal decision if

E(u | D = dmax) = max
di∈domain(D)

E(u | D = di)

where domain(D) is the domain of decision variable D. Thus

dmax = arg max
di∈domain(D)

E(u | D = di).
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Example 12.10 The delivery robot problem of Example 12.7 (page 530) is a
single decision problem where the robot has to decide on the values for the
variables Wear pads and Which way. The single decision is the complex de-
cision variable 〈Wear pads, Which way〉. Each assignment of a value to each
decision variable has an expected value. For example, the expected utility of
Wear pads = true∧Which way = short is given by

E(u | wear pads∧Which way = short)
= P(accident | wear pads∧Which way = short) ∗ u(w0)

+ (1− P(accident | wear pads∧Which way = short)) ∗ u(w1)

where u(wi) is the value of the utility in worlds wi, the worlds w0 and w1 are as
in Figure 12.6 (page 532), and wear pads means Wear pads = true.

12.2.1 Single-Stage Decision Networks

A decision tree is a state-based representation where each path from a root to a
leaf corresponds to a state. It is, however, often more natural and more efficient
to represent and reason directly in terms of features, represented as variables.

A single-stage decision network is an extension of a belief network with
three kinds of nodes:

• Decision nodes, drawn as rectangles, represent decision variables. The
agent gets to choose a value for each decision variable. Where there are
multiple decision variables, we assume there is a total ordering of the
decision nodes, and the decision nodes before a decision node D in the
total ordering are the parents of D.

• Chance nodes, drawn as ovals, represent random variables. These are
the same as the nodes in a belief network. Each chance node has an asso-
ciated domain and a conditional probability of the variable, given its par-
ents. As in a belief network, the parents of a chance node represent con-
ditional dependence: a variable is independent of its non-descendants,
given its parents. In a decision network, both chance nodes and decision
nodes can be parents of a chance node.

• A single utility node, drawn as a diamond, represents the utility. The
parents of the utility node are the variables on which the utility depends.
Both chance nodes and decision nodes can be parents of the utility node.

Each chance variable and each decision variable has a domain. There is no
domain for the utility node. Whereas the chance nodes represent random vari-
ables and the decision nodes represent decision variables, there is no utility
variable.

Associated with a decision network is a conditional probability for each
chance node given its parents (as in a belief network) and a utility as a function
of the utility node’s parents. In the specification of the network, there are no
functions associated with a decision (although the algorithm will construct a
function).
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Example 12.11 Figure 12.7 gives a decision network representation of Exam-
ple 12.7 (page 530). There are two decisions to be made: which way to go and
whether to wear padding. Whether the agent has an accident only depends on
which way they go. The utility depends on all three variables.

This network requires two factors: a factor representing the conditional
probability, P(Accident | Which way), and a factor representing the utility as
a function of Which way, Accident, and Wear pads. Tables for these factors are
shown in Figure 12.7.

A policy for a single-stage decision network is an assignment of a value to
each decision variable. Each policy has an expected utility. An optimal policy
is a policy whose expected utility is maximal. That is, it is a policy such that no
other policy has a higher expected utility. The value of a decision network is
the expected utility of an optimal policy for the network.

Figure 12.8 (page 536) shows how variable elimination (page 413) is used
to find an optimal policy in a single-stage decision network. After pruning
irrelevant nodes and summing out all random variables, there will be a single
factor that represents the expected utility for each combination of decision vari-
ables. This factor does not have to be a factor on all of the decision variables;

Which_way
Accident

Utility

Wear_pads

Which way Accident Value
short true 0.2
short false 0.8
long true 0.01
long false 0.99

Wear pads Which way Accident Utility
true short true 35
true short false 95
true long true 30
true long false 75
false short true 3
false short false 100
false long true 0
false long false 80

Figure 12.7: Single-stage decision network for the delivery robot
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however, those decision variables that are not included are not relevant to the
decision.

Example 12.12 Consider running VE SSDN on the decision network of Fig-
ure 12.7 (page 535). No nodes are able to be pruned, so it sums out the only
random variable, Accident. To do this, it multiplies both factors because they
both contain Accident, and sums out Accident, giving the following factor:

Wear pads Which way Value
true short 0.2 ∗ 35 + 0.8 ∗ 95 = 83
true long 0.01 ∗ 30 + 0.99 ∗ 75 = 74.55
false short 0.2 ∗ 3 + 0.8 ∗ 100 = 80.6
false long 0.01 ∗ 0 + 0.99 ∗ 80 = 79.2

Thus, the policy with the maximum value – the optimal policy – is to take the
short way and wear pads, with an expected utility of 83.

12.3 Sequential Decisions

Generally, agents do not make decisions in the dark without observing some-
thing about the world, nor do they make just a single decision. A more typical
scenario is that the agent makes an observation, decides on an action, carries
out that action, makes observations in the resulting world, then makes another
decision conditioned on the observations, and so on. Subsequent actions can
depend on what is observed, and what is observed can depend on previous
actions. In this scenario, it is often the case that the sole reason for carrying out
an action is to provide information for future actions. Actions that are carried
out just to acquire information are called information-seeking actions. Such
actions are only ever needed in partially observable environments. The for-
malism does not need to distinguish information-seeking actions from other

1: procedure VE SSDN(DN)
2: Inputs
3: DN a single-stage decision network
4: Output
5: An optimal policy and the expected utility of that policy.
6: Prune all nodes that are not ancestors of the utility node.
7: Sum out all chance nodes.
8: – at this stage there is a single factor F that was derived from utility
9: Let v be the maximum value in F

10: Let d be an assignment that gives the maximum value
11: return d, v

Figure 12.8: Variable elimination for a single-stage decision network
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actions. Typically actions will have both information outcomes as well as ef-
fects on the world.

A sequential decision problem models

• what actions are available to the agent at each stage
• what information is, or will be, available to the agent when it has to act
• the effects of the actions, and
• the desirability of these effects.

Example 12.13 Consider a simple case of diagnosis where a doctor first chooses
some tests and then treats a patient, taking into account the outcome of the
tests. The reason the doctor may decide to do a test is so that some informa-
tion (the test results) will be available at the next stage when treatment may
be performed. The test results will be information that is available when the
treatment is decided, but not when the test is decided. It is often a good idea to
test, even if testing itself may harm the patient.

The actions available are the possible tests and the possible treatments.
When the test decision is made, the information available will be the symp-
toms exhibited by the patient. When the treatment decision is made, the infor-
mation available will be the patient’s symptoms, what tests were performed,
and the test results. The effect of the test is the test result, which depends on
what test was performed and what is wrong with the patient. The effect of the
treatment is some function of the treatment and what is wrong with the patient.
The utility may include, for example, costs of tests and treatments, the pain and
inconvenience to the patient in the short term, and the long-term prognosis.

12.3.1 Decision Networks

A decision network (also called an influence diagram) is a graphical represen-
tation of a finite sequential decision problem. Decision networks extend belief
networks to include decision variables and utility. A decision network extends
the single-stage decision network (page 534) to allow for sequential decisions,
and allows both chance nodes and decision nodes to be parents of decision
nodes.

In particular, a decision network is a directed acyclic graph (DAG) with
chance nodes (drawn as ovals), decision nodes (drawn as rectangles), and a
utility node (drawn as a diamond). The meaning of the arcs is as follows.

• Arcs coming into decision nodes represent the information that will be
available when the decision is made.

• Arcs coming into chance nodes represent probabilistic dependence.

• Arcs coming into the utility node represent what the utility depends on.
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Example 12.14 Figure 12.9 shows a simple decision network for a decision
of whether the agent should take an umbrella when it goes out. The agent’s
utility depends on the weather and whether it takes an umbrella. The agent
does not get to observe the weather; it only observes the forecast. The forecast
probabilistically depends on the weather.

As part of this network, the designer must specify the domain for each ran-
dom variable and the domain for each decision variable. Suppose the random
variable Weather has domain {norain, rain}, the random variable Forecast has
domain {sunny, rainy, cloudy}, and the decision variable Umbrella has domain
{take it, leave it}. There is no domain associated with the utility node. The de-
signer also must specify the probability of the random variables given their
parents. Suppose P(Weather) is defined by

P(Weather= rain) = 0.3.

P(Forecast | Weather) is given by

Weather Forecast Probability
norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

Suppose the utility function, u(Weather, Umbrella), is

Weather Umbrella Utility
norain take it 20
norain leave it 100
rain take it 70
rain leave it 0

There is no table specified for the Umbrella decision variable. It is the task of
the planner to determine which value of Umbrella to select, as a function of the
forecast.

Umbrella

Weather

UtilityForecast

Figure 12.9: Decision network for decision of whether to take an umbrella
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Example 12.15 Figure 12.10 shows a decision network that represents the ide-
alized diagnosis scenario of Example 12.13 (page 537). The symptoms depend
on the disease. What test to perform is decided based on the symptoms. The
test result depends on the disease and the test performed. The treatment de-
cision is based on the symptoms, the test performed, and the test result. The
outcome depends on the disease and the treatment. The utility depends on the
costs of the test and on the outcome.

The outcome does not depend on the test, but only on the disease and the
treatment, so the test presumably does not have side-effects. The treatment
does not directly affect the utility; any cost of the treatment can be incorporated
into the outcome. The utility needs to depend on the test unless all tests cost
the same amount.

The diagnostic assistant that is deciding on the tests and the treatments
never actually finds out what disease the patient has, unless the test result is
definitive, which it, typically, is not.

Example 12.16 Figure 12.11 (page 540) gives a decision network that is an
extension of the belief network of Figure 9.3 (page 390). The agent can receive
a report of people leaving a building and has to decide whether or not to call
the fire department. Before calling, the agent can check for smoke, but this has
some cost associated with it. The utility depends on whether it calls, whether
there is a fire, and the cost associated with checking for smoke.

In this sequential decision problem, there are two decisions to be made.
First, the agent must decide whether to check for smoke. The information that
will be available when it makes this decision is whether there is a report of
people leaving the building. Second, the agent must decide whether or not
to call the fire department. When making this decision, the agent will know
whether there was a report, whether it checked for smoke, and whether it can
see smoke. Assume that all of the variables are binary.

The information necessary for the decision network includes the condi-
tional probabilities of the belief network and

Disease

Symptoms

Test Result
Test

Treatment

Utility

Outcome

Figure 12.10: Decision network for idealized test–treat diagnosis scenario
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• P(See smoke | Smoke, Check smoke) – how seeing smoke depends on whether
the agent looks for smoke and whether there is smoke. Assume that the
agent has a perfect sensor for smoke. It will see smoke if and only if it
looks for smoke and there is smoke. See Exercise 12.9 (page 578).

• u(Check smoke, Fire, Call) – how the utility depends on whether the agent
checks for smoke, whether there is a fire, and whether the fire department
is called. Figure 12.12 provides this utility information. This utility func-
tion expresses the cost structure that calling has a cost of 200, checking
has a cost of 20, but not calling when there is a fire has a cost of 5000. The
utility is the negative of the cost.

A no-forgetting agent is an agent whose decisions are totally ordered in time,
and the agent remembers its previous decisions and any information that was
available to a previous decision.

A no-forgetting decision network is a decision network in which the deci-
sion nodes are totally ordered and, if decision node Di is before Dj in the total

Tampering Fire

Alarm

Leaving

Report

Smoke

See_smoke

Check_smoke

Call

Utility

Figure 12.11: Decision network for the fire alarm decision problem

Check smoke Fire Call Utility
yes true yes −220
yes true no −5020
yes false yes −220
yes false no −20
no true yes −200
no true no −5000
no false yes −200
no false no 0

Figure 12.12: Utility for fire alarm decision network
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ordering, then Di is a parent of Dj, and any parent of Di is also a parent of Dj.
Thus, any information available to Di is available to any subsequent deci-

sion, and the action chosen for decision Di is part of the information available
for subsequent decisions. The no-forgetting condition is sufficient to make sure
that the following definitions make sense and that the following algorithms
work.

12.3.2 Policies

A policy specifies what the agent should do under all contingencies. A policy
consists of a decision function for each decision variable. A decision function
for a decision variable is a function that specifies a value for the decision vari-
able for each assignment of values to its parents. Thus, a policy specifies, for
each decision variable, what the agent will do for each of the possible observa-
tions.

Example 12.17 In Example 12.14 (page 538), some of the policies are:

• Always bring the umbrella.
• Bring the umbrella only if the forecast is “rainy.”
• Bring the umbrella only if the forecast is “sunny.”

There are eight different policies, because there are three possible forecasts and
there are two choices for each forecast.

Example 12.18 In Example 12.16 (page 539), a policy specifies a decision
function for Check smoke and a decision function for Call. Some of the policies
are:

• Never check for smoke, and call only if there is a report.
• Always check for smoke, and call only if it sees smoke.
• Check for smoke if there is a report, and call only if there is a report and it

sees smoke.
• Check for smoke if there is no report, and call when it does not see smoke.
• Always check for smoke and never call.

There are four decision functions for Check smoke. There are 28 decision func-
tions for Call; for each of the eight assignments of values to the parents of Call,
the agent can choose to call or not. Thus there are 4 ∗ 28 = 1024 different poli-
cies.

Expected Utility of a Policy

Each policy has an expected utility for an agent that follows the policy. A ra-
tional agent should adopt the policy that maximizes its expected utility.
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A possible world specifies a value for each random variable and each de-
cision variable. A possible world ω satisfies policy π if for every decision vari-
able D, D(ω) has the value specified by the policy given the values of the par-
ents of D in the possible world.

A possible world corresponds to a complete history and specifies the values
of all random and decision variables, including all observed variables. Possible
world ω satisfies policy π if ω is one possible unfolding of history given that
the agent follows policy π.

The expected utility of policy π is

E(u | π) = ∑
ω satisfies π

u(ω) ∗ P(ω)

where P(ω), the probability of world ω, is the product of the probabilities of
the values of the chance nodes given their parents’ values in ω, and u(ω) is the
value of the utility u in world ω.

Example 12.19 Consider Example 12.14 (page 538), let π1 be the policy to
take the umbrella if the forecast is cloudy and to leave it at home otherwise.
The worlds that satisfy this policy are:

Weather Forecast Umbrella
norain sunny leave it
norain cloudy take it
norain rainy leave it
rain sunny leave it
rain cloudy take it
rain rainy leave it

Notice how the value for the decision variable is the one chosen by the policy.
It only depends on the forecast.

The expected utility of this policy is obtained by averaging the utility over
the worlds that satisfy this policy:

E(u | π1) = P(norain) ∗ P(sunny | norain) ∗ u(norain, leave it)
+ P(norain) ∗ P(cloudy | norain) ∗ u(norain, take it)
+ P(norain) ∗ P(rainy | norain) ∗ u(norain, leave it)
+ P(rain) ∗ P(sunny | rain) ∗ u(rain, leave it)
+ P(rain) ∗ P(cloudy | rain) ∗ u(rain, take it)
+ P(rain) ∗ P(rainy | rain) ∗ u(rain, leave it)

where norain means Weather = norain, sunny means Forecast = sunny, and sim-
ilarly for the other values.

An optimal policy is a policy π∗ such that E(u | π∗) ≥ E(u | π) for all poli-
cies π. That is, an optimal policy is a policy whose expected utility is maximal
over all policies.
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Suppose a binary decision node has n binary parents. There are 2n different
assignments of values to the parents and, consequently, there are 22n

different
possible decision functions for this decision node. The number of policies is the
product of the number of decision functions for each of the decision variables.
Even small examples can have a huge number of policies. An algorithm that
simply enumerates the policies looking for the best one will be very inefficient.

12.3.3 Optimizing Decision Networks using Search

The recursive conditioning algorithm for belief networks (page 409) can be ex-
tended to decision networks as follows:

• It takes a context, a set of factors for the conditional distributions of the
random variables and the utility, and a set of decision variables.

• It returns a value for the optimal policy given the context and optimal
decision functions for the decision variables for that context. The decision
functions are represented as a set of 〈context, d= v〉 pairs, which means
the optimal decision has decision variable d taking value v in context.

• The splitting order has the parents of each decision node come before the
node, and these are the only nodes before the decision node. In particular,
it cannot select a variable to split on that is not a parent of all remaining
decision nodes. Thus, it is only applicable to no-forgetting decision net-
works (page 540). If it were to split on a variable X that is not a parent
of a decision variable d, it can make a different choice of a value for d
depending on the value of X, which cannot be implemented by an agent
that does not know the value of X when it has to do d.

• The utility node does not need to be treated differently from the factors
defining probabilities; the utility just provides a number that is multi-
plied by the probabilities.

• To split on a decision node, the algorithm chooses a value that maximizes
the values returned for each assignment of a value for that node.

Figure 12.13 (page 544) extends the naive search algorithm of Figure 9.9
(page 406) to solve decision networks. It is easiest to think of this algorithm as
computing a sum over products, choosing the maximum value when there is a
choice. The value returned by the recursive call is a mix of the probability and
utility.

Example 12.20 Consider Example 12.16 (page 539). The algorithm first splits
on Report as it is a parent of all decision nodes. Consider the false branch. It then
calls DN dfs with context {Report= false}, and the decision variable Check smoke
is split. The recursive call will determine whether it is better to check when the
report is false. It then splits on See smoke and then Call. The other factors can be
eliminated in any order.
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The call to DN dfs with context {Report= false} returns the pair

〈P(Report= false) ∗ utility(π), π〉
where π is the optimal policy when Report= false.

Table 12.1 (page 545) shows what factors can be evaluated for one variable
ordering. It is difficult to interpret the numbers being returned by the recur-
sive calls. Some are just products of probability (recursive calls after the Utility
factor is evaluated), and some are a mix of probability and utility. The easiest
way to think about this is that the algorithm is computing the sum of a product
of numbers, maximizing for a choice at the decision nodes.

The algorithm of Figure 12.13 does not exploit the independence of graphi-
cal structure, but all of the enhancements of recursive conditioning (page 409),
namely recognizing disconnected components and judicious caching can be
incorporated unchanged.

12.3.4 Variable Elimination for Decision Networks

Variable elimination (page 413) can be adapted to find an optimal policy. The

1: procedure DN dfs(Con, Fs, Ds)
2: # Con:contest, Fs: set of factors, Ds: set of decision variables
3: # Returns a value, and set of 〈context, d= v〉 pairs
4: if Fs = {} then
5: return (1, {})
6: else if f ∈ Fs can be evaluated in Con then
7: (v, p) := DN dfs(Con, Fs \ {f}, Ds)
8: return (eval(f , Con) ∗ v, p)
9: else if Con assigns all parents of decision node d ∈ Ds then

10: max value := −∞; opt decn := ⊥
11: for val in domain(d) do
12: (v, p) := DN dfs(Con∪ {d= val}, Fs, Ds \ {d})
13: if v > max value then
14: max value := v; opt decn := {〈Con, d= val〉} ∪ p
15: return (max value, opt decn)
16: else
17: select variable var in vars(Fs) \ vars(Con) that is a parent of all d ∈ Ds
18: sum := 0; policy = {}
19: for val in domain(var) do
20: (v, p) := DN dfs(Con∪ {var= val}, Fs, Ds)
21: sum := sum + v; policy := policy∪ p
22: return (sum, policy)

Figure 12.13: Search-based optimization algorithm for decision networks
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idea is first to consider the last decision, find an optimal decision for each value
of its parents, and produce a factor of these maximum values. This results in a
new decision network, with one less decision, that can be solved recursively.

Figure 12.14 (page 546) shows how to use variable elimination for decision
networks. Essentially, it computes the expected utility of an optimal decision.
It eliminates the random variables that are not parents of a decision node by
summing them out according to some elimination ordering. The ordering of
the random variables being eliminated does not affect correctness and so it can
be chosen for efficiency.

After eliminating all of the random variables that are not parents of a de-
cision node, in a no-forgetting decision network, there must be one decision
variable D that is in a factor F where all of the variables, other than D, in F are
parents of D. This decision D is the last decision in the ordering of decisions.

To eliminate that decision node, VE DN chooses the values for the decision
that result in the maximum utility. This maximization creates a new factor on
the remaining variables and a decision function for the decision variable being
eliminated. This decision function created by maximizing is one of the decision
functions in an optimal policy.

Example 12.21 In Example 12.14 (page 538), there are three initial factors rep-
resenting P(Weather), P(Forecast | Weather), and u(Weather, Umbrella). First, it
eliminates Weather by multiplying all three factors and summing out Weather,
giving a factor on Forecast and Umbrella, shown on left of Table 12.2 (page 546).
To maximize over Umbrella, for each value of Forecast, VE DN selects the value

of Umbrella that maximizes the value of the factor. For example, when the fore-
cast is sunny, the agent should leave the umbrella at home for a value of 49.0.
The resulting decision function is shown in Table 12.2 (page 546) (center), and
the resulting factor is shown in Table 12.2 (page 546) (right).

It now sums out Forecast from this factor, which gives the value 77.0. This
is the expected value of the optimal policy.

Variable Factor(s) Evaluated
Report –
Check smoke –
See Smoke –
Call –
Tampering P(Tampering)
Fire P(Fire), Utility(Fire, See smoke, Call)
Smoke P(Fire | Smoke), P(See smoke | Smoke)
Alarm P(Alarm | Tampering, Fire)
Leaving P(Leaving | Alarm), P(Report | Leaving)

Table 12.1: Variables split on and factors evaluated for Example 12.20 (page 543)
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Example 12.22 Consider Example 12.16 (page 539). The initial factors are
shown in Table 12.3 (page 547). The expected utility is the product of the
probability and the utility, as long as the appropriate actions are chosen.

Table 12.3 (page 547) (bottom) shows the factors that are removed and cre-
ated for one elimination ordering. The random variables that are not parents of
a decision node are summed out first.

The factor f16 is a number that is the expected utility of the optimal policy.
The following gives more detail of one of the factors. After summing out

Tampering, Fire, Alarm, Smoke, and Leaving, there is a single factor, f12, part of
which (to two decimal places) is

1: procedure VE DN(DN):
2: Inputs
3: DN a decision network
4: Output
5: An optimal policy and its expected utility
6: Local
7: DFs: a set of decision functions, initially empty
8: Fs: a set of factors
9: Remove all variables that are not ancestors of the utility node

10: Create a factor in Fs for each conditional probability
11: Create a factor in Fs for the utility
12: while there are decision nodes remaining do
13: Sum out each random variable that is not a parent of a decision node
14: Let D be the last decision remaining
15: # D is only in a factor F(D, V1, . . . , Vk) where V1, . . . , Vk are

parents of D
16: Add maxD F to Fs.
17: Add arg maxD F to DFs.
18: Sum out all remaining random variables
19: Return DFs and the product of remaining factors

Figure 12.14: Variable elimination for decision networks

Forecast Umbrella Value
sunny take it 12.95
sunny leave it 49.0
cloudy take it 8.05
cloudy leave it 14.0
rainy take it 14.0
rainy leave it 7.0

Forecast Umbrella
sunny leave it
cloudy leave it
rainy take it

Forecast Value
sunny 49.0
cloudy 14.0
rainy 14.0

Table 12.2: Factors and decision functions created in Example 12.21 (page 545)
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Report See smoke Check smoke Call Value
true true yes yes −1.33
true true yes no −29.30
true true no yes 0
true true no no 0
true false yes yes −4.86
true false yes no −3.68
. . . . . . . . . . . . . . .

From this factor, an optimal decision function can be created for Call by se-
lecting a value for Call that maximizes Value for each assignment to Report,
See smoke, and Check smoke.

Consider the case when Report= true, See smoke= true, and Check smoke= yes.
The maximum of −1.33 and −29.3 is −1.33, so for this case, the optimal action
is Call= yes with value −1.33. This maximization is repeated for the other val-
ues of Report, See smoke, and Check smoke.

An optimal decision function for Call is

Initial factors:

Meaning Factor
P(Tampering) f0(Tampering)
P(Fire) f1(Fire)
P(Alarm | Tampering, Fire) f2(Tampering, Fire, Alarm)
P(Smoke | Fire) f3(Fire, Smoke)
P(Leaving | Alarm) f4(Alarm, Leaving)
P(Report | Leaving) f5(Leaving, Report)
P(See smoke | Check smoke, Smoke) f6(Smoke, See smoke, Check smoke)
u(Fire, Check smoke, Call) f7(Fire, Check smoke, Call)

The factors that are removed and created for one elimination ordering:

Variable How Removed Factor Created
Tampering sum f0, f2 f8(Fire, Alarm)
Fire sum f1, f8, f3, f7 f9(Alarm, Smoke, Check Smoke, Call)
Alarm sum f4, f9 f10(Smoke, Check Smoke, Call, Leaving)
Smoke sum f10, f6 f11(Check Smoke, Leaving, See Smoke, Call)
Leaving sum f5, f11 f12(Report, See Smoke, Check Smoke, Call)
Call max f12 f13(Check Smoke, See Smoke, Report)
See smoke sum f13 f14(Check Smoke, Report)
Check smoke max f14 f15(Report)
Report sum f15 f16

Table 12.3: Initial and created factors in Example 12.22 (page 546)
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Report See smoke Check smoke Call
true true yes yes
true true no yes
true false yes no
. . . . . . . . . . . .

The value for Call when Report= true, See smoke= true, and Check smoke= no is
arbitrary. It does not matter what the agent plans to do in this situation, because
the situation never arises. The algorithm does not need to treat this as a special
case.

The factor resulting from maximizing Call contains the maximum values
for each combination of Report, See smoke, and Check smoke:

Report See smoke Check smoke Value
true true yes −1.33
true true no 0
true false yes −3.68
. . . . . . . . . . . .

Summing out See smoke gives the factor

Report Check smoke Value
true yes −5.01
true no −5.65
false yes −23.77
false no −17.58

Maximizing Check smoke for each value of Report gives the decision function

Report Check smoke
true yes
false no

and the factor
Report Value
true −5.01
false −17.58

Summing out Report gives the expected utility of −22.60 (taking into account
rounding errors).

Thus, the policy returned can be seen as the rules

check smoke ← report.
call ← see smoke.
call ← report∧ ¬check smoke∧ ¬see smoke.

The last of these rules is never used because the agent following the optimal
policy does check for smoke if there is a report. It remains in the policy be-
cause VE DN has not determined an optimal policy for Check smoke when it is
optimizing Call.

Note also that, in this case, even though checking for smoke has an immedi-
ate negative reward, checking for smoke is worthwhile because the information
obtained is valuable.
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The following example shows how the factor containing a decision vari-
able can contain a subset of its parents when the VE algorithm optimizes the
decision.

Example 12.23 Consider Example 12.14 (page 538), but with an extra arc from
Weather to Umbrella. That is, the agent gets to observe both the weather and the
forecast. In this case, there are no random variables to sum out, and the factor
that contains the decision node and a subset of its parents is the original utility
factor. It can then maximize Umbrella, giving the decision function and the
factor:

Weather Umbrella
norain leave it
rain take it

Weather Value
norain 100
rain 70

Note that the forecast is irrelevant to the decision. Knowing the forecast does
not give the agent any useful information. Summing out Forecast gives a factor
where all of the values are 1.

Summing out Weather, where P(Weather= norain) = 0.7, gives the expected
utility 0.7 ∗ 100 + 0.3 ∗ 70 = 91.

Variable elimination for decision networks of Figure 12.14 (page 546) has
similar complexity to the combination of depth-first search of Figure 12.13
(page 544) with recursive conditioning (page 409). They are carrying out the
same computations on a different order. In particular, the values stored in the
cache of recursive conditioning are the same as the values in the factors of vari-
able elimination. Recursive conditioning allows for the exploitation of various
representations of conditional probability, but storing the values in a cache is
less efficient than storing the values using a tabular representation. When the
networks are infinite, as below, the more sophisticated algorithms are usually
based on one or the other.

12.4 The Value of Information and Control

Information can be valuable to agents if it helps them make better decisions.

Example 12.24 In Example 12.22 (page 546), the action Check smoke provides
information about fire. Checking for smoke costs 20 units and does not provide
any direct reward; however, in an optimal policy, it is worthwhile to check for
smoke when there is a report because the agent can condition its further actions
on the information obtained. Thus, the information about smoke is valuable
to the agent, even though smoke only provides imperfect information about
whether there is fire.

One of the important lessons from this example is that an information-seeking
action, such as Check smoke, can be treated in the same way as any other action,
such as Call. An optimal policy often includes actions whose only purpose is
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to find information, as long as subsequent actions can condition on some effect
of the action. Most actions do not just provide information; they also have a
more direct effect on the world.

If X is a random variable and D is a decision variable, the value of infor-
mation about X for decision D is how much extra utility can be obtained by
knowing the value for X when decision D is made. This depends on what is
controlled and what else is observed for each decision, which is the information
provided in a decision network.

The value of information about X for decision D in a no-forgetting decision
network N is

• the value of decision network N with an arc added from X to D, and with
arcs added from X to the decisions after D to ensure that the network
remains a no-forgetting decision network (page 540)

• minus the value of the decision network N where D does not have infor-
mation about X, and the no-forgetting arcs are not added.

This is only defined when X is not a successor of D, because that would cause a
cycle. (Something more sophisticated must be done when adding the arc from
X to D causes a cycle.)

Example 12.25 In Example 12.14 (page 538), consider how much it could be
worth to get a better forecast. The value of getting perfect information about the
weather for the decision about whether to take an umbrella is the difference be-
tween the value of the network with an arc from Weather to Umbrella which, as
calculated in Example 12.23 (page 549), is 91 and the original network, which,
as computed in Example 12.14 (page 538), is 77. Thus, the value of information
about Weather for the Umbrella decision is 91− 77 = 14.

The value of information has some interesting properties:

• The value of information is never negative. The worst that can happen is
that the agent can ignore the information.

• If an optimal decision is to do the same thing no matter which value of X
is observed, the value of information X is zero. If the value of information
X is zero, there is an optimal policy that does not depend on the value
of X (i.e., the same action can be chosen no matter which value of X is
observed).

The value of information is a bound on the amount the agent should be
willing to pay (in terms of loss of utility) for information X for decision D. It
is an upper bound on the amount that imperfect information about the value
of X at decision D would be worth. Imperfect information is the information
available from a noisy sensor of X. It is not worth paying more for a sensor of
X than the value of information about X for the earliest decision that could use
the information of X.
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Example 12.26 In the fire alarm problem of Example 12.22 (page 546), the
agent may be interested in knowing whether it is worthwhile to try to detect
tampering. To determine how much a tampering sensor could be worth, con-
sider the value of information about tampering.

The following are the values (the expected utility of the optimal policy, to
one decimal point) for some variants of the network. Let N0 be the original
network.

• The network N0 has a value of −22.6.

• Let N1 be the same as N0 but with an arc added from Tampering to Call. N1
has a value of −21.3.

• Let N2 be the same as N1 except that it also has an arc from Tampering to
Check smoke. N2 has a value of −20.9.

• Let N3 be the same as N2 but without the arc from Report to Check smoke.
N3 has the same value as N2.

The difference in the values of the optimal policies for the first two decision net-
works, namely 1.3, is the value of information about Tampering for the decision
Call in network N0. The value of information about Tampering for the decision
Check smoke in network N0 is 1.7. Therefore, installing a tampering sensor could
at most give an increase of 1.7 in expected utility.

In the context N3, the value of information about Tampering for Check smoke
is 0. In the optimal policy for the network with both arcs, the information about
Alarm is ignored in the optimal decision function for Check smoke; the agent
never checks for smoke when deciding whether to call in the optimal policy
when Alarm is a parent of Call.

The value of control specifies how much it is worth to control a variable.
In its simplest form, it is the change in value of a decision network where a
random variable is replaced by a decision variable, and arcs are added to make
it a no-forgetting network. If this is done, the change in utility is non-negative;
the resulting network always has an equal or higher expected utility than the
original network.

Example 12.27 In the fire alarm decision network of Figure 12.11 (page 540),
you may be interested in the value of controlling Tampering. This could, for
example, be used to estimate how much it is worth to add security guards to
prevent tampering. To compute this, compare the value of the decision network
of Figure 12.11 (page 540) to the decision network where Tampering is a decision
node and a parent of the other two decision nodes.

To determine the value of control, turn the Tampering node into a decision
node and make it a parent of the other two decisions. The value of the resulting
network is −20.7. This can be compared to the value of N3 in Example 12.26
(which has the same arcs, and differs in whether Tampering is a decision or
random node), which was −20.9. Notice that control is more valuable than
information.
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The previous description assumed the parents of the random variable that
is being controlled become parents of the decision variable. In this case, the
value of control is never negative. However, if the parents of the decision node
do not include all of the parents of the random variable, it is possible that con-
trol is less valuable than information. In general, one must be explicit about
what information will be available when controlling a variable.

Example 12.28 Consider controlling the variable Smoke in the network of
Figure 12.11. If Fire is a parent of the decision variable Smoke, it has to be a
parent of Call to make it a no-forgetting network. The expected utility of the
resulting network with Smoke coming before Check smoke is −2.0. The value
of controlling Smoke in this situation is due to observing Fire. The resulting
optimal decision is to call if there is a fire and not call otherwise.

Suppose the agent were to control Smoke without observing Fire. That is,
the agent can decide to make smoke or prevent smoke, and Fire is not a parent
of any decision. This situation can be modeled by making Smoke a decision
variable with no parents. In this case, the expected utility is −23.20, which is
worse than the initial decision network, because blindly controlling Smoke loses
its ability to act as a sensor for Fire.

12.5 Decision Processes

Recall that the planning horizon (page 23) is how far ahead an agent considers
when planning. The decision networks of Section 12.3.1 (page 537) were for
finite-stage, partially observable domains. This section considers indefinite-
horizon and infinite-horizon problems.

Often an agent must reason about an ongoing process or it does not know
how many actions it will be required to do. These are called infinite-horizon
problems when the process may go on forever or indefinite-horizon problems
when the agent will eventually stop, but it does not know when it will stop.

For ongoing processes, it may not make sense to consider only the util-
ity at the end, because the agent may never get to the end. Instead, an agent
can receive a sequence of rewards. Rewards provide a way to factor utility
(page 522) through time, by having a reward for each time, and accumulating
(page 555) the rewards to determine utility. Rewards can incorporate action
costs in addition to any prizes or penalties that may be awarded. Negative re-
wards are called punishments. Indefinite-horizon problems can be modeled
using a stopping state. A stopping state or absorbing state is a state in which
all actions have no effect; that is, when the agent is in that state, all actions
immediately return to that state with a zero reward. Goal achievement can be
modeled by having a reward for entering such a stopping state.

A Markov decision process can be seen as a Markov chain (page 418) aug-
mented with actions and rewards or as a decision network extended in time.
At each stage, the agent decides which action to perform; the reward and the
resulting state depend on both the previous state and the action performed.
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Unless noted, assume a stationary model (page 418), where the state tran-
sitions and the rewards do not depend on the time.

A Markov decision process, or MDP, consists of

• S, a set of states of the world
• A, a set of actions
• P : S× S× A → [0, 1], which specifies the dynamics. This is written as

P(s′ | s, a), the probability of the agent transitioning into state s′ given
that the agent is in state s and does action a. Thus

∀s ∈ S ∀a ∈ A ∑
s′∈S

P(s′ | s, a) = 1.

• R : S× A× S → ", where R(s, a, s′), the reward function, gives the ex-
pected immediate reward from doing action a and transitioning to state s′
from state s. Sometimes it is convenient to use R(s, a), the expected value
of doing a in state s, which is R(s, a) = ∑s′ R(s, a, s′) ∗ P(s′ | s, a).

A finite part of a Markov decision process can be depicted using a decision
network as in Figure 12.15.

Example 12.29 Suppose Sam wanted to make an informed decision about
whether to party or relax over the weekend. Sam prefers to party, but is worried
about getting sick. Such a problem can be modeled as an MDP with two states,
healthy and sick, and two actions, relax and party. Thus

S = {healthy, sick}
A = {relax, party}.

Based on experience, Sam estimates that the dynamics P(s′ | s, a) is given
by

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

Figure 12.15: Decision network representing a finite part of an MDP
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S A Probability of s′ = healthy
healthy relax 0.95
healthy party 0.7
sick relax 0.5
sick party 0.1

So, if Sam is healthy and parties, there is a 30% chance of becoming sick. If Sam
is healthy and relaxes, Sam will more likely remain healthy. If Sam is sick and
relaxes, there is a 50% chance of getting better. If Sam is sick and parties, there
is only a 10% chance of becoming healthy.

Sam estimates the rewards to be the following, irrespective of the resulting
state:

S A Reward
healthy relax 7
healthy party 10
sick relax 0
sick party 2

Thus, Sam always enjoys partying more than relaxing. However, Sam feels
much better overall when healthy, and partying results in being sick more than
relaxing does.

The problem is to determine what Sam should do each weekend.

Example 12.30 A grid world is an idealization of a robot in an environment.
At each time, the robot is at some location and can move to neighboring lo-
cations, collecting rewards and punishments. Suppose that the actions are
stochastic, so that there is a probability distribution over the resulting states
given the action and the state.

+10-10

-5-1

-1

-1

-1

+3

Figure 12.16: The grid world of Example 12.30
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Figure 12.16 (page 554) shows a 10× 10 grid world, where the robot can
choose one of four actions: up, down, left, or right. If the agent carries out one
of these actions, it has a 0.7 chance of going one step in the desired direction and
a 0.1 chance of going one step in any of the other three directions. If it bumps
into the outside wall (i.e., the location computed is outside the grid), there is a
penalty of 1 (i.e., a reward of −1) and the agent does not actually move. There
are four rewarding states (apart from the walls), one worth +10 (at position
(9, 8); 9 across and 8 down), one worth +3 (at position (8, 3)), one worth −5 (at
position (4, 5)), and one worth −10 (at position (4, 8)). In each of these states,
the agent gets the reward after it carries out an action in that state, not when it
enters the state. When the agent reaches one of the states with positive reward
(either +3 or +10), no matter what action it performs, at the next step it is flung,
at random, to one of the four corners of the grid world.

Note that the reward in this example depends on both the initial state and
the final state. The agent bumped into the wall, and so received a reward of−1,
if and only if the agent remains in the same state. Knowing just the initial state
and the action, or just the final state and the action, does not provide enough
information to infer the reward.

As with decision networks (page 537), the designer also has to consider
what information is available to the agent when it decides what to do. There
are two variations:

• In a fully observable Markov decision process (MDP), the agent gets to
observe the current state when deciding what to do.

• A partially observable Markov decision process (POMDP) is a combi-
nation of an MDP and a hidden Markov model (HMM) (page 420). At
each time, the agent gets to make some (ambiguous and possibly noisy)
observations that depend on the state. The agent only has access to the
history of rewards, observations, and previous actions when making a
decision. It cannot directly observe the current state.

Rewards

To decide what to do, the agent compares different sequences of rewards. The
most common way to do this is to convert a sequence of rewards into a number
called the return, the cumulative reward, or the value. This is a number that
specifies the utility to an agent of the current and future rewards. To compute
the return, the agent combines the current reward with other rewards in the
future. Suppose the agent receives the sequence of rewards

r1, r2, r3, r4, . . . .

Three common reward criteria are used to combine rewards into a value V:

Total reward V = ∑∞
i=1 ri. In this case, the value is the sum of all of the re-

wards. This works when you can guarantee that the sum is finite; but if
the sum is infinite, it does not give any opportunity to compare which
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sequence of rewards is preferable. For example, a sequence of 1 rewards
has the same total as a sequence of 100 rewards (both are infinite). One
case where the total reward is finite is when there are stopping states
(page 552) and the agent always has a non-zero probability of eventually
entering a stopping state.

Average reward V = limn→∞(r1 + · · ·+ rn)/n. In this case, the agent’s value
is the average of its rewards, averaged over for each time period. As long
as the rewards are finite, this value will also be finite. However, whenever
the total reward is finite, the average reward is zero, and so the average
reward will fail to allow the agent to choose among different actions that
each have a zero average reward. Under this criterion, the only thing that
matters is where the agent ends up. Any finite sequence of bad actions
does not affect the limit. For example, receiving 1,000,000 followed by
rewards of 1 has the same average reward as receiving 0 followed by
rewards of 1 (they both have an average reward of 1).

Discounted reward V = r1 + γr2 + γ2r3 + · · · + γi−1ri + · · · , where γ, the
discount factor, is a number in the range 0 ≤ γ < 1. Under this criterion,
future rewards are worth less than the current reward. If γ was 1, this
would be the same as the total reward. When γ = 0, the agent ignores
all future rewards. Having 0 ≤ γ < 1 guarantees that, whenever the
rewards are finite, the total value will also be finite.

The discounted reward can be rewritten as

V =
∞

∑
i=1

γi−1ri

= r1 + γr2 + γ2r3 + · · ·+ γi−1ri + · · ·
= r1 + γ(r2 + γ(r3 + · · · )).

Suppose Vk is the reward accumulated from time k:

Vk = rk + γ(rk+1 + γ(rk+2 + · · · ))
= rk + γVk+1.

To understand the properties of Vk, suppose S = 1 + γ + γ2 + γ3 + · · · ,
then S = 1 + γS. Solving for S gives S = 1/(1 − γ). Thus, with the
discounted reward, the value of all of the future is at most 1/(1−γ) times
as much as the maximum reward and at least 1/(1− γ) times as much as
the minimum reward. Therefore, the eternity of time from now only has
a finite value compared with the immediate reward, unlike the average
reward, in which the immediate reward is dominated by the cumulative
reward for the eternity of time.

In economics, γ is related to the interest rate: getting $1 now is equiv-
alent to getting $(1+ i) in one year, where i is the interest rate. You could
also see the discount rate as the probability that the agent survives; γ can
be seen as the probability that the agent keeps going.
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The rest of this chapter considers discounted rewards, referred to as the return
or value.

12.5.1 Policies

In a fully-observable Markov decision process, the agent gets to observe its
current state before deciding which action to carry out. For now, assume that
the Markov decision process is fully observable. A policy for an MDP specifies
what the agent should do as a function of the state it is in. A stationary policy
is a function π : S → A. In a non-stationary policy the action is a function of
the state and the time; we assume policies are stationary.

Given a reward criterion, a policy has an expected return, often referred
to as the expected value, for every state. Let Vπ(s) be the expected value of
following π in state s. This is the utility an agent that is in state s and following
policy π receives, on average. Policy π is an optimal policy if for every policy
π′ and state s, Vπ(s) ≥ Vπ′(s). That is, an optimal policy is at least as good as
any other policy for every state.

Example 12.31 For Example 12.29 (page 553), with two states and two actions,
there are 22 = 4 policies:

• Always relax.

• Always party.

• Relax if healthy and party if sick.

• Party if healthy and relax if sick.

The total reward for all of these is infinite because the agent never stops, and
can never continually get a reward of 0. To determine the average reward is
left as an exercise (Exercise 12.15 (page 580)). How to compute the discounted
reward is discussed in the next section.

Example 12.32 In the grid-world MDP of Example 12.30 (page 554), there
are 100 states and 4 actions, therefore there are 4100 ≈ 1060 stationary policies.
Each policy specifies an action for each state.

For infinite-horizon problems, a stationary MDP always has an optimal
stationary policy. However, for finite-stage problems, a non-stationary policy
might be better than all stationary policies. For example, if the agent had to
stop at time n, for the last decision in some state, the agent would act to get
the largest immediate reward without considering the future actions, but for
earlier decisions it may decide to get a lower reward immediately to obtain a
larger reward later.
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Foundations of Discounting

You might wonder whether there is something special about discounted re-
wards, or they are just an arbitrary way to define utility over time. Utility
follows from the axioms of Section 12.1.1 (page 518). Discounting can be
proved to follow from a set of assumptions, as follows.

With an infinite sequence of outcomes 〈o1, o2, o3, . . . 〉 the following as-
sumptions hold

• the first time period matters, so there exist o1, o2, o3, . . . and o′1 such that

〈o1, o2, o3, . . . 〉 ! 〈
o′1, o2, o3, . . .

〉
• a form of additive independence (page 526), where preferences for the

first two time periods do not depend on the future:

〈x1, x2, o3, o4 . . . 〉 ! 〈y1, y2, o3, o4 . . . 〉
if and only if〈

x1, x2, o′3, o′4 . . .
〉 ! 〈

y1, y2, o′3, o′4 . . .
〉

• time stationarity, where if the first outcome is the same, preference de-
pends on the remainder:

〈o1, o2, o3, . . . 〉 ! 〈
o1, o′2, o′3, . . .

〉
if and only if

〈o2, o3, . . . 〉 ! 〈
o′2, o′3, . . .

〉
• some extra technical conditions specifying that the agent is only con-

cerned about finite subspaces of infinite time

if and only if there exists a discount factor γ and function r such that

utility(〈o1, o2, o3, . . . 〉) = ∑
i

γi−1r(oi)

where r does not depend on the time, only the outcome. These are quite
strong assumptions, for example, disallowing complements and substitutes
(page 526). It is standard to engineer the rewards to make them true.
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Value of a Policy

Consider how to compute the expected value, using the discounted reward of
a policy, given a discount factor of γ. The value is defined in terms of two
interrelated functions:

• Vπ(s) is the expected value for an agent that is in state s and following
policy π.

• Qπ(s, a) is the expected value for an agent that is starting in state s, then
doing action a, then following policy π. This is called the Q-value of
policy π.

Qπ and Vπ are defined recursively in terms of each other. If the agent is in
state s, performs action a, and arrives in state s′, it gets the immediate reward
of R(s, a, s′) plus the discounted future return, γVπ(s′). When the agent is plan-
ning it does not know the actual resulting state, so it uses the expected value,
averaged over the possible resulting states:

Qπ(s, a) = ∑
s′

P(s′ | s, a)(R(s, a, s′) + γVπ(s′))

= R(s, a) + γ ∑
s′

P(s′ | s, a)Vπ(s′) (12.2)

where R(s, a) = ∑s′ P(s′ | s, a)R(s, a, s′).
Vπ(s) is obtained by doing the action specified by π and then following π:

Vπ(s) = Qπ(s, π(s)).

Value of an Optimal Policy

Let Q∗(s, a), where s is a state and a is an action, be the expected value of doing
a in state s and then following the optimal policy. Let V∗(s), where s is a state,
be the expected value of following an optimal policy from state s.

Q∗ can be defined analogously to Qπ:

Q∗(s, a) = ∑
s′

P(s′ | s, a)(R(s, a, s′) + γV∗(s′))

= R(s, a) + γ ∑
s′

P(s′ | s, a)γV∗(s′).

V∗(s) is obtained by performing the action that gives the best value in each
state:

V∗(s) = max
a

Q∗(s, a).

An optimal policy π∗ is one of the policies that gives the best value for each
state:

π∗(s) = arg max
a

Q∗(s, a)

where arg maxa Q∗(s, a) is a function of state s, and its value is an action a that
results in the maximum value of Q∗(s, a).
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12.5.2 Value Iteration

Value iteration is a method of computing an optimal policy for an MDP and its
value.

Value iteration starts at the “end” and then works backward, refining an
estimate of either Q∗ or V∗. There is really no end, so it uses an arbitrary end
point. Let Vk be the value function assuming there are k stages to go, and let
Qk be the Q-function assuming there are k stages to go. These can be defined
recursively. Value iteration starts with an arbitrary function V0. For subsequent
stages, it uses the following equations to get the functions for k+ 1 stages to go
from the functions for k stages to go:

Qk+1(s, a) = R(s, a) + γ ∗∑
s′

P(s′ | s, a) ∗Vk(s′)

Vk(s) = max
a

Qk(s, a).

Value iteration can either save a V[S] array or a Q[S, A] array. Saving the V
array results in less storage, but it is more difficult to determine an optimal
action, and one more iteration is needed to determine which action results in
the greatest value.

Figure 12.17 (page 561) shows the value iteration algorithm when the V ar-
ray is stored. This procedure converges no matter what the initial value func-
tion V0 is. An initial value function that approximates V∗ converges quicker
than one that does not. The basis for many abstraction techniques for MDPs
is to use some heuristic method to approximate V∗ and to use this as an initial
seed for value iteration.

Example 12.33 Consider the two-state MDP of Example 12.29 (page 553) with
discount γ = 0.8. We write the value function as [healthy value, sick value] and
the Q-function as [[healthy relax, healthy party], [sick relax, sick party]]. Suppose
initially the value function is [0, 0]. The next Q-value is [[7, 10], [0, 2]], so the
next value function is [10, 2] (obtained by Sam partying). The next Q-value is
then

State Action Value
healthy relax 7 + 0.8 ∗ (0.95 ∗ 10 + 0.05 ∗ 2) = 14.68
healthy party 10 + 0.8 ∗ (0.7 ∗ 10 + 0.3 ∗ 2) = 16.08
sick relax 0 + 0.8 ∗ (0.5 ∗ 10 + 0.5 ∗ 2) = 4.8
sick party 2 + 0.8 ∗ (0.1 ∗ 10 + 0.9 ∗ 2) = 4.24

So the next value function is [16.08, 4.8]. After 1000 iterations, the value func-
tion is [35.71, 23.81]. So the Q-function is [[35.10, 35.71], [23.81, 22.0]]. Therefore,
the optimal policy is to party when healthy and relax when sick.

Example 12.34 Consider the nine squares around the +10 reward of Example
12.30 (page 554). The discount is γ = 0.9. Suppose the algorithm starts with
V0[s] = 0 for all states s.

The values of V1, V2, and V3 (to one decimal point) for these nine cells are
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0 0 −0.1
0 10 −0.1
0 0 −0.1

V1

0 6.3 −0.1
6.3 9.8 6.2
0 6.3 −0.1

V2

4.5 6.2 4.4
6.2 9.7 6.6
4.5 6.1 4.4

V3

After the first step of value iteration (in V1), the nodes get their immediate
expected reward. The center node in this figure is the +10 reward state. The
right nodes have a value of −0.1, with the optimal actions being up, left, and
down; each of these has a 0.1 chance of crashing into the wall for an immediate
expected reward of −1.

V2 are the values after the second step of value iteration. Consider the node
that is immediately to the left of the +10 reward state. Its optimal value is to
go to the right; it has a 0.7 chance of getting a reward of 10 in the following
state, so that is worth 9 (10 times the discount of 0.9) to it now. The expected
reward for the other possible resulting states is 0. Thus, the value of this state
is 0.7 ∗ 9 = 6.3.

Consider the node immediately to the right of the +10 reward state after
the second step of value iteration. The agent’s optimal action in this state is to

1: procedure Value iteration(S, A, P, R)
2: Inputs
3: S is the set of all states
4: A is the set of all actions
5: P is the state transition function specifying P(s′ | s, a)
6: R is a reward function R(s, a)
7: Output
8: π[S] approximately optimal policy
9: V[S] value function

10: Local
11: real array Vk[S] is a sequence of value functions
12: action array π[S]
13: assign V0[S] arbitrarily
14: k := 0
15: repeat
16: k := k + 1
17: for each state s do
18: Vk[s] = maxa R(s, a) + γ ∗∑s′ P(s′ | s, a) ∗Vk−1[s′]
19: until termination
20: for each state s do
21: π[s] = arg maxa R(s, a) + γ ∗∑s′ P(s′ | s, a) ∗Vk[s′]
22: return π, Vk

Figure 12.17: Value iteration for MDPs, storing V
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go left. The value of this state is

Prob Reward Future Value
0.7 ∗ ( 0 + 0.9 ∗ 10) Agent goes left

+ 0.1 ∗ ( 0 + 0.9 ∗ −0.1) Agent goes up
+ 0.1 ∗ ( −1 + 0.9 ∗ −0.1) Agent goes right
+ 0.1 ∗ ( 0 + 0.9 ∗ −0.1) Agent goes down

which evaluates to 6.173, which is approximated to 6.2 in V2 above.
The +10 reward state has a value less than 10 in V2 because the agent gets

flung to one of the corners and these corners look bad at this stage.
After the next step of value iteration, shown on the right-hand side of the

figure, the effect of the +10 reward has progressed one more step. In particular,
the corners shown get values that indicate a reward in three steps.

The value iteration algorithm of Figure 12.17 (page 561) has an array for
each stage, but it really only needs to store the current and previous arrays. It
can update one array based on values from the other.

A common refinement of this algorithm is asynchronous value iteration.
Rather than sweeping through the states to create a new value function, asyn-
chronous value iteration updates the states one at a time, in any order, and
stores the values in a single array. Asynchronous value iteration can store ei-
ther the Q[s, a] array or the V[s] array. Figure 12.18 (page 563) shows asyn-
chronous value iteration when the Q-array is stored. It converges faster than
value iteration and is the basis of some of the algorithms for reinforcement
learning (page 583). Termination can be difficult to determine if the agent must
guarantee a particular error, unless it is careful about how the actions and states
are selected. Often, this procedure is run indefinitely as an anytime algorithm
(page 26), where it is always prepared to give its best estimate of the optimal
action in a state when asked.

Asynchronous value iteration could also be implemented by storing just
the V[s] array. In that case, the algorithm selects a state s and carries out the
update

V[s] := max
a

R(s, a) + γ ∗∑
s′

P(s′ | s, a) ∗V[s′].

Although this variant stores less information, it is more difficult to extract the
policy. It requires one extra backup to determine which action a results in the
maximum value. This can be done using

π[s] := arg max
a

R(s, a) + γ ∗∑
s′

P(s′ | s, a) ∗V[s′].

Example 12.35 In Example 12.34 (page 560), the state one step up and one
step to the left of the +10 reward state only had its value updated after three
value iterations, in which each iteration involved a sweep through all of the
states.
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In asynchronous value iteration, the +10 reward state can be chosen first.
Next, the node to its left can be chosen, and its value will be 0.7 ∗ 0.9 ∗ 10 = 6.3.
Next, the node above that node could be chosen, and its value would become
0.7 ∗ 0.9 ∗ 6.3 = 3.969. Note that it has a value that reflects that it is close to a +10
reward after considering three states, not 300 states, as does value iteration.

12.5.3 Policy Iteration

Policy iteration starts with a policy and iteratively improves it. It starts with
an arbitrary policy π0 (an approximation to the optimal policy works best) and
carries out the following steps, starting from i = 0.

• Policy evaluation: determine Vπi(S). The definition of Vπ is a set of
|S| linear equations in |S| unknowns. The unknowns are the values of
Vπi(S). There is an equation for each state. These equations can be solved
by a linear equation solution method (such as Gaussian elimination) or
they can be solved iteratively.

• Policy improvement: choose πi+1(s) = arg maxa Qπi(s, a), where the Q-
value can be obtained from V using Equation (12.2) (page 559). To detect

1: procedure Asynchronous value iteration(S, A, P, R)
2: Inputs
3: S is the set of all states
4: A is the set of all actions
5: P is the state transition function specifying P(s′ | s, a)
6: R is a reward function R(s, a)
7: Output
8: π[s] policy
9: Q[S, A] value function

10: Local
11: real array Q[S, A]
12: action array π[S]
13: assign Q[S, A] arbitrarily
14: repeat
15: select a state s
16: select an action a
17: Q[s, a] = R(s, a) + γ ∗∑s′ P(s′ | s, a) ∗maxa′ Q[s′, a′]
18: until termination
19: for each state s do
20: π[s] = arg maxa Q[s, a]
21: return π, Q

Figure 12.18: Asynchronous value iteration for MDPs
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when the algorithm has converged, it should only change the policy if
the new action for some state improves the expected value; that is, it
should set πi+1(s) to be πi(s) if πi(s) is one of the actions that maximizes
Qπi(s, a).

• Stop if there is no change in the policy, if πi+1 = πi, otherwise increment
i and repeat.

The algorithm is shown in Figure 12.19. Note that it only keeps the latest policy
and notices if it has changed. This algorithm always halts, usually in a small
number of iterations. Unfortunately, solving the set of linear equations is often
time consuming.

A variant of policy iteration, called modified policy iteration, is obtained
by noticing that the agent is not required to evaluate the policy to improve it;
it can just carry out a number of backup steps using Equation (12.2) (page 559)

1: procedure Policy iteration(S, A, P, R)
2: Inputs
3: S is the set of all states
4: A is the set of all actions
5: P is the state transition function specifying P(s′ | s, a)
6: R is a reward function R(s, a)
7: Output
8: optimal policy π
9: Local

10: action array π[S]
11: Boolean variable noChange
12: real array V[S]
13: set π arbitrarily
14: repeat
15: noChange := true
16: Solve V[s] = R(s, a) + γ ∗∑s′∈S P(s′ | s, π[s]) ∗V[s′]
17: for each s ∈ S do
18: QBest := V[s]
19: for each a ∈ A do
20: Qsa := R(s, a) + γ ∗∑s′∈S P(s′ | s, a) ∗V[s′]
21: if Qsa > QBest then
22: π[s] := a
23: QBest := Qsa
24: noChange := false
25: until noChange
26: return π

Figure 12.19: Policy iteration for MDPs
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and then do an improvement.
Policy iteration is useful for systems that are too big to be represented ex-

plicitly as MDPs. One case is when there is a large action space, and the agent
does not want to enumerate all actions at each time. The algorithm also works
as long as an improving action is found, and it only needs to find an improving
action probabilistically, for example, by testing some promising actions, rather
than all.

Suppose a controller has some parameters that can be varied. An estimate
of the derivative of the cumulative discounted reward of a parameter a in some
context s, which corresponds to the derivative of Q(a, s), can be used to im-
prove the parameter. Such an iteratively improving controller can get into a
local maximum that is not a global maximum. Policy iteration for state-based
MDPs does not result in non-optimal local maxima, because it is possible to
improve an action for a state without affecting other states, whereas updating
parameters can affect many states at once.

12.5.4 Dynamic Decision Networks

A Markov decision process is a state-based representation. Just as in classical
planning (page 231), where reasoning in terms of features can allow for more
straightforward representations and more efficient algorithms, planning un-
der uncertainty can also take advantage of reasoning in term of features. This
forms the basis for decision-theoretic planning.

A dynamic decision network (DDN) can be seen in a number of different
ways:

• a factored representation of MDPs, where the states are described in terms
of features

• an extension of decision networks to allow repeated structure for indefi-
nite or infinite-horizon problems

• an extension of dynamic belief networks (page 427) to include actions
and rewards

• an extension of the feature-based representation of actions (page 237) or
the CSP representation of planning (page 244) to allow for rewards and
for uncertainty in the effect of actions.

A dynamic decision network consists of

• a set of state features
• a set of possible actions
• a two-stage decision network with chance nodes F0 and F1 for each fea-

ture F (for the features at time 0 and time 1, respectively) and decision
node A0, such that

• the domain of A0 is the set of all actions

• the parents of A0 are the set of time 0 features (these arcs are often
not shown explicitly)
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• the parents of time 0 features do not include A0 or time 1 features,
but can include other time 0 features as long as the resulting network
is acyclic

• the parents of time 1 features can contain A0 and other time 0 or time
1 features as long as the graph is acyclic

• there are probability distributions for P(F0 | parents(F0)) and P(F1 |
parents(F1)) for each feature F

• the reward function depends on any subset of the action and the
features at times 0 or 1.

As in a dynamic belief network, a dynamic decision network can be un-
folded into a decision network by replicating the features and the action for
each subsequent time. For a time horizon of n, there is a variable Fi for each
feature F and for each time i for 0 ≤ i ≤ n. For a time horizon of n, there is a
variable Ai for each time i for 0 ≤ i < n. The horizon, n, can be unbounded,
which allows us to model processes that do not halt.

Thus, if there are k features for a time horizon of n, there are k ∗ (n + 1)
chance nodes (each representing a random variable) and k decision nodes in
the unfolded network.

The parents of Ai are random variables Fi (so that the agent can observe
the state). Each Fi+1 depends on the action Ai and the features at time i and
i + 1 in the same way, with the same conditional probabilities, as F1 depends
on the action A0 and the features at time 0 and 1. The F0 variables are modeled
directly in the two-stage decision network.

Example 12.36 Example 6.1 (page 232) models a robot that can deliver coffee
and mail in a simple environment with four locations. Consider representing a
stochastic version of Example 6.1 as a dynamic decision network. We use the
same features as in that example.

Feature RLoc models the robot’s location. The parents of variables RLoc1
are Rloc0 and A.

Feature RHC is true when the robot has coffee. The parents of RHC1 are
RHC0, A0, and RLoc0; whether the robot has coffee depends on whether it had
coffee before, what action it performed, and its location. The probabilities can
encode the possibilities that the robot does not succeed in picking up or deliv-
ering the coffee, that it drops the coffee, or that someone gives it coffee in some
other state (which we may not want to say is impossible).

Variable SWC is true when Sam wants coffee. The parents of SWC1 include
SWC0, RHC0, A0, and RLoc0. You would not expect RHC1 and SWC1 to be
independent because they both depend on whether or not the coffee was suc-
cessfully delivered. This could be modeled by having one be a parent of the
other.

The two-stage belief network representing how the state variables at time 1
depend on the action and the other state variables is shown in Figure 12.20
(page 567). This figure also shows the reward as a function of the action,
whether Sam stopped wanting coffee, and whether there is mail waiting.
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Figure 12.21 (page 568) shows the unfolded decision network for a horizon
of 3.

Example 12.37 An alternate way to model the dependence between RHC1
and SWC1 is to introduce a new variable, CSD1, which represents whether cof-
fee was successfully delivered at time 1. This variable is a parent of both RHC1
and SWC1. Whether Sam wants coffee is a function of whether Sam wanted
coffee before and whether coffee was successfully delivered. Whether the robot
has coffee depends on the action and the location, to model the robot picking up
coffee. Similarly, the dependence between MW1 and RHM1 can be modeled by
introducing a variable MPU1, which represents whether the mail was success-
fully picked up. The resulting DDN unfolded to a horizon of 2, but omitting
the reward, is shown in Figure 12.22 (page 568).

If the reward comes only at the end, variable elimination for decision net-
works, shown in Figure 12.14 (page 546), can be applied directly. Variable elim-
ination for decision networks corresponds to value iteration. Note that in fully
observable decision networks, variable elimination does not require the no-
forgetting condition. Once the agent knows the state, all previous decisions are
irrelevant. If rewards are accrued at each time step, the algorithm must be aug-
mented to allow for the addition (and discounting) of rewards. See Exercise
12.19 (page 582).
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MW0

RHM0

A0

RLoc1

RHC1
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MW1

RHM1

State Action State

R0
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Figure 12.20: Two-stage dynamic decision network
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Figure 12.21: Dynamic decision network unfolded for a horizon of 3
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Figure 12.22: Dynamic decision network with intermediate variables for a horizon
of 2, omitting the reward nodes
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12.5.5 Partially Observable Decision Processes

A partially observable Markov decision process (POMDP) is a combination
of an MDP (page 553) and a hidden Markov model (HMM) (page 420). Whereas
the state in an MPD is assumed to be fully observable, the environment state
in a POMDP is partially observable (page 30), which means the agent receives
partial and/or noisy observations of the environment before it has to act.

A POMDP can be expressed as the infinite extension of the decision net-
work of Figure 12.23, which explicitly shows the belief state (page 55) of the
agent. The network extends indefinitely to the right.

A POMDP consists of the following variables and factors defining the ex-
ternal behavior of the agent:

• S, a set of states of the world
• A, a set of actions
• O, a set of possible observations
• P(S0), the probability distribution of the starting state
• P(S′ | S, A), the dynamics of the environment, is the probability of getting

to state S′ by doing action A from state S
• R(S, A), the expected reward of starting in state S, doing action A
• P(O | S, A, R), the probability of observing O given the state is S, the

previous action is A, and the reward is R.

P(S′ | S, A) and R(S, A) are the same as in an MDP (page 553). The arc from
Si to Oi means that what the agent observes can depend on the state. The arc
from Ai−1 to Oi allows the agent to have actions that don’t affect the environ-
ment, but affect its observations, such as paying attention to some part of the

S0 S1 S2

A0 A1

S3

A2

R0 R1 R2

O0 O1 O2

B0 B1 B2

Environment

Agent

O3

B3

Figure 12.23: A POMDP with explicit belief states
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environment. The arc from Ri−1 to Oi indicates that the agent’s observation can
depend on the reward received; the agent is not assumed to observe the reward
directly, as sometimes the rewards are only seen in retrospect. Observing the
reward can often provide hints about the state that the agent might not actually
be able to observe.

Internally, an agent has

• B, the set of possible belief states
• T(B, A, O), a belief state transition function (page 56), which specifies

the agent’s new belief state given the previous belief state B, the action
the agent did, A, and the observation, O; the belief state at stage i is Bi =
T(Bi−1, Ai−1, Oi).

• π(Ai | Bi, Oi), a command function (page 57) or policy, which specifies
a conditional plan defining what the agent will do as a function of the
belief state and the observation.

A policy might be stochastic to allow for exploration (page 591) or to con-
found other agents (page 623). The belief-state transition function is typically
deterministic, representing probability distributions, that are updated based
on the action and new observations.

Planning in a POMDP involves creating both a belief state transition func-
tion and a command function. The Bi variables are special in that the world
does not specify the domain or structure of these variables; an agent or its de-
signer gets to choose the structure of a belief state, and how the agent acts
based on its belief state, previous action, and latest observations. The belief
state encodes all that the agent has remembered about its history.

There are a number of ways to represent a belief state and to find the opti-
mal policy:

• The decision network of Figure 12.23 (page 569) can be solved using vari-
able elimination for decision networks, shown in Figure 12.14 (page 546),
extended to include discounted rewards. Adding the no-forgetting arcs
(page 540) is equivalent to a belief state being the sequence of observa-
tions and actions; Bi is Ai−1 and Oi appended to the sequence Bi−1. The
problem with this approach is that the history is unbounded, and the size
of a policy is exponential in the length of the history. This is only practical
when the history is short or is deliberately cut short.

• The belief state can be a probability distribution over the states of the en-
vironment. Maintaining the belief state is then the problem of filtering
(page 422) in the associated hidden Markov model. The problem with
this approach is that, with n world states, the set of belief states is an
(n − 1)-dimensional real space. The agent then needs to find the opti-
mal function from this multidimensional real space into the actions. The
value of a sequence of actions only depends on the world states; as the
belief state is a probability distribution over world states, the expected
value of a belief state is a linear function of the values of the world states.
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Not all points in "n−1 are possible belief states, only those resulting from
sequences of observations are possible. Policies can be represented as a
decision tree with conditions being (functions of) the observations. The
observations dictate which path in the tree the agent will follow. The
value function for an agent choosing the best policy for any finite look-
ahead is piecewise linear and convex. Although this is simpler than a
general "n−1 function, the number of conditional policies grows like Ot,
where O is the set of possible observations, and t is the stage.

• In general, the belief state can be anything. A belief state can include
probability distributions over some of the variables, and remembered ob-
servations and actions. The agent can search over the space of controllers
for the best controller (page 55). Thus, the agent searches over what to
remember (the belief state) and what to do based on its belief state. Note
that the first two proposals are instances of this approach: the agent’s
belief state is all of its history, or the agent’s belief state is a probability
distribution over world states, both of which are intractable. Because the
general case is unconstrained over what to remember, the search space is
enormous.

12.6 Social Impact

Open and accountable decision making requires making utilities explicit, where
they are open to scrutiny and people can argue why they are appropriate or
not; see the box on page 531. When a decision is proposed, sensitivity anal-
ysis – exploring how the decision changes as utilities change – can determine
just how much the utility matters. Making utilities explicit and open is par-
ticularly important for decisions in the public sphere that affect many people,
however these are often controversial because people do not have a common
utility function.

Designing utilities and rewards so that the policies have desirable proper-
ties is called utility engineering or reward engineering. This is particularly
difficult for unobservable constructs such as socioeconomic status, teacher ef-
fectiveness, and risk of recidivism for decisions on poverty reduction, educa-
tion, or crime. These cannot be measured directly, but need to be inferred from
a measurement model of observable properties, such as death rate, student rat-
ings, or rearrests. However, an agent optimizing for the measurement model
might not actually optimize for what is desired. Jacobs and Wallach [2021]
analyze the interaction of measurement models and fairness.

One case where explicit utilities have been used is for resource allocation in
health care, particularly for jurisdictions where the allocation is based on need,
not ability to pay. A measure used in a number of countries is the quality-
adjusted life year (QALY), a utility-based measure for evaluating medical in-
terventions, such as (expensive) drugs or surgeries. For each possible interven-
tion, it uses a utility of 1 for a healthy life for a year and 0 for death. The utility
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can be negative for outcomes that are considered worse than death. Outcomes
are assessed as a lottery between the maximum and minimum utilities. The
utility of the intervention is the sum of this value over each expected year of
life. If the intervention is ongoing and constant in the future, the utility is the
life expectancy times the yearly value. The QALY provides a measure that in-
corporates the quantity and quality of life. When there are limited resources,
the cost/QALY ratio is used as a cost-effectiveness measure for decision mak-
ing in many countries.

Society must make decisions that affect everyone. Finding a utility that
works for everyone is controversial. For example, for most sighted people,
going blind would have a low utility; they consider going blind to be very bad
as they would need to relearn the way they interact with the world. So the
utility for blindness for a year would be low. However, this implies that blind
people are less valued than sighted people, an ableist assumption. There have
been suggestions for incorporating individual reference points, as in prospect
theory (page 528).

Sometimes society needs to make life-and-death decisions. For example,
consider how much to spend on earthquake-proofing public schools. A se-
vere earthquake when pupils are in school might cause multiple deaths. It
is possible to compute the probability of an earthquake in a location and the
probability that a particular structure will collapse when students are present.
Money can be spent to reduce the chance of a collapse. Deciding whether to
spend the money is a classic example of decision making under uncertainty,
which requires trading off money with children’s lives. Many decision makers
are reluctant to explicitly trade off money and the lives of children. However,
when they don’t make an explicit trade-off they tend to undervalue children’s
lives.

As AI tools become more common, and more decisions are automated, so-
ciety will need to come to terms with the uncomfortable conversations of as-
signing utilities. Not having these conversations will mean that someone else’s
utilities are embedded in AI tools.

12.7 Review

• Utility is a measure of preference that combines with probability.
• A decision network can represent a finite-stage, partially observable se-

quential decision problem in terms of features.
• An MDP can represent an infinite-stage or indefinite-stage sequential de-

cision problem in terms of states.
• A fully observable MDP can be solved with value iteration or policy iter-

ation.
• A dynamic decision network allows for the representation of an MDP in

terms of features.
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• Utility-based decision making in the public realm can be made more
transparent and accountable if the utility measures are made explicit.

12.8 References and Further Reading

Utility theory, as presented here, was developed by Neumann and Morgen-
stern [1953] and further developed by Savage [1972]. Keeney and Raiffa [1976]
discuss utility theory, concentrating on multi-attribute (feature-based) utility
functions. The axioms for discounting are by Koopmans [1972]; Bleichrodt
et al. [2008] provide a debugged version and a proof. For work on graphical
models of utility and preferences, see Bacchus and Grove [1995] and Boutilier
et al. [2004]. Walsh [2007] and Rossi et al. [2011] overview the use of preferences
in AI.

Kahneman [2011] discusses the psychology behind how people make de-
cisions under uncertainty and motivates prospect theory. Wakker [2010] pro-
vides a textbook overview of utility and prospect theories.

Decision networks or influence diagrams were invented by Howard and
Matheson [1984]. A method using dynamic programming for solving influence
diagrams can be found in Shachter and Peot [1992]. The value of information
and control is discussed by Matheson [1990].

MDPs were invented by Bellman [1957] and are discussed by Puterman
[1994] and Bertsekas [2017]. Mausam and Kolobov [2012] overview MDPs in
AI. Boutilier et al. [1999] review lifting MDPs to features, known as decision-
theoretic planning.

Kochenderfer et al. [2022] provide an introduction to planning under un-
certainty. Kochenderfer [2015] provides many real-world case studies. Lehman
et al. [2018] provide examples of the effect of misspecification of reward func-
tions.

The quality-adjusted life year (QALY) is due to Torrance [1970]; Fanshel and
Bush [1970]. Spencer et al. [2022] overviews the history of QALY, with many
references.

12.9 Exercises

Exercise 12.1 Prove that the completeness and/or transitivity axioms (page 519),
imply the following statements. What axiom(s) do your proofs rely on?

(a) o2 � o1 is equivalent to o1 ! o2

(b) if o1 ! o2 and o2 ! o3 then o1 ! o3

(c) if o1 ! o2 and o2  o3 then o1 ! o3

(d) if o1  o2 and o2  o3 then o1  o3.

Exercise 12.2 Consider the following two alternatives:
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(i) In addition to what you currently own, you have been given $1000. You are
now asked to choose one of these options:

50% chance to win $1000 or get $500 for sure.
(ii) In addition to what you currently own, you have been given $2000. You are

now asked to choose one of these options:
50% chance to lose $1000 or lose $500 for sure.

Explain how the predictions of utility theory and prospect theory differ for these
alternatives.

Exercise 12.3 One of the decisions we must make in real life is whether to accept
an invitation even though we are not sure we can or want to go to an event. Figure
12.24 gives a decision network for such a problem. Suppose that all of the decision
and random variables are Boolean (i.e., have domain {true, false}). You can accept
the invitation, but when the time comes, you still must decide whether or not to
go. You might get sick in between accepting the invitation and having to decide
to go. Even if you decide to go, if you have not accepted the invitation you may
not be able to go. If you get sick, you have a good excuse not to go. Your utility
depends on whether you accept, whether you have a good excuse, and whether
you actually go.

(a) Give a table representing a possible utility function. Assume the unique best
outcome is that you accept the invitation, you do not have a good excuse,
but you do go. The unique worst outcome is that you accept the invitation,
you do not have a good excuse, and you do not go. Make your other utility
values reasonable.

(b) Suppose that you get to observe whether you are sick before accepting the
invitation. Note that this is a different variable than if you are sick after
accepting the invitation. Add to the network so that this situation can be
modeled. You must not change the utility function, but the new observation
must have a positive value of information. The resulting network must be
no-forgetting.

Accept
Invitation

Decide 
to Go 

Sick after 
Acceptance

Utility

Go

Good 
Excuse

Figure 12.24: A decision network for an invitation decision
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(c) Suppose that, after you have decided whether to accept the original invi-
tation and before you decide to go, you can find out if you get a better in-
vitation (to an event that clashes with the original event, so you cannot go
to both). Suppose you would prefer the later invitation than the original
event you were invited to. (The difficult decision is whether to accept the
first invitation or wait until you get a better invitation, which you may not
get.) Unfortunately, having another invitation does not provide a good ex-
cuse. On the network, add the node “better invitation” and all relevant arcs
to model this situation. [You do not have to include the node and arcs from
part (b).]

(d) If you have an arc between “better invitation” and “accept invitation” in part
(c), explain why (i.e., what must the world be like to make this arc appro-
priate). If you did not have such an arc, which way could it go to still fit the
preceding story; explain what must happen in the world to make this arc
appropriate.

(e) If there was not an arc between “better invitation” and “accept invitation”
(whether or not you drew such an arc), what must be true in the world to
make this lack of arc appropriate?

Exercise 12.4 Students have to make decisions about how much to study for each
course. The aim of this question is to investigate how to use decision networks to
help them make such decisions.

Suppose students first have to decide how much to study for the midterm.
They can study a lot, study a little, or not study at all. Whether they pass the
midterm depends on how much they study and on the difficulty of the course.
As a rough approximation, they pass if they study hard or if the course is easy
and they study a bit. After receiving their midterm grade, they have to decide
how much to study for the final exam. The final exam result depends on how
much they study and on the difficulty of the course. Their final grade (A, B, C, or
F) depends on which exams they pass; generally they get an A if they pass both
exams, a B if they only pass the final, a C if they only pass the midterm, or an F if
they fail both. Of course, there is a great deal of noise in these general estimates.

Suppose that their utility depends on their subjective total effort and their final
grade. Suppose their subjective total effort (a lot or a little) depends on their effort
in studying for the midterm and the final.

(a) Draw a decision network for a student decision based on the preceding story.
(b) What is the domain of each variable?
(c) Give appropriate conditional probability tables.
(d) What is the best outcome (give this a utility of 100) and what is the worst

outcome (give this a utility of 0)?
(e) Give an appropriate utility function for a student who is lazy and just wants

to pass (not get an F). The total effort here measures whether they (thought
they) worked a lot or a little overall. Explain the best outcome and the worst
outcome. Fill in a copy of the table of Table 12.4 (page 576); use 100 for the
best outcome and 0 for the worst outcome.

(f) Given your utility function for the previous part, give values for the missing
terms for one example that reflects the utility function you gave above:
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Comparing outcome
and lottery [p : , 1− p : ]
when p = the outcome is preferred to the lottery
when p = the lottery is preferred to the outcome.

(g) Give an appropriate utility function for a student who does not mind work-
ing hard and really wants to get an A, and would be very disappointed with
a B or lower. Explain the best outcome and the worst outcome. Fill in a copy
of the table of Table 12.4; use 100 for the best outcome and 0 for the worst
outcome.

Exercise 12.5 Some students choose to cheat on exams, and instructors want to
make sure that cheating does not pay. A rational model would specify that the
decision of whether to cheat depends on the costs and the benefits. Here we will
develop and critique such a model.

Consider the decision network of Figure 12.25. This diagram models a stu-
dent’s decisions about whether to cheat at two different times. If students cheat

Grade Total Effort Utility
A lot
A little
B lot
B little
C lot
C little
F lot
F little

Table 12.4: Utility function for the study decision

Cheat1 Cheat2

Caught1

Watched

Utility

Caught2

Punishment

Grade1 Grade2

Final Grade

Figure 12.25: Decision about whether to cheat
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they may be caught cheating, but they could also get higher grades. The punish-
ment (either suspension, cheating recorded on the transcript, or none) depends on
whether they get caught at either or both opportunities. Whether they get caught
depends on whether they are being watched and whether they cheat. The utility
depends on their final grades and their punishment.

The cheating decision network in AIPython (aipython.org) provides probabili-
ties to use for the following questions.

(a) What is an optimal policy? Give a description in English of an optimal pol-
icy. (The description should not use any jargon of AI or decision theory.)
What is the value of an optimal policy?

(b) What happens to the optimal policy when the probability of being watched
goes up? [Modify the probability of “Watched”.] Try a number of values.
Explain what happens and why.

(c) What is an optimal policy when the rewards for cheating are reduced? Try a
number of different parameterizations.

(d) Change the model so that once students have been caught cheating, they
will be watched more carefully. [Hint: Whether they are watched at the first
opportunity needs to be a different variable than whether they are watched
at the second opportunity.] Show the resulting model (both the structure
and any new parameters), and give the policies and expected utilities for
various settings of the parameters.

(e) What does the current model imply about how cheating affects future grades?
Change the model so that cheating affects subsequent grades. Explain how
the new model achieves this.

(f) How could this model be changed to be more realistic (but still be simple)?
[For example: Are the probabilities reasonable? Are the utilities reasonable?
Is the structure reasonable?]

(g) Suppose the university decided to set up an honor system so that instructors
do not actively check for cheating, but there is severe punishment for first
offenses if cheating is discovered. How could this be modeled? Specify
a model for this and explain what decision is optimal (for a few different
parameter settings).

(h) Should students and instructors be encouraged to think of the cheating prob-
lem as a rational decision in a game? Explain why or why not in a single
paragraph.

Exercise 12.6 Suppose that, in a decision network, the decision variable Run has
parents Look and See. Suppose you are using VE to find an optimal policy and,
after eliminating all of the other variables, you are left with a single factor:
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Look See Run Value
true true yes 23
true true no 8
true false yes 37
true false no 56
false true yes 28
false true no 12
false false yes 18
false false no 22

(a) What is the resulting factor after eliminating Run? [Hint: You do not sum
out Run because it is a decision variable.]

(b) What is the optimal decision function for Run?
(c) What is the value of information about Look for the decision Run for the

decision network where See is a parent of Run? That is, if the agent has the
information about See, how much more is the information about Look worth?

Exercise 12.7 Suppose that, in a decision network, there were arcs from random
variables “contaminated specimen” and “positive test” to the decision variable
“discard sample.” You solved the decision network and discovered that there was
a unique optimal policy:

Contaminated Specimen Positive Test Discard Sample
true true yes
true false no
false true yes
false false no

What can you say about the value of information in this case?

Exercise 12.8 How sensitive are the answers from the decision network of Ex-
ample 12.16 (page 539) to the probabilities? Test the program with different condi-
tional probabilities and see what effect this has on the answers produced. Discuss
the sensitivity both to the optimal policy and to the expected value of the optimal
policy.

Exercise 12.9 In Example 12.16 (page 539), suppose that the fire sensor was noisy
in that it had a 20% false positive rate

P(see smoke|report∧ ¬smoke) = 0.2

and a 15% false negative rate

P(see smoke|report∧ smoke) = 0.85.

Is it still worthwhile to check for smoke?

Exercise 12.10 This exercise is to compare variable elimination and conditioning
for the decision network of Example 12.16 (page 539).

(a) For the inverse of the variable ordering for search used in Example 12.20
(page 543) (i.e., from Leaving to Report) show the sequence of factors re-
moved and created for variable elimination, in a table similar to Example
12.22 (page 546) (only the variable ordering changes).
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(b) For the splitting order that is the inverse of the variable ordering of Exam-
ple 12.22, specify what variables can be evaluated for each split (similar to
Example 12.20, but with a different variable ordering. Also show what vari-
ables can be forgotten, as in Example 9.26 (page 412).

(c) How does the evaluation of the factors in recursive conditioning relate to the
factors created for variable elimination, when the variable orderings are the
inverse of each other? Be as specific as you can.

Exercise 12.11 Consider the belief network of Exercise 9.10 (page 455). When
an alarm is observed, a decision is made whether or not to shut down the reactor.
Shutting down the reactor has a cost cs associated with it (independent of whether
the core was overheating), whereas not shutting down an overheated core incurs
a cost cm that is much higher than cs.

(a) Draw the decision network to model this decision problem for the original
system (i.e., with only one sensor).

(b) Specify the tables for all new factors that must be defined (you should use
the parameters cs and cm where appropriate in the tables). Assume that util-
ity is the negative of cost.

(c) Show how variable elimination can be used to find the optimal decision.
For each variable eliminated, show which variable is eliminated, how it is
eliminated (through summing or maximization), which factors are removed,
what factor is created, and what variables this factor is over (similar to Ex-
ample 12.22 (page 546)). You are not required to give the tables.

Exercise 12.12 Consider the following decision network:

D

B
VA C

(a) What are the initial factors? (Give the variables in the scope of each factor,
and specify any associated meaning of each factor.)

(b) Give a legal splitting order, and the order that variables can be evaluated
(similar to Example 12.20 (page 543)).

(c) Show what factors are created in variable elimination when optimizing the
decision function and computing the expected value, for one of the legal
elimination orderings. At each step explain which variable is being elimi-
nated, whether it is being summed out or maximized, what factors are being
combined, and what factors are created (give the variables they depend on,
not the tables).

(d) If the value of information of A at decision D is zero, what does an optimal
policy look like? (Give the most specific statement you can make about any
optimal policy.)

Exercise 12.13 What is the main difference between asynchronous value iteration
and standard value iteration? Why does asynchronous value iteration often work
better than standard value iteration?
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Exercise 12.14 Explain why we often use discounting of future rewards in MDPs.
How would an agent act differently if the discount factor was 0.6 as opposed to
0.9?

Exercise 12.15 Consider the MDP of Example 12.31 (page 557).

(a) As the discount varies between 0 and 1, how does the optimal policy change?
Give an example of a discount that produces each different policy that can
be obtained by varying the discount.

(b) How can the MDP and/or discount be changed so that the optimal policy is
to relax when healthy and to party when sick? Give an MDP that changes as
few of the probabilities, rewards, or discount as possible to have this as the
optimal policy.

(c) The optimal policy computed in Example 12.33 (page 560) was to party
when healthy and relax when sick. What is the distribution of states that the
agent following this policy will visit? [Hint: The policy induces a Markov
chain (page 418), which has a stationary distribution.] What is the aver-
age reward of this policy? [Hint: The average reward can be obtained by
computing the expected value of the immediate rewards with respect the
stationary distribution.]

Exercise 12.16 Consider a game world

The robot can be at any one of the 25 locations on the grid. There can be a treasure
on one of the circles at the corners. When the robot reaches the corner where the
treasure is, it collects a reward of 10, and the treasure disappears. When there is no
treasure, at each time step, there is a probability P1 = 0.2 that a treasure appears,
and it appears with equal probability at each corner. The robot knows its position
and the location of the treasure.

There are monsters at the squares marked with an ×. Each monster randomly
and independently, at each time step, checks whether the robot is on its square. If
the robot is on the square when the monster checks, it has a reward of −10 (i.e.,
it loses 10 points). At the center point, the monster checks at each time step with
probability p2 = 0.4; at the other four squares marked with an ×, the monsters
check at each time step with probability p3 = 0.2.

Assume that the rewards are immediate upon entering a state: that is, if the
robot enters a state with a monster, it gets the (negative) reward on entering the
state, and if the robot enters the state with a treasure, it gets the reward upon
entering the state, even if the treasure arrives at the same time.

The robot has eight actions corresponding to the eight neighboring squares.
The diagonal moves are noisy; there is a p4 = 0.6 probability of going in the direc-
tion chosen and an equal chance of going to each of the four neighboring squares
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closest to the desired direction. The vertical and horizontal moves are also noisy;
there is a p5 = 0.8 chance of going in the requested direction and an equal chance
of going to one of the adjacent diagonal squares. For example, the actions up-left
and up have the following results:

0.10.6

0.1

0.1

0.1

0.10.1 0.8

Action=up-left Action=up

If the action results in crashing into a wall, the robot has a reward of −2 (i.e., loses
2) and does not move.

There is a discount factor of p6 = 0.9.

(a) How many states are there? (Or how few states can you get away with?)
What do they represent?

(b) What is an optimal policy?

(c) Suppose the game designer wants to design different instances of the game
that have non-obvious optimal policies for a game player. Give three as-
signments to the parameters p1 to p6 with different optimal policies. If there
are not that many different optimal policies, give as many as there are and
explain why there are no more than that.

Exercise 12.17 Consider a 5× 5 grid game similar to the game of the previous
question. The agent can be at one of the 25 locations, and there can be a treasure
at one of the corners or no treasure.

Assume the “up” action has same dynamics as in the previous question. That
is, the agent goes up with probability 0.8 and goes up-left with probability 0.1 and
up-right with probability 0.1.

If there is no treasure, a treasure can appear with probability 0.2. When it
appears, it appears randomly at one of the corners, and each corner has an equal
probability of treasure appearing. The treasure stays where it is until the agent
lands on the square where the treasure is. When this occurs the agent gets an
immediate reward of +10 and the treasure disappears in the next state transition.
The agent and the treasure move simultaneously so that if the agent arrives at a
square at the same time the treasure appears, it gets the reward.

Suppose we are doing asynchronous value iteration and have the value for
each state as in the following grids. The number in a square represent the value of
that state and empty squares have a value of zero. It is irrelevant to this question
how these values got there.
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*
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The left grid shows the values for the states where there is no treasure and the
right grid shows the values of the states when there is a treasure at the top-right
corner. There are also states for the treasures at the other three corners, but assume
that the current values for these states are all zero.

Consider the next step of asynchronous value iteration. For state s13, which is
marked by ∗ in the figure, and the action a2, which is “up,” what value is assigned
to Q[s13, a2] on the next value iteration? You must show all your work but do not
have to do any arithmetic (i.e., leave it as an expression). Explain each term in
your expression.

Exercise 12.18 In a decision network, suppose that there are multiple utility
nodes, where the values must be added. This lets us represent a generalized addi-
tive utility function. How can the VE for decision networks algorithm, shown in
Figure 12.14 (page 546), be altered to include such utilities?

Exercise 12.19 How can variable elimination for decision networks, shown in
Figure 12.14 (page 546), be modified to include additive discounted rewards? That
is, there can be multiple utility (reward) nodes, to be added and discounted. As-
sume that the variables to be eliminated are eliminated from the latest time step
forward.
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Chapter 13

Reinforcement Learning

[W]e hypothesise that intelligence, and its associated abilities, can be un-
derstood as subserving the maximisation of reward. Accordingly, reward
is enough to drive behaviour that exhibits abilities studied in natural and
artificial intelligence, including knowledge, learning, perception, social in-
telligence, language, generalisation and imitation.

– Silver et al. [2021]

A reinforcement learning (RL) agent acts in an environment, observing its
state and receiving rewards. From its experience of a stream of acting then ob-
serving the resulting state and reward, it must determine what to do given its
goal of maximizing accumulated reward. This chapter considers fully observ-
able (page 29), single-agent reinforcement learning. Section 14.7.2 (page 633)
describes multiagent reinforcement learning. This is an extension of decision-
theoretic planning (page 552) to the case where the transition and reward mod-
els are not specified.

We have already seen results showing the universality of utility (page 522).
Silver et al. [2021] argue that decomposing utility into rewards can be a basis
of intelligent action.

13.1 Reinforcement Learning Problem

A reinforcement learning agent is characterized as follows:

• The learning agent is given the possible states of the world and the set of
actions it can carry out.
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• At each time the agent observes the state of the world (the environment
and the agent) and the reward received.

• After observing the state and reward, the agent carries out an action.

• The goal of the agent is to maximize its discounted reward (page 556), for
some discount factor γ.

Reinforcement learning can be formalized in terms of Markov decision
processes (MDPs) (page 552), in which the agent initially only knows the set
of possible states and the set of possible actions. The dynamics, P(s′ | a, s), and
the reward function, R(s, a), are not given to the agent. As in an MDP, after
each action, the agent observes the state it is in and receives a reward.

Example 13.1 Consider the domain shown in Figure 13.1. There are six states
the agent could be in, labeled s0, . . . , s5. The agent has four actions: upR, upC,
left, right. That is all the agent knows before it starts. It does not know how the
states are configured, what the actions do, or how rewards are earned.

Figure 13.1 shows the configuration of the six states. Suppose the actions
work as follows:

right The agent moves to the right in states s0 ,s2, and s4, with a reward of 0
and stays still in the other states, with a reward of −1.

left The agent moves one state to the left in states s1, s3, and s5, with a reward
of 0. In state s0, it stays in state s0 and has a reward of −1. In state s2, it
has a reward of −100 and stays in state s2. In state s4, it receives a reward
of 10 and moves to state s0.

upC (for “up carefully”) The agent goes up, except in states s4 and s5, where
the agent crashes and stays still. It receives a reward of −1, except when
it crashes, in which case there is a reward of −2.

upR (for “up risky”) With a probability of 0.8 it acts like upC, except the reward
is−1 when it crashes, and 0 otherwise. With probability 0.1 it acts as a left,
and with probability 0.1 it acts as a right.

There is a discounted reward (page 556) with a discount of γ = 0.9. This can
be translated as having a 0.1 chance of the agent leaving the game at any step,

-100

s4 s5

s2 s3

s0 s1

+10

Figure 13.1: The environment of a tiny reinforcement learning problem
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or as a way to encode that the agent prefers immediate rewards over future
rewards.

The agent should try to go left from s4 as often as possible, to collect the
reward of +10. Getting from s0 to s4, it can go past a dangerous cliff at s2 where
there is a risk of falling off the cliff and getting a large negative reward, or
going the longer and safer way around. Initially, it does not know this, but this
is what it needs to learn.

Example 13.2 Figure 13.2 shows the domain of a more complex game. There
are 25 grid locations the agent could be in. A prize could be on one of the cor-
ners, or there could be no prize. When the agent lands on a prize, it receives a
reward of 10 and the prize disappears. When there is no prize, for each time
step there is a probability that a prize appears on any one of the corners. Mon-
sters can appear at any time on one of the locations marked M. The agent gets
damaged if a monster appears on the square the agent is on. If the agent is
already damaged, it receives a reward of −10. The agent can get repaired (so it
is no longer damaged) by visiting the repair station marked R.

In this example, the state consists of four components: 〈X, Y, D, P〉, where X
is the X-coordinate of the agent, Y is the Y-coordinate of the agent, D is Boolean
and is true when the agent is damaged, and P is the position of the prize (P = 0
if there is no prize, P = i if there is a prize at position Pi). Because the monsters
are transient – knowing whether a monster appeared at a time does not provide
any information about the future – it is not necessary to include them as part of
the state. There are therefore 5 ∗ 5 ∗ 2 ∗ 5 = 250 states. The environment is fully
observable, so the agent knows what state it is in. The agent does not know the
meaning of the states; it doesn’t know about the four components and it has no
idea initially about being damaged or what a prize is.

The agent has four actions: up, down, left, and right. These move the agent
one step – usually one step in the direction indicated by the name, but some-
times in one of the other directions. If the agent crashes into an outside wall or

P1

M

P3

R

M

M

M

P2

M

P4

Figure 13.2: The environment of a monster game
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one of the interior walls (the thick lines near the location R), it remains where
is was and receives a reward of −1.

The agent does not know any of the story given here. It just knows there are
250 states and four actions, which state it is in at each time, and what reward
was received at each time.

This game is simple, but it is surprisingly difficult to write a good con-
troller for it. There are implementations available on the book’s website that
you can play with and modify. Try to write a controller by hand for it; it is
possible to write a controller that accumulates a reward of about 500 for each
1000 steps. This game is also difficult to learn, because visiting R is seemingly
useless until the agent eventually learns that being damaged is bad, and that
visiting R makes it not damaged. It must stumble on this while trying to collect
the prizes. The states where there is no prize available do not last very long.
Moreover, it has to learn this without being given the concept of damaged; all it
knows, initially, is that there are 250 states and four actions.

Reinforcement learning is difficult for a number of reasons:

• The credit assignment problem, or blame attribution problem, is the
problem of determining which action was responsible for a reward or
punishment. The action responsible may have occurred a long time be-
fore the reward was received. Moreover, not just a single action but rather
a combination of actions carried out in the appropriate circumstances
may be responsible for a reward. For example, you could teach an agent
to play a game by rewarding it when it wins or loses; it must determine
the brilliant moves, which usually occur long before the end, that were
needed to win. As another example, you may try to train a dog by saying
“bad dog” when you come home and find a mess. The dog has to deter-
mine, out of all of the actions it did, which of them were the actions that
were responsible for the reprimand.

• Even if the dynamics of the world does not change, the effect of an ac-
tion of the agent depends on what the agent will do in the future. What
may initially seem like a bad thing for the agent to do may end up be-
ing the best action because of what the agent does in the future. This
is common among planning problems, but it is complicated in the rein-
forcement learning context because the agent does not know, a priori, the
effects of its actions.

• The explore–exploit dilemma: if an agent has worked out a good course
of actions, should it continue to follow these actions (exploiting what it
has determined) or should it explore to find better actions? An agent that
never explores may act forever in a way that could have been much better
if it had explored earlier. An agent that always explores will never use
what it has learned. Exploration may lead to irreversible damage. This
dilemma is discussed further in Section 13.5 (page 591).
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13.2 Evolutionary Algorithms

One way to solve reinforcement algorithms is to treat this as an optimization
problem (page 161), with the aim of selecting a policy that maximizes the ex-
pected discounted reward. This can be done with a policy search through the
space of policies to find the best policy. A policy is a controller (page 55) that
can be evaluated by running it in the agent acting in the environment.

Policy search is often solved as a stochastic local search algorithm (page 149)
by searching in the space of policies. A policy can be evaluated by running it
in the environment a number of times.

A diverse set of initial policies can be repeatedly evaluated in the environ-
ment and iteratively improved. This process is called an evolutionary algo-
rithm because each policy, considered as an agent, is evaluated on how well
it survives. This is often combined with genetic algorithms (page 159), which
allows the combination of components of the policies with the aim of having
a diverse collection of controllers. Often these controllers are represented as
neural networks, which is the foundation of neuroevolution.

These algorithms have the advantage of being able to explore a diverse set
of controllers.

Algorithms based on evaluating policies as a whole have a number of is-
sues. The first is the size of the state space. If there are n states and m actions,
there are mn policies. For example, for the game described in Example 13.1
(page 584), there are 46 = 4096 different policies. For the game of Example 13.2
(page 585), there are 250 states, and so 4250 ≈ 10150 policies. This is a very small
game, but it has more policies than there are particles in the universe.

Second, evolutionary algorithms use experiences very wastefully. If an
agent was in state s2 of Example 13.1 (page 584) and it moved left, you would
like it to learn that it is bad to go left from state s2. But evolutionary algorithms,
as presented, wait until the agent has finished and judge the policy as a whole.
Stochastic local search will randomly try doing something else in state s2 and
so may eventually determine that that action was not good, but it is very in-
direct. Genetic algorithms are slightly better in that the policies that have the
agent going left in state s2 will die off, but again this is very indirect.

Third, the performance of evolutionary algorithms can be very sensitive
to the representation of the policy. The representation for a genetic algorithm
should be such that crossover preserves the good parts of the policy. The rep-
resentations are often tuned for the particular domain.

An alternative pursued in the rest of this chapter is to learn after every
action. The components of the policy are learned, rather than the policy as
a whole. By learning what to do in each state, learning can have linear or
polynomial time and space complexity in the number of states, rather than
exponential in the number of states. However, evolutionary algorithms can
sometimes find creative solutions to problems that elude other methods; see
Section 13.9.2 (page 603).
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13.3 Temporal Differences

To understand how reinforcement learning works, consider how to average
values that arrive to an agent sequentially. Section A.1 (page 797) discusses
how to maintain rolling averages, which is the basis of temporal differences.

Suppose there is a sequence of numerical values, v1, v2, v3, . . . , and the aim
is to predict the next. A rolling average Ak is maintained, and updated using
the temporal difference equation, derived in Section A.1:

Ak = (1− αk) ∗Ak−1 + αk ∗ vk

= Ak−1 + αk ∗ (vk −Ak−1) (13.1)

where αk = 1
k . The difference, vk − Ak−1, is called the temporal difference

error or TD error; it specifies how different the new value, vk, is from the old
prediction, Ak−1. The old estimate, Ak−1, is updated by αk times the TD error
to get the new estimate, Ak.

A qualitative interpretation of the temporal difference equation is that if
the new value is higher than the old prediction, increase the predicted value;
if the new value is less than the old prediction, decrease the predicted value.
The change is proportional to the difference between the new value and the
old prediction. Note that this equation is still valid for the first value, k = 1, in
which case A1 = v1.

In reinforcement learning, the values are often estimates of the effects of
actions; more recent values are more accurate than earlier values because the
agent is learning, and so they should be weighted more. One way to weight
later examples more is to use Equation (13.1), but with α as a constant (0 <
α ≤ 1) that does not depend on k. This does not converge to the average value
when there is variability in the values of the sequence, but it can track changes
when the underlying process generating the values changes. See Section A.1.

One way to give more weight to more recent experiences, but also converge
to the average, is to set αk = (r + 1)/(r + k) for some r > 0. For the first
experience α1 = 1, so it ignores the prior A0. If r = 9, after 11 experiences,
α11 = 0.5 so it weights that experience as equal to all of its prior experiences.
The parameter r should be set to be appropriate for the domain.

Guaranteeing convergence to the average is not compatible with being able
to adapt to make better predictions when the underlying process generating
the values changes, for non-stationary (page 418) dynamics or rewards.

13.4 Learning from Experiences

In reinforcement learning, an agent tries to learn the optimal policy from its
history of interaction with the environment. A history of an agent is a sequence
of state–action–rewards:

〈s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4 . . . 〉
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which means that the agent was in state s0 and did action a0, which resulted
in it receiving reward r1 and being in state s1; then it did action a1, received
reward r2, and ended up in state s2; then it did action a2, received reward r3,
and ended up in state s3; and so on.

We treat this history of interaction as a sequence of experiences, where an
experience is a tuple〈

s, a, r, s′
〉

which means that the agent was in state s, it did action a, it received reward
r, and it went into state s′. These experiences will be the data from which the
agent can learn what to do. As in decision-theoretic planning, the aim is for the
agent to maximize its value, which is usually the discounted reward (page 556).

13.4.1 Q-learning

Recall (page 559) that Q∗(s, a), where a is an action and s is a state, is the ex-
pected value (cumulative discounted reward) of doing a in state s and then
following the optimal policy.

Q-learning uses temporal differences to estimate the value of Q∗(s, a). In
Q-learning, the agent maintains a table of Q[S, A], where S is the set of states
and A is the set of actions. Q[s, a] represents its current estimate of Q∗(s, a).

An experience 〈s, a, r, s′〉 provides one data point for the value of Q(s, a).
The data point is that the agent received the future value of r + γV(s′), where
V(s′) = maxa′ Q(s′, a′); this is the actual current reward plus the discounted
estimated future value. This new data point is called a return. The agent can
use the temporal difference equation (13.1) to update its estimate for Q(s, a):

Q[s, a] := Q[s, a] + α ∗
(

r + γ max
a′

Q[s′, a′]−Q[s, a]
)

or, equivalently:

Q[s, a] := (1− α) ∗Q[s, a] + α ∗
(

r + γ max
a′

Q[s′, a′]
)

.

Figure 13.3 (page 590) shows a Q-learning controller, where the agent is act-
ing and learning at the same time. The do command, do(a), on line 17 specifies
that the action a is the command (page 52) the controller sends to the body. The
reward and the resulting state are the percepts (page 52) the controller receives
from the body.

The algorithm of Figure 13.3 also maintains an array N[s, a], which counts
the number of times action a was performed in state s. The function alpha fun
computes α from the count. alpha fun(c) = 10/(9 + c) often works well; see
Exercise 13.6 (page 607). When α is fixed, the N array does not need to be
maintained (but it is also used for some exploration strategies; see below).
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The Q-learner learns (an approximation of) the optimal Q-function as long
as the agent explores enough, and there is no bound on the number of times it
tries an action in any state (i.e., it does not always do the same subset of actions
in a state).

Example 13.3 Consider the two-state MDP of Example 12.29 (page 553). The
agent knows there are two states {healthy, sick} and two actions {relax, party}.
It does not know the model and it learns from the s, a, r, s′ experiences. With a
discount, γ = 0.8, α = 0.3, and Q initially 0, the following is a possible trace (to
a few significant digits and with the states and actions abbreviated):

s a r s′ Update = (1− α) ∗Q[s, a] + α(r + γmaxa′Q[s′, a′])
he re 7 he Q[he, re] = 0.7 ∗ 0 + 0.3 ∗ (7 + 0.8 ∗ 0) = 2.1
he re 7 he Q[he, re] = 0.7 ∗ 2.1 + 0.3 ∗ (7 + 0.8 ∗ 2.1) = 4.07
he pa 10 he Q[he, pa] = 0.7 ∗ 0 + 0.3 ∗ (10 + 0.8 ∗ 4.07) = 3.98
he pa 10 si Q[he, pa] = 0.7 ∗ 3.98 + 0.3 ∗ (10 + 0.8 ∗ 0) = 5.79
si pa 2 si Q[si, pa] = 0.7 ∗ 0 + 0.3 ∗ (2 + 0.8 ∗ 0) = 0.06
si re 0 si Q[si, re] = 0.7 ∗ 0 + 0.3 ∗ (0 + 0.8 ∗ 0.06) = 0.014
si re 0 he Q[si, re] = 0.7 ∗ 0.014 + 0.3 ∗ (0 + 0.8 ∗ 5.79) = 1.40

1: controller Q-learning(S, A, γ, alpha fun)
2: Inputs
3: S is a set of states
4: A is a set of actions
5: γ the discount
6: alpha fun is a function to compute step size from counts
7: Local
8: real array Q[S, A]
9: integer array N[S, A]

10: states s, s′
11: action a
12: initialize Q[S, A] arbitrarily
13: initialize N[S, A] to 0
14: observe current state s
15: repeat
16: select an action a
17: do(a)
18: N[s, a] := N[s, a] + 1
19: α := alpha fun(N[s, a])
20: observe reward r and state s′
21: Q[s, a] := Q[s, a] + α ∗ (r + γ ∗maxa′ Q[s′, a′]−Q[s, a])
22: s := s′
23: until termination()

Figure 13.3: Q-learning controller
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With α fixed, the Q-values will approximate, but not converge to, the values
obtained with value iteration in Example 12.33 (page 560). The smaller α is, the
closer it will converge to the actual Q-values, but the slower it will converge.

13.5 Exploration and Exploitation

An estimate of a Q-function is not enough to determine what the agent should
actually do (which action is selected in line 16 of Figure 13.3 (page 590)). There
are two competing goals for what an agent should do:

• It could exploit the knowledge that it has found to get higher rewards by,
in state s, doing one of the actions a that maximizes Q[s, a].

• It could explore to build a better estimate of the Q-function, by, for exam-
ple, selecting an action at random at each time.

An agent only gets a good estimate of the Q-values for states and actions
it has tried many times. If an agent exploits all of the time, it will keep trying
the same action in a state, and not explore enough to find an action with lower
current Q-value that could be better than the action with the current highest
Q-value.

Random exploration will not allow the agent to exploit what it has found
until after it has finished learning, which might never occur. Note that Q-
learning will converge eventually to the optimal Q-function even with random
exploration. Random exploration can take an inordinate amount of time to find
interesting parts of the state space – the parts of the state space the agent will
try to be in – and so even if the aim is to learn then exploit, it might be better to
have more purposeful exploration.

There are a number of ways to combine exploitation and exploration:

• In optimism in the face of uncertainty, the Q-values are initialized to
values that encourage exploration. If the Q-values are initialized to high
values, the unexplored areas will look good, so that pure exploitation will
tend to explore. This does encourage exploration; however, the agent can
hallucinate that some state–action pairs are good for a long time, even
though there is no real evidence for them being good. A state only gets
to look bad when all its actions look bad; but when all of these actions
lead to states that look good, it takes a long time to get a realistic view
of the actual values. This is a case where old estimates of the Q-values
can be quite bad estimates of the actual Q-value, and these can remain
bad estimates for a long time. To get fast convergence, the initial values
should be as close as possible to the final values; trying to make them
an overestimate will make convergence slower. In noisy environments,
where the effect of an action has some randomness, optimism in the face
of uncertainty with no other mechanism for exploration can mean that
a good action never gets explored more because, by random chance, it
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gets a low Q-value from which it cannot recover. Optimism in the face of
uncertainty can be used in conjunction with other methods.

• In an ε-greedy exploration strategy, where 0 ≤ ε ≤ 1, the agent selects
a random action ε of the time, and otherwise an action that maximizes
Q[s, a]. It is possible to change ε through time. Intuitively, early in the life
of the agent, it should act more randomly to encourage initial exploration
and, as time progresses, it should act more greedily (reducing ε).

• One problem with an ε-greedy strategy is that it treats all of the actions,
apart from the best action, equivalently. If there are a few seemingly good
actions and other actions that look much less promising, it may be more
sensible to select among the good actions: putting more effort towards
determining which of the promising actions is best, and less effort to-
wards exploring the actions that look worse. One way to do that is to
select action a with a probability depending on the value of Q[s, a]. This
is known as a softmax action selection. A common method is to use a
Gibbs or Boltzmann distribution, where the probability of selecting ac-
tion a in state s is proportional to eQ[s,a]/τ. Thus, in state s, the agent selects
action a with probability

eQ[s,a]/τ

∑a eQ[s,a]/τ

where τ > 0 is the temperature specifying how randomly values should
be chosen. How the difference in temperatures affects the probability of
being selected is given in Figure 4.1 (page 154); for example, at a temper-
ature of 1, if action a1 has a utility two less than action a2, it will be chosen
approximately 14% of the time that a1 is chosen. When τ is high, the ac-
tions are chosen in almost equal amounts. As the temperature is reduced,
the higher-valued actions are more likely to be chosen and, in the limit
as τ → 0, the best action is always chosen. Often the temperature can be
reduced as the search progresses.

• A problem with the previous methods is that they do not distinguish the
actions that the agent has tried many times, for which there is a good es-
timate of the actual Q-value, from those actions that have not been tried
much, for which the estimate is very poor. Another group of methods
models a distribution of the uncertainty of the estimate of the expected
values, not just the current expected value. As the agent gets more in-
formation, the uncertainty about the expected value reduces, and it can
become more sure of the expected value. The upper confidence bound is
an upper estimate of the expected value; the aim is to pick a value such
that it will be very unlikely that the actual value is greater than this. The
upper confidence bound is the sum of two terms, the Q estimate and a
confidence bound that depends on the number of times the action has
been chosen. Suppose N[s, a] is the number of times action a has been
selected for state s, and N(s) = ∑a N[s, a] is the number of times state s
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has been visited. N(s) can be stored or computed on demand. The upper
confidence bound UCB1 (where the name is from Auer et al. [2002], who
analyze a number of algorithms) is

UCB1(s, a) = Q[s, a] + C ∗
√

log N(s)
N[s, a]

where C is a constant that depends on the magnitude of the Q-values; if
the values are all in range [0, 1] and the samples are independent, then
C =

√
2 has good theoretical properties. In reinforcement learning the

samples are rarely independent. In a state s, the agent can balance explo-
ration and exploitation by choosing action a that has the highest UCB1(s, a)
value.

• The successive values of Q(s, a) computed provide more and more re-
fined estimates its the mean value. Those estimates can be used to create
a distribution over the mean. An alternative to choosing the upper confi-
dence bound is to sample from this distribution. In Thompson sampling,
given a state, for each action, a, a value va is selected from the distribu-
tion of the mean (page 437); the action with the highest va is chosen to be
carried out.

If the values are all 0 or 1 (for example, if the reward is just a win or
loss at the end), the beta distribution (page 464), represented by counts of
the number of 0s and the number of 1s, is appropriate.

If the return is a real number it is common to assume it is a Gaussian,
which is parameterized by the mean and the variance. For each state,
choose the action a that maximizes

Q[s, a] + C ∗ randn()√
N[s, a]

where randn() returns a random number using the standard normal dis-
tribution (mean 0, variance 1). C is chosen to reflect the scale of the Q-
values.

Sometimes neither the beta nor normal distributions are appropriate,
in which case there is a large literature of other methods that are available.

Much of the theoretical work in the exploration–exploitation tradeoff has
been for the single-state case, called the multi-armed bandit problem; a “bandit”
is the slang for a slot machine that gives rewards randomly and independently
each time. The explore–exploit trade-off in reinforcement learning is more com-
plicated than in the bandit setting, because rewards may be delayed and so the
initial estimates of a Q-value may be not a random sample, and because the
estimates are not independent. This means that we typically have to resort to
testing what works in practice; see, for example, Exercise 13.4 (page 606).
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13.6 Evaluating RL Algorithms

We can judge a reinforcement learning algorithm either by how good a policy
it finds or by how much reward it receives while acting and learning. Which
is more important depends on how the agent will be deployed. If there is suf-
ficient time for the agent to learn safely before it is deployed, the final policy
may be the most important. If the agent has to learn while being deployed, it
may never get to the stage where it no longer needs to explore, and the agent
needs to maximize the reward it receives while learning.

One way to show the performance of a reinforcement learning algorithm
is to plot the cumulative reward (the sum of all rewards received so far) as a
function of the number of steps. One algorithm dominates another if its plot is
consistently above the other.

Example 13.4 Figure 13.4 compares four runs of the Q-learner on the game
of Example 13.2 (page 585).

The plots are for different runs that varied according to whether α was
fixed, according to the initial values of the Q-function, and according to the
randomness in the action selection. They all used greedy exploit of 80% (i.e.,
ε = 0.2) for the first 100,000 steps, and 100% (i.e., ε = 0.0) for the next 100,000
steps. The top plot dominated the others.
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Figure 13.4: Cumulative reward as a function of the number of steps
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There can be a great deal of variability of each algorithm on different runs,
so to actually compare these algorithms, the same algorithm must be run mul-
tiple times.

There are three statistics of this plot that are important:

• The asymptotic slope shows how good the policy is after the algorithm
has stabilized.

• The minimum of the curve shows how much reward must be sacrificed
before it starts to improve.

• The zero crossing shows how long it takes until the algorithm has re-
couped its cost of learning.

The last two statistics are applicable when both positive and negative rewards
are available and having these balanced is reasonable behavior. For other cases,
the cumulative reward should be compared with reasonable behavior that is
appropriate for the domain; see Exercise 13.3 (page 606).

It is also possible to plot the average reward (the accumulated reward per
time step). This more clearly shows the value of policy eventually learned and
whether the algorithm has stopped learning (when it is flat), but often has large
variations for early times.

One thing that should be noted about the cumulative reward plot is that it
measures total reward, yet the algorithms optimize discounted reward at each
step. In general, you should optimize for, and evaluate your algorithm using,
the optimality criterion that is most appropriate for the domain.

13.7 On-Policy Learning

Q-learning is an off-policy learner. An off-policy learner learns the value of
an optimal policy independently of the agent’s actions, as long as it explores
enough. An off-policy learner can learn the optimal policy even if it is acting
randomly. An off-policy learner that is exploring does not learn the value of
the policy it is following, because it includes exploration steps.

There may be cases, such as where there are large negative rewards, where
ignoring what the agent actually does is dangerous. An alternative is to learn
the value of the policy the agent is actually carrying out, which includes ex-
ploration steps, so that that policy can be iteratively improved. The learner
can thus take into account the costs associated with exploration. An on-policy
learner learns the value of the policy being carried out by the agent, including
the exploration steps.

SARSA (so called because it uses state–action–reward–state–action experi-
ences to update the Q-values) is an on-policy reinforcement learning algorithm
that estimates the value of the policy being followed. An experience in SARSA
is of the form 〈s, a, r, s′, a′〉, which means that the agent was in state s, did action
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a, received reward r, and ended up in state s′, from which it decided to do ac-
tion a′. This provides a new experience to update Q(s, a). The new value that
this experience provides is r + γQ(s′, a′).

Figure 13.5 gives the SARSA algorithm. The Q-values that SARSA com-
putes depend on the current exploration policy which, for example, may be
greedy with random steps. It can find a different policy than Q-learning in sit-
uations where exploring may incur large penalties. For example, when a robot
goes near the top of a flight of stairs, even if this is an optimal policy, it may be
dangerous for exploration steps. SARSA will discover this and adopt a policy
that keeps the robot away from the stairs. It will find a policy that is optimal,
taking into account the exploration inherent in the policy.

Example 13.5 In Example 13.1 (page 584), the optimal policy is to go up from
state s0 in Figure 13.1 (page 584). However, if the agent is exploring, this action
may be bad because exploring from state s2 is very dangerous.

If the agent is carrying out the policy that includes exploration, “when in
state s, 80% of the time select the action a that maximizes Q[s, a], and 20% of the
time select an action at random,” going up from s0 is not optimal. An on-policy
learner will try to optimize the policy the agent is following, not the optimal
policy that does not include exploration.

1: controller SARSA(S, A, γ, α)
2: Inputs
3: S is a set of states
4: A is a set of actions
5: γ the discount
6: α is the step size
7: Local
8: real array Q[S, A]
9: state s, s′

10: action a, a′

11: initialize Q[S, A] arbitrarily
12: observe current state s
13: select an action a using a policy based on Q[s, a]
14: repeat
15: do(a)
16: observe reward r and state s′
17: select an action a′ using a policy based on Q[s′, a′]
18: Q[s, a] := Q[s, a] + α ∗ (r + γ ∗Q[s′, a′]−Q[s, a])
19: s := s′
20: a := a′
21: until termination()

Figure 13.5: SARSA: on-policy reinforcement learning
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The Q-values of the optimal policy are less in SARSA than in Q-learning.
The values for Q-learning and for SARSA (the exploration rate in parentheses)
for the domain of Example 13.1, for a few state–action pairs, are

Algorithm Q[s0, right] Q[s0, up] Q[s2, upC] Q[s2, up] Q[s4, left]
Q-learning 19.48 23.28 26.86 16.9 30.95
SARSA (20%) 9.27 7.9 14.8 4.43 18.09
SARSA (10%) 13.04 13.95 18.9 8.93 22.47

The optimal policy using SARSA with 20% exploration is to go right in state s0,
but with 10% exploration the optimal policy is to go up in state s0. With 20%
exploration, this is the optimal policy because exploration is dangerous. With
10% exploration, going into state s2 is less dangerous. Thus, if the rate of explo-
ration is reduced, the optimal policy changes. However, with less exploration,
it would take longer to find an optimal policy. The value Q-learning converges
to does not depend on the exploration rate.

SARSA is useful when deploying an agent that is exploring in the world. If
you want to do offline learning, and then use that policy in an agent that does
not explore, Q-learning may be more appropriate.

13.8 Model-Based RL

In many applications of reinforcement learning, plenty of time is available for
computation between each action. For example, a physical robot may have
many seconds between each action. Q-learning, which only does one backup
per action, will not make full use of the available computation time.

An alternative to doing one Q-value update after each action is to use the
experiences to learn a model. An agent can explicitly learn P(s′ | s, a) and
R(s, a). For each action that the agent carries out in the environment, the agent
can do a number of steps of asynchronous value iteration (page 562) to give a
better estimate of the Q-function.

Figure 13.6 (page 598) shows a generic model-based reinforcement learner.
As with other reinforcement learning programs, it keeps track of Q[S, A], but it
also maintains a model of the dynamics, represented here as T, where T[s, a, s′]
is the count of the number of times that the agent has done a in state s and
ended up in state s′. This also maintains C[s, a], which is the count of the num-
ber of times action a was carried out in state s. Note that C[s, a] = ∑s′ T[s, a, s′],
and so we could save space but increase runtime by not storing C, but comput-
ing it when needed. The R[s, a] array maintains the average reward obtained
when doing action a in state s.

After each action, the agent observes the reward r and the resulting state
s′. It then updates the transition-count matrices T and C, as well as the average
reward R. It then does a number of steps of asynchronous value iteration, using
the updated probability model derived from T and the updated reward model.

There are three main undefined parts to this algorithm:
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• Which Q-values should be updated? It seems reasonable that the algo-
rithm should at least update Q[s, a], because more data have been re-
ceived on the transition probability and reward. From there it can ei-
ther do random updates or determine which Q-values would change the
most. The elements that potentially have their values changed the most
are the Q[s1, a1] with the highest probability of ending up at a Q-value
that has changed the most (i.e., where Q[s2, a2] has changed the most).
This can be implemented by keeping a priority queue of Q-values to con-

1: controller RL Model learner(S, A, γ)
2: Inputs
3: S is a set of states
4: A is a set of actions
5: γ the discount
6: Local
7: real array Q[S, A]
8: real array R[S, A]
9: integer array T[S, A, S]

10: integer array C[S, A]

11: initialize Q[S, A] arbitrarily
12: initialize R[S, A] arbitrarily
13: initialize T[S, A, S] to zero
14: initialize C[S, A] to zero
15: observe current state s
16: select action a
17: do(a)
18: repeat
19: observe reward r and state s′
20: T[s, a, s′] := T[s, a, s′] + 1
21: C[s, a] := C[s, a] + 1

22: R[s, a] := R[s, a] +
r− R[s, a]

C[s, a]
23: s := s′
24: select action a
25: do(a)
26: repeat
27: select state s1, action a1 such that C[s1, a1] �= 0

28: Q[s1, a1] := R[s1, a1] + γ ∗∑
s2

T[s1, a1, s2]

C[s1, a1]
∗max

a2
Q[s2, a2]

29: until an observation arrives
30: until termination()

Figure 13.6: Model-based reinforcement learner
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sider. To ensure there is no divide-by-zero error, it should only choose
s1, a1 state–action pairs for which C[s1, a1] �= 0, or include pseudocounts
(page 301) for the transitions.

• How many steps of asynchronous value iteration should be done be-
tween actions? An agent could continue doing Q-updates until it has
to act or until it gets new information. Figure 13.6 (page 598) assumes
that the agent acts and then does Q-updates until an observation arrives.
When an observation arrives, the agent acts as soon as possible. There
are may variants, including doing a fixed number of updates, which may
be appropriate in games where it can act at any time. It is also possible to
run the update in parallel with observing and acting.

• What should be the initial values for Q[S, A]? It requires some value for
the transitions it has never experienced when updating Q. If it is using
the exploration strategy of optimism in the face of uncertainty (page 591),
it can use Rmax, the maximum reward possible, as the initial value for R,
to encourage exploration. However, as in value iteration (page 560), the
algorithm converges faster if it initializes Q to be as close as possible to
the final Q-value.

This algorithm assumes that the rewards depend on the initial state and the
action. If there are separate action costs and rewards for being in a state, and
the agent can separately observe the costs and rewards, the reward function
can be decomposed into C[A] and R[S], leading to more efficient learning.

It is difficult to directly compare the model-based and model-free rein-
forcement learners. Typically, model-based learners are much more efficient in
terms of experience; many fewer experiences are needed to learn well. How-
ever, the model-free methods use less memory and often use less computation
time. If experience was cheap, such as in a computer game, a different compar-
ison would be needed than if experience was expensive, such as for a robot.

13.9 RL with Generalization

Usually, there are too many states to reason about explicitly. The alternative to
reasoning explicitly in terms of states is to reason in terms of features, which
can either be provided explicitly or learned.

Figure 13.7 (page 600) shows a generic reinforcement on-policy learner that
incorporates a supervised learner. This assumes the learner can carry out the
operations

• add(x, y) which adds a new example to the dataset, with input x and tar-
get value y

• predict(x) which gives a point prediction for the target for an example
with input x.
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In SARSA with Generalization, the input x for the learner is a state–action pair,
and the target for pair (s, a) is an estimate of Q∗(s, a).

The only difference from the learners considered in Chapters 7 and 8 is that
the learner must be able to incrementally add examples, and make predictions
based on the examples it currently has. Newer examples are often better ap-
proximations than old examples, and the algorithms might need to take this
into account.

Selecting the next action a′ on line 10 with pure exploitation means select-
ing an a′ that maximizes Learner.predict((s′, a′)); exploration can be carried out
using one of the exploration techniques of Section 13.5 (page 591).

Generalization in this algorithm occurs by the learner generalizing. The
learner could be, for example, a linear function (see next section), a decision
tree learner, or a neural network. SARSA is an instance of this algorithm where
the learner memorizes, but does not generalize.

In deep reinforcement learning, a deep neural network (page 327) is used
as the learner. In particular, a neural network can be used to represent the
Q-function, the value function, and/or the policy. Deep learning requires a
large amount of data, and many iterations to learn, and can be sensitive to the
architecture provided. While it has been very successful in games such as Go or
Chess (see Section 14.7.3 (page 636)), it is notoriously difficult to make it work,
and it is very computationally intensive. A linear function is usually better for
smaller problems.

1: controller SARSA with Generalization(Learner, γ)
2: Inputs
3: Learner with operations Learner.add(x, y) and Learner.predict(x).
4: γ ∈ [0, 1]: discount factor
5: observe current state s
6: select action a
7: repeat
8: do(a)
9: observe reward r and state s′

10: select action a′ based on Learner.predict((s′, a′))
11: Learner.add((s, a), r + γ ∗ Learner.predict((s′, a′)))
12: s := s′
13: a := a′
14: until termination()

Figure 13.7: SARSA with generalization
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13.9.1 SARSA with Linear Function Approximation

Consider an instance of SARSA with generalization (Figure 13.7) that is a linear
function of features of the state and the action. While there are more compli-
cated alternatives, such as using a decision tree or neural network, the linear
function often works well, but requires feature engineering.

The feature-based learners require more information about the domain than
the reinforcement-learning methods considered so far. Whereas the previous
reinforcement learners were provided only with the states and the possible ac-
tions, the feature-based learners require extra domain knowledge in terms of
features. This approach requires careful selection of the features; the designer
should find features adequate to represent the Q-function.

The algorithm SARSA with linear function approximation, SARSA LFA,
uses a linear function of features to approximate the Q-function. It is based
on incremental gradient descent (page 293), a variant of stochastic gradient
descent that updates the parameters after every example. Suppose F1, . . . , Fn
are numerical features of the state and the action. Fi(s, a) provides the value for
the ith feature for state s and action a. These features will be used to represent
the linear Q-function

Qw(s, a) = w0 + w1 ∗ F1(s, a) + · · ·+ wn ∗ Fn(s, a)

for some tuple of weights w = 〈w0, w1, . . . , wn〉 that have to be learned. Assume
that there is an extra feature F0(s, a) whose value is always 1, so that w0 is not
a special case.

An experience in SARSA of the form 〈s, a, r, s′, a′〉 (the agent was in state s,
did action a, received reward r, and ended up in state s′, in which it decided
to do action a′) provides the new estimate r + γ ∗Qw(s′, a′) to update Qw(s, a).
This experience can be used as a data point for linear regression (page 288).
Let δ = Qw(s, a)− (r + γ ∗Qw(s′, a′)). Using Equation (7.4) (page 291), weight
wi is updated by

wi := wi − η ∗ δ ∗ Fi(s, a).

This update can then be incorporated into SARSA, giving the algorithm shown
in Figure 13.8 (page 602).

Although this program is simple to implement, feature engineering – choos-
ing what features to include – is non-trivial. The linear function must not only
convey the best action to carry out, it must also convey the information about
what future states are useful.

Example 13.6 Consider the monster game of Example 13.2 (page 585). From
understanding the domain, and not just treating it as a black box, some possible
features that can be computed and might be useful are

• F1(s, a) has value 1 if action a would most likely take the agent from state
s into a location where a monster could appear and has value 0 otherwise.
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• F2(s, a) has value 1 if action a would most likely take the agent into a wall
and has value 0 otherwise.

• F3(s, a) has value 1 if step a would most likely take the agent toward a
prize.

• F4(s, a) has value 1 if the agent is damaged in state s and action a takes it
toward the repair station.

• F5(s, a) has value 1 if the agent is damaged and action a would most likely
take the agent into a location where a monster could appear and has value
0 otherwise. That is, it is the same as F1(s, a) but is only applicable when
the agent is damaged.

• F6(s, a) has value 1 if the agent is damaged in state s and has value 0 oth-
erwise.

• F7(s, a) has value 1 if the agent is not damaged in state s and has value 0
otherwise.

• F8(s, a) has value 1 if the agent is damaged and there is a prize ahead in
direction a.

• F9(s, a) has value 1 if the agent is not damaged and there is a prize ahead
in direction a.

• F10(s, a) has the value of the x-value in state s if there is a prize at location
P0 in state s. That is, it is the distance from the left wall if there is a prize
at location P0.

1: controller SARSA LFA(F, γ, η)
2: Inputs
3: F = 〈F1, . . . , Fn〉: a set of features. Define F0(s, a) = 1.
4: γ ∈ [0, 1]: discount factor
5: η > 0: step size for gradient descent
6: Local
7: weights w = 〈w0, . . . , wn〉, initialized arbitrarily
8: observe current state s
9: select action a

10: repeat
11: do(a)
12: observe reward r and state s′
13: select action a′ (using a policy based on Qw)
14: δ := Qw(s, a)− (r + γ ∗Qw(s′, a′))
15: for i = 0 to n do
16: wi := wi − η ∗ δ ∗ Fi(s, a)
17: s := s′
18: a := a′
19: until termination()

Figure 13.8: SARSA LFA: SARSA with linear function approximation
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• F11(s, a) has the value 4− x, where x is the horizontal position in state s if
there is a prize at location P0 in state s. That is, it is the distance from the
right wall if there is a prize at location P0.

• F12(s, a) to F29(s, a) are like F10 and F11 for different combinations of the
prize location and the distance from each of the four walls. For the case
where the prize is at location P0, the y-distance could take into account the
wall.

An example linear function is

Q(s, a) = 2.0− 1.0 ∗ F1(s, a)− 0.4 ∗ F2(s, a)− 1.3 ∗ F3(s, a)−
0.5 ∗ F4(s, a)− 1.2 ∗ F5(s, a)− 1.6 ∗ F6(s, a) + 3.5 ∗ F7(s, a) +
0.6 ∗ F8(s, a) + 0.6 ∗ F9(s, a)− 0.0 ∗ F10(s, a) + 1.0 ∗ F11(s, a) + · · · .

These are the learned values (to one decimal place) for one run of the SARSA LFA
algorithm in Figure 13.8 (page 602).

AIPython (aipython.org) has an open-source Python implementation of this
algorithm for this monster game. Experiment with stepping through the algo-
rithm for individual steps, trying to understand how each step updates each
parameter. Now run it for a number of steps. Consider the performance using
the evaluation measures of Section 13.6 (page 594). Try to make sense of the
values of the parameters learned.

This algorithm tends to overfit to current experiences, and to forget about
old experiences, so that when it returns to a part of the state space it has not vis-
ited recently, it will have to relearn all over again. This is known as catastrophic
forgetting. One modification is to remember old experiences (〈s, a, r, s′〉 tuples)
and to carry out some steps of action replay, by doing some weight updates
based on random previous experiences. Updating the weights requires the
use of the next action a′, which should be chosen according to the current pol-
icy, not the policy that was under effect when the experience occurred. When
memory size becomes an issue, some of the old experiences can be discarded.

13.9.2 Escaping Local Optima

State-based MDPs and state-based reinforcement learning algorithms such as
Q-learning (page 589), SARSA (page 595), and the model-based reinforcement
learner (page 597) have no local maxima that are not global maxima. This is
because each state can be optimized separately; improving a policy for one
state cannot negatively impact another state.

However, when there is generalization, improving on one state can make
other states worse. This means that the algorithms can converge to local optima
(page 148) with a value that is not the best possible. They can work better
when there is some way to escape local optima. A standard way to escape
local maxima is to use randomized algorithms (page 149), for example using
population-based methods (page 158), similar to particle filtering (page 445),
where multiple initial initializations are run in parallel, and the best policy
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chosen. There has been some notable – arguably creative – solutions that have
been found using evolutionary algorithms (page 587), where the individual
runs are combined using a genetic algorithm (page 160).

13.10 Social Impact

One of the main problems with the real-world deployment of reinforcement
learning is that of accidents: unintended or harmful behavior, which may be
the result of poor design.

Amodei et al. [2016] gives five challenges to real-world deployment of re-
inforcement learning agents.

• Avoiding negative side-effects. A side-effect is something unintended
that happens as a consequence of an agent’s action. For example, a deliv-
ery robot should not spill coffee on the carpet or run over cats, but it may
be unavoidable to run over ants if delivering outside. If you specify to be
as quick as possible, the optimal course of action – based on its specified
rewards – may be to have some of these side-effects. There are too many
possible ways the robot could go wrong to specify them all for each task.

• Avoiding reward hacking. Reward hacking occurs when an agent opti-
mizes a reward by doing something that was not the intention of who-
ever specified the reward. The delivery robot could put all of the mail in
the garbage in order to have no undelivered mail, or if its goal is to have
no unfulfilled tasks it could hide so that it cannot be given new tasks. A
cleaning robot that is rewarded for cleaning messes might be able to get
most reward by creating messes it can clean.

• Scalable oversight occurs when a human is giving rewards to ensure an
agent is doing the right thing, but a human cannot give unlimited feed-
back. When the agent does something unintended, as in the examples
above, it needs to be corrected. However, such oversight cannot be con-
tinual; a human does not want to continually evaluate a deployed robot.

• Safe exploration. Even though the optimal way to deliver coffee might
be safe, while exploring it might try actions that are dangerous, such as
hitting people or throwing coffee, only to be given a negative reward.
The actions of the agent even when exploring need to be safe; it should
be able to explore but only within a safety-constrained environment.

• Robustness to distributional shift. The environment during deployment
will undoubtedly be different from the environment the agent is trained
on. Environments change in time, and agents should be able to take
changes in stride. The probability distribution of different outcomes can
shift, and an agent should be robust to these changes or be able to quickly
adapt to them.
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Amodei et al. [2016] provide references to other researchers who have consid-
ered these issues.

13.11 Review

The following are the main points you should have learned from this chapter:

• A Markov decision process is an appropriate formalism for reinforcement
learning. A common method is to learn an estimate of the value of doing
each action in a state, as represented by the Q(S, A) function.

• In reinforcement learning, an agent should trade off exploiting its knowl-
edge and exploring to improve its knowledge.

• Off-policy learning, such as Q-learning, learns the value of the optimal
policy. On-policy learning, such as SARSA, learns the value of the policy
the agent is actually carrying out (which includes the exploration).

• Model-based reinforcement learning separates learning the dynamics and
reward models from the decision-theoretic planning of what to do given
the models.

• For large state or action spaces, reinforcement learning algorithms can be
designed to use generalizing learners such as neural networks) to repre-
sent the value function, the Q-function and/or the policy.

13.12 References and Further Reading

For an introduction to reinforcement learning, see Sutton and Barto [2018],
Szepesvári [2010], Kochenderfer et al. [2022], and Powell [2022]. Silver et al.
[2021] argue that many problems can be formulated in terms of reward maxi-
mization and reinforcement learning.

Langton [1997], De Jong [2006], Salimans et al. [2017], and Such et al. [2017]
overview evolutionary computation, including how it is used in reinforcement
learning. Stanley et al. [2019] review neuroevolution. Such et al. [2017] show
how genetic algorithms can be competitive for hard reinforcement learning al-
gorithms. Lehman et al. [2018] provide many examples of the creativity of
evolutionary algorithms.

Temporal-difference learning is by Sutton [1988]. Q-learning is by Watkins
and Dayan [1992].

The use of the upper confidence bound for bandit problems was analyzed
by Auer et al. [2002]. Russo et al. [2018] provide a tutorial on Thompson [1933]
sampling. Kearns et al. [2002] analyze tree search, and Kocsis and Szepesvári
[2006] combine tree search with smart exploration.

Schmidhuber [1990] shows how neural networks can simultaneously learn
a model and a policy. Mnih et al. [2015] describe how reinforcement learn-
ing combined with neural networks was used to solve classic Atari computer
games. Silver et al. [2016] show how learning can be used for the game of Go,
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and Silver et al. [2017] describe AlphaZero that also has superhuman perfor-
mance in the games of chess and shogi. François-Lavet et al. [2018] and Li
[2018] survey deep reinforcement learning.

The social impact section is based on Amodei et al. [2016].

13.13 Exercises

Exercise 13.1 Explain how Q-learning fits in with the agent architecture of Sec-
tion 2.1.1 (page 53). Suppose that the Q-learning agent has discount factor γ, a
step size of α, and is carrying out an ε-greedy exploration strategy.

(a) What are the components of the belief state of the Q-learning agent?
(b) What are the percepts?
(c) What is the command function of the Q-learning agent?
(d) What is the belief-state transition function of the Q-learning agent?

Exercise 13.2 Suppose a Q-learning agent, with fixed α and discount γ, was in
state 34, did action 7, received reward 3, and ended up in state 65. What value(s)
get updated? Give an expression for the new value. (Be as specific as possible.)

Exercise 13.3 For the plot of the total reward as a function of time as in Figure 13.4
(page 594), the minimum and zero crossing are only meaningful statistics when
balancing positive and negative rewards is reasonable behavior. Suggest what
should replace these statistics when zero reward is not an appropriate definition of
reasonable behavior. [Hint: Think about the cases that have only positive reward
or only negative reward.]

Exercise 13.4 Compare the different parameter settings for Q-learning for the
game of Example 13.2 (page 585) (the “monster game” in AIPython (aipython.org))
In particular, compare the following situations:

(i) step size(c) = 1/c and the Q-values are initialized to 0.0.
(ii) step size(c) = 10/(9 + c) varies, and the Q-values are initialized to 0.0.

(iii) α varies (using whichever of (i) and (ii) is better) and the Q-values are ini-
tialized to 5.0.

(iv) α is fixed to 0.1 and the Q-values are initialized to 0.0.
(v) α is fixed to 0.1 and the Q-values are initialized to 5.0.

(vi) Some other parameter settings.

For each of these, carry out multiple runs and compare

(a) the distributions of minimum values
(b) the zero crossing
(c) the asymptotic slope for the policy that includes exploration
(d) the asymptotic slope for the policy that does not include exploration (to test

this, after the algorithm has explored, set the exploitation parameter to 100%
and run additional steps).

Which of these settings would you recommend? Why?

Exercise 13.5 For the following reinforcement learning algorithms:
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(i) Q-learning with fixed α and 80% exploitation.
(ii) Q-learning with fixed αk = 1/k and 80% exploitation.

(iii) Q-learning with αk = 1/k and 100% exploitation.
(iv) SARSA learning with αk = 1/k and 80% exploitation.
(v) SARSA learning with αk = 1/k and 100% exploitation.

(vi) Feature-based SARSA learning with softmax action selection.
(vii) A model-based reinforcement learner with 50% exploitation.

(a) Which of the reinforcement learning algorithms will find the optimal policy,
given enough time?

(b) Which ones will actually follow the optimal policy?

Exercise 13.6 Consider four different ways to derive the value of αk from k in Q-
learning (note that for Q-learning with varying αk, there must be a different count
k for each state–action pair).

(i) Let αk = 1/k.
(ii) Let αk = 10/(9 + k).

(iii) Let αk = 0.1.
(iv) Let αk = 0.1 for the first 10,000 steps, αk = 0.01 for the next 10,000 steps,

αk = 0.001 for the next 10,000 steps, αk = 0.0001 for the next 10,000 steps,
and so on.

(a) Which of these will converge to the true Q-value in theory?
(b) Which converges to the true Q-value in practice (i.e., in a reasonable number

of steps)? Try it for more than one domain.
(c) Which are able to adapt if the environment changes slowly?

Exercise 13.7 The model-based reinforcement learner allows for a different form
of optimism in the face of uncertainty. The algorithm can be started with each state
having a transition to a “nirvana” state, which has very high Q-value (but which
will never be reached in practice, and so the probability will shrink to zero).

(a) Does this perform differently than initializing all Q-values to a high value?
Does it work better, worse, or the same?

(b) How high does the Q-value for the nirvana state need to be to work most
effectively? Suggest a reason why one value might be good, and test it.

(c) Could this method be used for the other RL algorithms? Explain how or
why not.

Exercise 13.8 The grid game of Example 13.6 (page 601) included features for
the x-distance to the current treasure and are the y-distance to the current treasure.
Chris thought that these were not useful as they do not depend on the action. Do
these features make a difference? Explain why they might or might not. Do they
make a difference in practice?

Exercise 13.9 In SARSA with linear function approximation, using linear regres-
sion to minimize r + γQw(s′, a′)−Qw(s, a) gives a different algorithm than Figure
13.8 (page 602). Explain what you get and why what is described in the text may
be preferable (or not). [Hint: what should the weights be adjusted to better esti-
mate?]

https://doi.org/10.1017/9781009258227.018


608 13. Reinforcement Learning

Exercise 13.10 In Example 13.6 (page 601), some of the features are perfectly
correlated (e.g., F6 and F7). Does having such correlated features affect what func-
tions are able to be represented? Does it help or hurt the speed at which learning
occurs? Test this empirically on some examples.
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Chapter 14

Multiagent Systems

Imagine a personal software agent engaging in electronic commerce on
your behalf. Say the task of this agent is to track goods available for sale
in various online venues over time, and to purchase some of them on your
behalf for an attractive price. In order to be successful, your agent will
need to embody your preferences for products, your budget, and in general
your knowledge about the environment in which it will operate. More-
over, the agent will need to embody your knowledge of other similar agents
with which it will interact (e.g., agents who might compete with it in an
auction, or agents representing store owners) – including their own pref-
erences and knowledge. A collection of such agents forms a multiagent
system.

– Yoav Shoham and Kevin Leyton-Brown [2008]

What should an agent do when there are other agents, with their own goals
and preferences, who are also reasoning about what to do? An intelligent agent
should not ignore other agents or treat them as noise in the environment. This
chapter considers the problems of determining what an agent should do in an
environment that includes other agents who have their own utilities.

14.1 Multiagent Framework

This chapter considers environments that contain multiple agents, with the fol-
lowing assumptions:

• The agents can act autonomously, each with its own information about
the world and the other agents.

• The outcome can depend on the actions of all the agents.

609
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• Each agent has its own utility that depends on the outcome. Agents act
to maximize their own utility.

A mechanism specifies what actions are available to each agent and how the
actions of the agents lead to outcomes. An agent acts strategically when it
decides what to do based on its goals or utilities.

Sometimes nature is treated as an agent. Nature is defined as being a spe-
cial agent that does not have preferences and does not act strategically. It just
acts, perhaps stochastically. In terms of the agent architecture shown in Figure
1.4 (page 15), nature and the other agents form the environment for an agent.
Agents that are not acting strategically are treated as part of nature. A strate-
gic agent should not treat other strategic agents as part of nature, but rather
should be open to coordination, cooperation, and perhaps negotiation with
other strategic agents.

There are two extremes in the study of multiagent systems:

• fully cooperative, where the agents share the same utility function
• fully competitive, when one agent can only win when another loses; in

zero-sum games, for every outcome, the sum of the utilities for the agents
is zero.

Most interactions are between these two extremes, where the agents’ utilities
are synergistic in some aspects, competing in some, and other aspects are in-
dependent. For example, two commercial agents with stores next door to each
other may both share the goal of having the street area clean and inviting; they
may compete for customers, but may have no preferences about the details
of the other agent’s store. Sometimes their actions do not interfere with each
other, and sometimes they do. Often agents are better off if they coordinate
their actions through cooperation and negotiation.

Multiagent interactions have mostly been studied using the terminology
of games, following the seminal work of Neumann and Morgenstern [1953].
Many issues of interaction among agents can be studied in terms of games.
Even quite small games highlight deep issues. However, the study of games is
meant to be about general multiagent interactions, not just artificial games.

Multiagent systems are ubiquitous in AI robot soccer, to interactive video
games (page 252), to agents acting in complex economic systems, games are
integral to AI. Games were one of the first applications of AI. The first op-
erating checkers program dates back to 1952. A program by Samuel [1959]
beat the Connecticut state checker champion in 1961. There was great fanfare
when Deep Blue [Campbell et al., 2002] beat the world chess champion in 1997
and when AlphaGo [Silver et al., 2016] beat one of the world’s top Go play-
ers in 2016. Although large, these games are conceptually simple because the
agents observe the state of the world perfectly (they are fully observable). In
most real-world interactions, the state of the world is only partially observable.
There is now much interest in partially observable games like poker, where the
environment is predictable (as the proportion of cards is known, even if the
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particular cards dealt are unknown), and robot soccer, where the environment
is much less predictable. But all of these games are much simpler than the
multiagent interactions people perform in their daily lives, let alone the strate-
gizing needed for bartering in marketplaces or on the Internet, where the rules
are less well defined and the utilities are much more multifaceted.

14.2 Representations of Games

A mechanism represents the actions available to each agent and the (distribu-
tion over) outcomes for their joint actions. There are many representations for
mechanisms in games, and multiagent interactions in general, that have been
proposed in economics and AI. In AI, these representations typically allow the
designer to model aspects of games that can be exploited for computational
gain.

Three representations are presented; two of these are classic representations
from economics. The first abstracts away all structure of the policies of the
agents. The second models the sequential structure of games and is the foun-
dation for much work on representing board games. The third representation
moves away from the state-based representation to allow the representation of
games in terms of features.

14.2.1 Normal-Form Games

The most basic representation of games is the normal-form game, also known
as the strategic-form game. A normal-form game consists of

• a finite set I of agents, typically identified with the integers I = {1, . . . , n}
• a set of actions Ai for each agent i ∈ I
• a utility function ui for each agent i ∈ I that, given an assignment of

action to every agent, returns the expected utility for agent i; each agent
is trying to maximize its own utility.

An action profile is a tuple 〈a1, . . . , an〉, which specifies that agent i ∈ I carries
out action ai, where ai ∈ Ai. An action profile produced an outcome. Each
agent has a utility over each outcome. The utility for an agent is meant to en-
compass everything that the agent is interested in, including fairness, altruism,
and societal well-being.

Example 14.1 The game rock–paper–scissors is a common game played by
children, and there is even a world championship. Suppose there are two
agents (players), Alice and Bob. There are three actions for each agent, so that

AAlice = ABob = {rock, paper, scissors}.

For each combination of an action for Alice and an action for Bob, there is a
utility for Alice and a utility for Bob. This is often drawn in a table as in
Figure 14.1 (page 612). This is called a payoff matrix. Alice chooses a row and

https://doi.org/10.1017/9781009258227.019


612 14. Multiagent Systems

Bob chooses a column, simultaneously. This gives a pair of numbers: the first
number is the payoff to the row player (Alice) and the second gives the payoff
to the column player (Bob). Note that the utility for each of them depends on
what both players do. An example of an action profile is 〈scissorsAlice, rockBob〉,
where Alice chooses scissors and Bob chooses rock. In this action profile, Alice
receives the utility of −1 and Bob receives the utility of 1. This game is a zero-
sum game because one person wins only when the other loses.

This representation of a game may seem very restricted, because it only gives
a one-off payoff for each agent based on single actions, chosen simultaneously,
for each agent. However, the interpretation of an action in the definition is very
general.

Typically, an “action” is not just a simple choice, but a strategy: a specifi-
cation of what the agent will do under the various contingencies. The normal
form, essentially, is a specification of the utilities given the possible strategies
of the agents. This is why it is called the strategic form of a game.

More generally, the “action” in the definition of a normal-form game can be
a controller (page 55) for the agent. Thus, each agent chooses a controller and
the utility gives the expected outcome of the controllers run for each agent in
an environment. Although the examples that follow are for simple actions, the
general case has an enormous number of possible actions (possible controllers)
for each agent.

14.2.2 Extensive Form of a Game

Whereas the normal form of a game represents controllers as single units, it is
often more natural to specify the unfolding of a game through time. The exten-
sive form of a game is an extension of a single-agent decision tree (page 532).
Let’s first give a definition that assumes the game is fully observable (called
perfect information in game theory).

A perfect-information game in extensive form, or a game tree, is a finite
tree where the nodes are states and the arcs correspond to actions by the agents.
In particular:

• Each internal node is labeled with an agent (or with nature). The agent is
said to control the node.

Bob
rock paper scissors

rock 0, 0 −1, 1 1,−1
Alice paper 1,−1 0, 0 −1, 1

scissors −1, 1 1,−1 0,0

Figure 14.1: Normal form for the rock–paper–scissors game
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• Each arc out of a node labeled with agent i corresponds to an action for
agent i.

• Each internal node labeled with nature has a probability distribution over
its children.

• The leaves represent final outcomes and are labeled with a utility for each
agent.

The extensive form of a game specifies a particular unfolding of the game. Each
path to a leaf, called a run, specifies one particular way that the game could
proceed, depending on the choices of the agents and nature.

A strategy for agent i is a function from nodes controlled by agent i into
actions. That is, a strategy selects a child for each node that agent i controls. A
strategy profile consists of a strategy for each agent.

Example 14.2 Consider a sharing game where there are two agents, Andy and
Barb, and there are two identical items to be divided between them. Andy first
selects how they will be divided: Andy keeps both items, they share and each
person gets one item, or he gives both items to Barb. Then Barb gets to either
reject the allocation and they both get nothing, or accept the allocation and they
both get the allocated amount.

The extensive form of the sharing game is shown in Figure 14.2. Andy has 3
strategies. Barb has 23 = 8 strategies; one for each combination of assignments
to the nodes she controls. As a result, there are 24 strategy profiles.

Given a strategy profile, each node has a utility for each agent. The utility
for an agent at a node is defined recursively from the bottom up:

• The utility for each agent at a leaf is given as part of the leaf.
• The utility for an agent at a node controlled by that agent is the utility for

the agent of the child node that is selected by the agent’s strategy.
• The utility for agent j at a node controlled by another agent i is the utility

for agent j of the child node that is selected by agent i’s strategy.

keep

Andy

Barb Barb Barb

share give

yes no yes no yes no

2,0 0,0 1,1 0,0 0,2 0,0

Figure 14.2: Extensive form of the sharing game
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• The utility for agent i for a node controlled by nature is the expected value
of the utility for agent i of the children. That is, ui(n) = ∑c P(c)ui(c),
where the sum is over the children c of node n, and P(c) is the probability
that nature will choose child c.

Example 14.3 In the sharing game, consider the following strategy profile:
Andy, not knowing what Barb will do, chooses keep. Barb chooses no, yes, yes for
each of the nodes she gets to choose for. Under this strategy profile, the utility
for Andy at the leftmost internal node is 0, the utility for Andy at the center
internal node is 1, and the utility for Andy at the rightmost internal node is 0.
For this strategy profile, the utility for Andy at the root is 0.

The preceding definition of the extensive form of a game assumes that the
agents can observe the state of the world (i.e., at each stage they know which
node they are at). This means that the state of the game must be fully observ-
able. In a partially observable game or an imperfect-information game, the
agents do not necessarily know the state of the world when they have to decide
what to do. This includes simultaneous-action games, where more than one
agent needs to decide what to do at the same time. In such cases, the agents
do not know which node they are at in the game tree. To model these games,
the extensive form of a game is extended to include information sets. An infor-
mation set is a set of nodes, all controlled by the same agent and all with the
same set of available actions. The idea is that the agent cannot distinguish the
elements of the information set. The agent only knows the game state is at one
of the nodes in the information set, not which of those nodes. In a strategy, the
agent chooses one action for each information set; the same action is carried
out at each node in the information set. Thus, in the extensive form, a strategy
specifies a function from information sets to actions.

Example 14.4 Figure 14.3 gives the extensive form for the rock–paper–scissors
game of Example 14.1 (page 611). The elements of the information set are in a

r p s

rock

Alice

Bob Bob Bob

paper scissors

0,0 1,-1-1,1

r p s

1,-1 -1,10,0

r p s

-1,1 0,01,-1

Figure 14.3: Extensive form of the rock–paper–scissors game
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rounded rectangle. In a strategy, Bob must treat each node in the information
set the same. When Bob gets to choose his action, he does not know which
action Alice has chosen.

14.2.3 Multiagent Decision Networks

The extensive form of a game is a state-based representation of the game. It is
often more concise to describe states in terms of features. A multiagent deci-
sion network is a factored representation of a multiagent decision problem. It
is like a decision network (page 537), except that each decision node is labeled
with an agent that gets to choose a value for the node. There is a utility node
for each agent specifying the utility for that agent. The parents of a decision
node specify the information that will be available to the agent when it has to
act.

Example 14.5 Figure 14.4 gives a multiagent decision network for a fire alarm
example. In this scenario, there are two agents, Agent 1 and Agent 2. Each has
its own noisy sensor of whether there is a fire. However, if they both call, it is
possible that their calls will interfere with each other and neither call will work.
Agent 1 gets to choose a value for decision variable Call1 and only observes the
value for the variable Alarm1. Agent 2 gets to choose a value for decision vari-
able Call2 and only observes the value for the variable Alarm2. Whether the
call works depends on the values of Call1 and Call2. Whether the fire depart-
ment comes depends on whether the call works. Agent 1’s utility depends on
whether there was a fire, whether the fire department comes, and whether they
called – similarly for Agent 2.

A multiagent decision network can be converted into a normal-form game;
however, the number of strategies may be enormous. If a decision variable

Fire
Alarm1

Alarm2

Call1

Call2

Call 
Works

Fire Dept 
Comes

U1

U2

Figure 14.4: Multiagent decision network for Example 14.5
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has d states and n binary parents, there are 2n assignments of values to parents
and so d2n

strategies. That is just for a single decision node; more complicated
networks are even bigger when converted to normal form. Thus, algorithms
that depend on enumerating strategies are impractical for anything but the
smallest multiagent decision networks.

Other representations exploit other structures in multiagent settings. For
example, the utility of an agent may depend on the number of other agents who
do some action, but not on their identities. An agent’s utility may depend on
what a few other agents do, not directly on the actions of all other agents. An
agent’s utility may only depend on what the agents at neighboring locations
do, and not on the identity of these agents or on what other agents do.

14.3 Solving Perfect Information Games

Fully observable (page 29) with multiple agents is typically called perfect in-
formation. In perfect-information games, agents act sequentially and, when an
agent has to act, it gets to observe the state of the world before deciding what
to do. Each agent acts to maximize its own utility.

A perfect-information game can be represented as an extensive-form game
where the information sets all contain a single node. They can also be repre-
sented as a multiagent decision network where the decision nodes are totally
ordered and, for each decision node, the parents of that decision node include
the preceding decision node and all of their parents (so they are a multiagent
counterpart of no-forgetting decision networks (page 540)).

Perfect-information games are solvable in a manner similar to fully observ-
able single-agent systems. They can be solved backward, from the last deci-
sions to the first, using dynamic programming, or forward using search. The
multiagent algorithm maintains a utility for each agent and, for each move,
it selects an action that maximizes the utility of the agent making the move.
The dynamic programming variant, called backward induction, starts from
the end of the game, computing and caching the values and the plan of each
node for each agent.

Figure 14.5 (page 617) gives a top-down, depth-first search algorithm for
evaluating a game tree for a perfect information game. It enumerates the whole
tree. At each internal node, the agent that controls the node selects a child that
is best for it. This arbitrarily chooses the first child that maximizes the agent’s
score (the > on line 12), but as the following example shows, which one is
selected can affect the utility.

Example 14.6 Consider the sharing game of Figure 14.2 (page 613). In the
recursive calls, Barb gets to choose the value that maximizes her utility. Thus,
she will choose “yes” for the right two nodes she controls, and would choose
either for the leftmost node she controls. Suppose she chooses “no” for this
node, then Andy gets to choose one of his actions: keep has utility 0 for him,
share has utility 1, and give has utility 0, so he chooses to share. If Barb had
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chosen “yes” for the leftmost node, Andy would keep, and so Andy would get
both items.

14.3.1 Adversarial Games

The case where two agents are competing, so that a positive reward for one is
a negative reward for the other, is a two-agent zero-sum game. An agent that
plays such a game well requires adversarial reasoning (page 33). The value of
such a game can be characterized by a single number that one agent is trying to
maximize and the other agent is trying to minimize, which leads to a minimax
search space. Each node is either a MAX node, if it is controlled by the agent
trying to maximize, or a MIN node, if it is controlled by the agent trying to
minimize.

Figure 14.5 implements a minimax algorithm for zero-sum perfect informa-
tion games, by the MAX agent choosing an action with the maximum value,
and the MIN agent choosing an action with the maximum of the negation of the
value.

The game-tree search of Figure 14.5 traverses the whole game tree. It is
possible to prune part of the search tree for minimax games by showing that
some part of the tree will never be part of an optimal play.

Example 14.7 Consider searching in the game tree of Figure 14.6 (page 618).
In this figure, the square MAX nodes are controlled by the maximizing agent,
and the round MIN nodes are controlled by the minimizing agent.

1: procedure GameTreeSearch(n)
2: Inputs
3: n a node in a game tree
4: Output
5: A pair of a value for each agent for node n, path that gives this value
6: if n is a leaf node then
7: return {i : evaluate(i, n)}, None
8: else if n is controlled by agent i then
9: max score for i := −∞

10: for each child c of n do
11: score, path := Minimax(c)
12: if score[i] > max score for i then
13: max score for i := score[i]
14: best := c : path
15: return score, best

Figure 14.5: Evaluating a perfect-information game tree (without nature)
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Suppose the values of the leaf nodes are given or are computed given the
definition of the game. The numbers at the bottom show some of these values.
The other values are irrelevant, as shown here. Suppose you are doing a left-
first, depth-first traversal of this tree. The value of node h is 7, because it is the
minimum of 7 and 9. Just by considering the leftmost child of i with a value of
6, you know that the value of i is less than or equal to 6. Therefore, at node d,
the maximizing agent will go left. You do not have to evaluate the other child
of i. Similarly, the value of j is 11, so the value of e is at least 11, and so the
minimizing agent at node b will choose to go left.

The value of l is less than or equal to 5, and the value of m is less than or
equal to 4; thus, the value of f is less than or equal to 5, so the value of c will
be less than or equal to 5. So, at a, the maximizing agent will choose to go left.
Notice that this argument did not depend on the values of the unnumbered
leaves. Moreover, it did not depend on the size of the subtrees that were not
explored.

The previous example analyzed what can be pruned. Minimax with alpha–
beta (α–β) pruning is a depth-first search algorithm that prunes by passing
pruning information down in terms of parameters α and β. In this depth-first
search, a node has a score, which has been obtained from (some of) its descen-
dants.

The parameter α is used to prune MIN nodes. Initially, it is the highest
current value for all MAX ancestors of the current node. Any MIN node whose
current value is less than or equal to its α value does not have to be explored
further. This cutoff was used to prune the other descendants of nodes l, m, and
c in the previous example.

The β parameter is used to prune MAX nodes in an analogous way.
The minimax algorithm with α–β pruning is given in Figure 14.7 (page 619).

It is called, initially, with MinimaxAlphaBeta(R,−∞, ∞), where R is the root

h i j k l m n o

d e f g

b c

a

7 9 6 11 12 5 4

7

7
11

7

7

≤5 ≤4≤6

≤5

≤5

≥11

MAX

MIN

MIN

MAX

Figure 14.6: A zero-sum game tree showing which nodes can be pruned

https://doi.org/10.1017/9781009258227.019


14.3. Solving Perfect Information Games 619

node. It returns a pair of the value for the node n and a path of choices that
lead to this value. (Note that this path does not include n.) Line 13 performs β
pruning; at this stage the algorithm knows that the current path will never be
chosen, and so returns a current score. Similarly, line 22 performs α-pruning.
Line 17 and line 26 concatenate c to the path, as it has found a best path for the
agent. In this algorithm, the path “None” is sometimes returned for non-leaf
nodes; this only occurs when the algorithm has determined this path will not
be used.

Example 14.8 Consider running MinimaxAlphaBeta on the tree of Figure 14.6
(page 618). Consider the recursive calls (and the values returned, but not the
paths). Initially, it calls

MinimaxAlphaBeta(a,−∞, ∞)

1: procedure Minimax alpha beta(n, α, β)
2: Inputs
3: n a node in a game tree
4: α, β real numbers
5: Output
6: A pair of a value for node n, path that gives this value
7: best := None
8: if n is a leaf node then
9: return evaluate(n), None

10: else if n is a MAX node then
11: for each child c of n do
12: score, path := MinimaxAlphaBeta(c, α, β)
13: if score ≥ β then
14: return score, None
15: else if score > α then
16: α := score
17: best := c : path
18: return α, best
19: else
20: for each child c of n do
21: score, path := MinimaxAlphaBeta(c, α, β)
22: if score ≤ α then
23: return score, None
24: else if score < β then
25: β := score
26: best := c : path
27: return β, best

Figure 14.7: Minimax with α–β pruning
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which then calls, in turn:

MinimaxAlphaBeta(b,−∞, ∞)

MinimaxAlphaBeta(d,−∞, ∞)

MinimaxAlphaBeta(h,−∞, ∞).

This last call finds the minimum of both of its children and returns 7. Next the
procedure calls

MinimaxAlphaBeta(i, 7, ∞)

which then gets the value for the first of i’s children, which has value 6. Because
α ≥ β, it returns 6. The call to d then returns 7, and it calls

MinimaxAlphaBeta(e,−∞, 7).

Node e’s first child returns 11 and, because α ≥ β, it returns 11. Then b returns
7, and the call to a calls

MinimaxAlphaBeta(c, 7, ∞)

which in turn calls

MinimaxAlphaBeta(f , 7, ∞)

which eventually returns 5, and so the call to c returns 5, and the whole proce-
dure returns 7.

By keeping track of the values, the maximizing agent knows to go left at a,
then the minimizing agent will go left at b, and so on.

The amount of pruning provided by this algorithm depends on the order-
ing of the children of each node. It works best if a highest-valued child of a
MAX node is selected first and if a lowest-valued child of a MIN node is re-
turned first. In implementations of real games, much of the effort is made to
try to ensure this ordering.

Most real games are too big to carry out minimax search, even with α–β
pruning. For these games, instead of only stopping at leaf nodes, it is possi-
ble to stop at any node. The value returned at the node where the algorithm
stops is an estimate of the value for this node. The function used to estimate the
value is an evaluation function. Much work goes into finding good evaluation
functions. There is a trade-off between the amount of computation required to
compute the evaluation function and the size of the search space that can be ex-
plored in any given time. It is an empirical question as to the best compromise
between a complex evaluation function and a large search space.
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14.4 Reasoning with Imperfect Information

In an imperfect-information game, or a partially observable game, an agent
does not fully know the state of the world or the agents act simultaneously.

Partial observability for the multiagent case is more complicated than the
fully observable multiagent case or the partially observable single-agent case.
The following simple examples show some important issues that arise even in
the case of two agents, each with a few choices.

Example 14.9 Consider the case of a penalty kick in soccer as depicted in
Figure 14.8. If the kicker kicks to their right and the goalkeeper jumps to their
right, the probability of a goal is 0.9, and similarly for the other combinations
of actions, as given in the figure.

What should the kicker do, given that they want to maximize the probabil-
ity of a goal and the goalkeeper wants to minimize the probability of a goal?
The kicker could think that it is better kicking to their right, because the pair of
numbers for their right kick is higher than the pair for the left. The goalkeeper
could then think that if the kicker will kick right, they should jump left. How-
ever, if the kicker thinks that the goalkeeper will jump left, they should then
kick left. But then, the goalkeeper should jump right. Then the kicker should
kick right. . .

Each agent is potentially faced with an infinite regression of reasoning about
what the other agent will do. At each stage in their reasoning, the agents re-
verse their decision. One could imagine cutting this off at some depth; how-
ever, the actions then are purely a function of the arbitrary depth. Even worse,
if the goalkeeper knew the depth limit of reasoning for the kicker, they could
exploit this knowledge to determine what the kicker will do and choose their
action appropriately.

An alternative is for the agents to choose actions stochastically. Imagine
that the kicker and the goalkeeper each secretly toss a coin to decide what to do.
Consider whether the coins should be biased. Suppose that the kicker decides
to kick to their right with probability pk and that the goalkeeper decides to jump

Goalkeeper
left right

Kicker left 0.6 0.2
right 0.3 0.9

Probability of a goal

Figure 14.8: Soccer penalty kick. The kicker can kick to their left or right. The
goalkeeper can jump to their left or right
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to their right with probability pg. The probability of a goal is then

P(goal) = 0.9pkpg + 0.3pk(1− pg) + 0.2(1− pk)pg + 0.6(1− pk)(1− pg)

where the numbers (0.9, 0.3, etc.) come from Figure 14.8 (page 621).
Figure 14.9 shows the probability of a goal as a function of pk. The different

lines correspond to different values of pg.
There is something special about the value pk = 0.4. At this value, the

probability of a goal is 0.48, independent of the value of pg. That is, no matter
what the goalkeeper does, the kicker expects to get a goal with probability 0.48.
If the kicker deviates from pk = 0.4, they could do better or could do worse,
depending on what the goalkeeper does.

The plot for pg is similar, with all of the lines meeting at pg = 0.3. Again,
when pg = 0.3, the probability of a goal is 0.48.

The strategy with pk = 0.4 and pg = 0.3 is special in the sense that neither
agent can do better by unilaterally deviating from the strategy. However, this
does not mean that they cannot do better; if one of the agents deviates from
this equilibrium, the other agent could do better by also deviating from the
equilibrium. However, this equilibrium is safe for an agent in the sense that,
even if the other agent knew the agent’s strategy, the other agent cannot force
a worse outcome for the agent. Playing this strategy means that an agent does
not have to worry about double-guessing the other agent. In this game, each
agent will get the best payoff it could guarantee to obtain.

So let us now extend the definition of a strategy to include randomized
strategies.

0.2

0 1.00.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

pg=1

pg=0

pk

P(goal)

Figure 14.9: Probability of a goal as a function of action probabilities
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Consider the normal form of a game where each agent chooses an action
simultaneously. Each agent chooses an action without knowing what the other
agents choose.

A strategy for an agent is a probability distribution over the actions for
this agent. In a pure strategy, one of the probabilities will be 1 and the rest
will be 0. Thus, an agent following a pure strategy is acting deterministically.
The alternative to a pure strategy is a stochastic strategy, where none of the
probabilities are 1, and so more than one action has a non-zero probability. The
set of actions with a non-zero probability in a strategy is the support set of the
strategy.

A strategy profile is an assignment of a strategy to each agent. If σ is a
strategy profile, let σi be the strategy of agent i in σ, and let σ−i be the strategies
of the other agents. Then σ is σiσ−i. If the strategy profile is made up of pure
strategies, it is often called an action profile (page 611), because each agent is
playing a particular action.

A strategy profile σ has an expected utility for each agent. Let utility(σ, i)
be the expected utility of strategy profile σ for agent i. The utility of a stochastic
strategy profile can be computed by averaging the utilities of the basic actions
that make up the profile given the probabilities of the actions.

A best response for an agent i to the strategies σ−i of the other agents is a
strategy that has maximal utility for that agent. That is, σi is a best response to
σ−i if, for all other strategies σ′i for agent i:

utility(σiσ−i, i) ≥ utility(σ′i σ−i, i).

A strategy profile σ is a Nash equilibrium if, for each agent i, strategy σi
is a best response to σ−i. That is, a Nash equilibrium is a strategy profile such
that no agent can do better by unilaterally deviating from that profile.

One of the great results of game theory, proved by Nash [1950], is that every
finite game has at least one Nash equilibrium.

Example 14.10 In Example 14.9 (page 621), there is a unique Nash equilib-
rium where pk = 0.4 and pg = 0.3. This has the property that, if the kicker is
playing pk = 0.4, it does not matter what the goalkeeper does; the goalkeeper
will have the same payoff, and so pg = 0.3 is a best response (as is any other
strategy). Similarly, if the goalkeeper is playing pg = 0.3, it does not matter
what the kicker does; and so every strategy, including pk = 0.4, is a best re-
sponse.

The only reason an agent would consider randomizing between two actions
is if the actions have the same expected utility. All probabilistic mixtures of the
two actions have the same utility. The reason to choose a particular value for
the probability of the mixture is to prevent the other agent from exploiting a
deviation.

Games can have multiple Nash equilibria. Consider the following two-
agent, two-action game.
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Example 14.11 Suppose there is a resource that two agents may want to fight
over. Each agent chooses to act as a hawk or as a dove. Suppose the resource
is worth R units, where R > 0. If both agents act as doves, they share the
resource. If one agent acts as a hawk and the other as a dove, the hawk agent
gets the resource and the dove agent gets nothing. If they both act like hawks,
there is destruction of the resource and the reward to both is −D, where D > 0.
This is depicted by the following payoff matrix:

Agent 2
dove hawk

Agent 1 dove R/2, R/2 0, R
hawk R, 0 −D,−D

In this matrix, Agent 1 gets to choose the row, Agent 2 gets to choose the col-
umn, and the payoff in the cell is a pair consisting of the reward to Agent 1 and
the reward to Agent 2. Each agent is trying to maximize its own reward.

In this game there are three Nash equilibria:

• In one equilibrium, Agent 1 acts as a hawk and Agent 2 as a dove. Agent
1 does not want to deviate because then they have to share the resource.
Agent 2 does not want to deviate because then there is destruction.

• In the second equilibrium, Agent 1 acts as a dove and Agent 2 as a hawk.
• In the third equilibrium, both agents act stochastically. In this equilibrium,

there is some chance of destruction. The probability of acting like a hawk
goes up with the value R of the resource and goes down as the value D of
destruction increases. See Exercise 14.3 (page 640).

In this example, you could imagine each agent doing some posturing to try to
indicate what it will do to try to force an equilibrium that is advantageous to it.

Having multiple Nash equilibria does not come from being adversaries, as
the following example shows.

Example 14.12 Suppose there are two people who want to be together. Agent
1 prefers they both go to the football game and Agent 2 prefers they both go
shopping. They both would be unhappy if they are not together. Suppose they
both have to choose simultaneously what activity to do. This is depicted by the
following payoff matrix:

Agent 2
football shopping

Agent 1 football 2, 1 0, 0
shopping 0, 0 1, 2

In this matrix, Agent 1 chooses the row, and Agent 2 chooses the column.
In this game, there are three Nash equilibria. One equilibrium is where they

both go shopping, one is where they both go to the football game, and one is a
randomized strategy.

This is a coordination problem. Knowing the set of equilibria does not ac-
tually tell either agent what to do, because what an agent should do depends on
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what the other agent will do. In this example, you could imagine conversations
to determine which equilibrium they would choose.

Even when there is a unique Nash equilibrium, that Nash equilibrium does
not guarantee the maximum payoff to each agent. The following example is a
variant of what is known as the prisoner’s dilemma.

Example 14.13 Imagine you are on a game show with a stranger who you
will never see again. You each have the choice of

• taking $100 for yourself, or
• giving $1000 to the other person.

This is depicted as the following payoff matrix:

Player 2
take give

Player 1 take 100, 100 1100, 0
give 0, 1100 1000, 1000

No matter what the other agent does, each agent is better off if it takes rather
than gives. However, both agents are better off if they both give rather than if
they both take.

Thus, there is a unique Nash equilibrium, where both agents take. This
strategy profile results in each player receiving $100. The strategy profile where
both players give results in each player receiving $1000. However, in this strat-
egy profile, each agent is rewarded for deviating.

There is a large body of research on the prisoner’s dilemma, because it does
not seem to be so rational to be greedy, where each agent tries to do the best
for itself, resulting in everyone being worse off. One case where giving be-
comes preferred is when the game is played a number of times. This is known
as the sequential prisoner’s dilemma. One strategy for the sequential pris-
oner’s dilemma is tit-for-tat: each player gives initially, then does the other
agent’s previous action at each step. This strategy is a Nash equilibrium as
long as there is no last action that both players know about. See Exercise 14.8
(page 641).

Having multiple Nash equilibria arises not just from partial observability.
It is possible to have multiple equilibria with a perfect-information game, and
it is even possible to have infinitely many Nash equilibria, as the following
example shows.

Example 14.14 Consider the sharing game of Example 14.2 (page 613). In
this game there are infinitely many Nash equilibria. There is a set of equilibria
where Andy shares, and Barb says yes to sharing for the center choice and can
randomize between the other choices, as long as the probability of saying yes in
the left-hand choice is less than or equal to 0.5. In these Nash equilibria, they
both get 1. There is another set of Nash equilibria where Andy keeps, and Barb
randomizes among her choices, so that the probability of saying yes in the left

https://doi.org/10.1017/9781009258227.019


626 14. Multiagent Systems

branch is greater than or equal to 0.5. In these equilibria, Barb gets 0 and Andy
gets some value in the range [1, 2] depending on Barb’s probability. There is a
third set of Nash equilibria where Barb has a 0.5 probability of selecting yes at
the leftmost node, selects yes at the center node, and Andy randomizes between
keep and share with any probability.

Suppose the sharing game were modified slightly so that Andy offered a
small bribe for Barb to say yes. This could be done by changing the 2, 0 payoff
to be 1.9, 0.1. Andy may think, “Given the choice between getting 0.1 or 0, Barb
will choose to get 0.1, so then I should keep.” But Barb could think, “I should
say no to 0.1, so that Andy shares and I get 1.” In this example (even ignoring
the rightmost branch), there are multiple pure Nash equilibria. One is where
Andy keeps and Barb says yes at the leftmost branch. In this equilibrium, Andy
gets 1.9 and Barb gets 0.1. There is another Nash equilibrium where Barb says
no at the leftmost choice node and yes at the center branch and Andy chooses
share. In this equilibrium, they both get 1. It would seem that this is the one
preferred by Barb. However, Andy could think that Barb is making an empty
threat. If he actually decided to keep, Barb, acting to maximize her utility, would
not actually say no.

The backward-induction algorithm only finds one of the equilibria in the mod-
ified sharing game of the previous example. It computes a subgame-perfect
equilibrium, where it is assumed that the agents choose the action with great-
est utility for them at every node where they get to choose. It assumes that
agents do not carry out threats that it is not in their interest to carry out at the
time. In the modified sharing game of the previous example, it assumes that
Barb will say yes to the small bribe. However, when dealing with real oppo-
nents, you should be aware that they may follow through with threats that you
may not think rational. Indeed, it might be better for an agent not to (appear
to) be rational!

14.4.1 Computing Nash Equilibria

To compute a Nash equilibrium for a game in normal form, there are three
steps:

1. Eliminate dominated strategies.
2. Determine the support set, the set of actions which have non-zero prob-

abilities.
3. Determine the probability for the actions in the support set.

It turns out that the second of these is the most difficult.

Eliminating Dominated Strategies

A strategy s1 for agent A is dominated by strategy s2 for A if, for every action
of the other agents, the utility of s1 for agent A is lower than the utility of s2
for agent A. This is formalized below. Any pure strategy dominated by an-
other strategy can be eliminated from consideration. The dominating strategy
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could be a randomized strategy. Removing dominated strategies can be done
repeatedly.

Example 14.15 Consider the following payoff matrix, where the first agent
chooses the row and the second agent chooses the column. In each cell is a
pair of payoffs: the payoff for Agent 1 and the payoff for Agent 2. Agent 1 has
actions {a1, b1, c1}. Agent 2 has actions {d2, e2, f2}.

Agent 2
d2 e2 f2

a1 3, 5 5, 1 1, 2
Agent 1 b1 1, 1 2, 9 6, 4

c1 2, 6 4, 7 0, 8

(Before looking at the solution, try to work out what each agent should do.)
Action c1 can be removed because it is dominated by action a1: Agent 1 will

never do c1 if action a1 is available to it. Notice how the payoff for Agent 1 is
greater doing a1 than doing c1, no matter what the other agent does.

Once action c1 is eliminated, action f2 can be eliminated because it is domi-
nated for Agent 2 by the randomized strategy 0.5 ∗ d2 + 0.5 ∗ e2.

Once c1 and f2 have been eliminated, b1 is dominated by a1, and so Agent
1 will do action a1. Given that Agent 1 will do a1, Agent 2 will do d2. Thus the
unique Nash equilibrium has Agent 1 doing a1 and Agent 2 doing d2, with a
payoff of 3 for Agent 1 and 5 for Agent 2.

Strategy s1 strictly dominates strategy s2 for Agent i if, for all action profiles
σ−i of the other agents:

utility(s1σ−i, i) > utility(s2σ−i, i)

in which case s2 is strictly dominated by s1. If s2 is a pure strategy that is
strictly dominated by some strategy s1, then s2 can never be in the support set
of any Nash equilibrium. This holds even if s1 is a stochastic strategy. Repeated
elimination of strictly dominated strategies gives the same result, regardless of
the order in which the strictly dominated strategies are removed.

There are also weaker notions of domination, where the greater than sym-
bol in the preceding formula is replaced by greater than or equal. If the weaker
notion of domination is used, there is always a Nash equilibrium with sup-
port of the non-dominated strategies. However, some Nash equilibria may be
lost. Which equilibria are lost can depend on the order in which the dominated
strategies are removed.

Computing Randomized Strategies

An agent will only randomize among actions if the actions all have the same
utility to the agent, given the strategies of the other agents. This idea leads
to a set of constraints that can be solved to compute a Nash equilibrium. If
these constraints can be solved with numbers in the range (0, 1), and the mixed
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strategies computed for each agent are not dominated by another strategy for
the agent, then this strategy profile is a Nash equilibrium.

Recall that a support set (page 623) is a set of pure strategies that each have
non-zero probability in a Nash equilibrium.

Once dominated strategies have been eliminated, an agent can search over
support sets to determine whether the support sets form a Nash equilibrium.
Note that, if there are n actions available to an agent, there are 2n − 1 non-
empty subsets, and we have to search over combinations of support sets for the
various agents. This is not feasible unless there are only a few non-dominated
actions or there are Nash equilibria with small support sets. To find simple
(in terms of the number of actions in the support set) equilibria, an agent can
search from smaller support sets to larger sets.

Suppose agent i is randomizing actions a1
i , . . . , aki

i in a Nash equilibrium,
each with a non-zero probability. Let pj

i be the probability that agent i does
action aj

i. Let σ−i be the strategies for the other agents, which is a function of
their probabilities. The fact that this is a Nash equilibrium gives the following
constraints: pj

i > 0, ∑ki
j=1 pj

i = 1, and, for all j, j′

utility(aj
iσ−i, i) = utility(aj′

i σ−i, i).

You also require that the utility of doing aj
i is not less than the utility of doing

an action outside of the support set. Thus, for all a′ /∈ {a1
i , . . . , aki

i }:

utility(aj
iσ−i, i) ≥ utility(a′σ−i, i).

Example 14.16 In Example 14.9 (page 621), suppose the goalkeeper jumps
right with probability pg and the kicker kicks right with probability pk.

If the goalkeeper jumps right, the probability of a goal is

0.9pk + 0.2(1− pk).

If the goalkeeper jumps left, the probability of a goal is

0.3pk + 0.6(1− pk).

The only time the goalkeeper would randomize is if these are equal; that is, if

0.9pk + 0.2(1− pk) = 0.3pk + 0.6(1− pk).

Solving for pk gives pk = 0.4.
Similarly, for the kicker to randomize, the probability of a goal must be the

same whether the kicker kicks left or right:

0.2pg + 0.6(1− pg) = 0.9pg + 0.3(1− pg).

Solving for pg gives pg = 0.3.
Thus, the only Nash equilibrium has pk = 0.4 and pg = 0.3.
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14.5 Group Decision Making

Often, groups of people have to make decisions about what the group will do.
It may seem that voting is a good way to determine what a group wants, and
when there is a clear most-preferred choice, it is. However, there are major
problems with voting when there is not a clear preferred choice, as shown in
the following example.

Example 14.17 Consider a purchasing agent that has to decide on a holiday
destination for a group of people, based on their preference. Suppose there
are three people, Alice, Bob, and Cory, and three destinations, X, Y, and Z.
Suppose the agents have the following preferences, where ! means strictly
prefers (page 519):

• Alice: X ! Y ! Z
• Bob: Y ! Z ! X
• Cory: Z ! X ! Y.

Given these preferences, in a pairwise vote, X ! Y because two out of the three
prefer X to Y. Similarly, in the voting, Y ! Z and Z ! X. Thus, the preferences
obtained by voting are not transitive (page 519). This example is known as the
Condorcet paradox. Indeed, it is not clear what a group outcome should be in
this case, because it is symmetric among the outcomes.

A social preference function gives a preference relation for a group. We
would like a social preference function to depend on the preferences of the
individuals in the group. It may seem that the Condorcet paradox is a problem
unique to pairwise voting; however, the following result due to Arrow [1963]
shows that such paradoxes occur with any social preference function.

Proposition 14.1 (Arrow’s impossibility theorem). If there are three or more out-
comes, the following properties cannot simultaneously hold for any social preference
function:

• The social preference function is complete and transitive (page 519).
• Every individual preference that is complete and transitive is allowed.
• If every individual prefers outcome o1 to o2, the group prefers o1 to o2.
• The group preference between outcomes o1 and o2 depends only on the indi-
vidual preferences on o1 and o2 and not on the individual preferences on other
outcomes.
• No individual gets to unilaterally decide the outcome (non-dictatorship).

When building an agent that takes the individual preferences and gives a
social preference, you should be aware that you cannot have all of these intu-
itive and desirable properties. Rather than giving a group preference that has
undesirable properties, it may be better to point out to the individuals how
their preferences cannot be reconciled.
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14.6 Mechanism Design

The earlier discussion on agents choosing their actions assumed that each agent
gets to play in a predefined game. The problem of mechanism design is to
design a game with desirable properties for various agents to play.

A mechanism specifies the actions available to each agent and the outcomes
of each action profile. We assume that agents have utilities over outcomes.

There are two common properties that are desirable for a mechanism:

• A mechanism should be easy for agents to use. Given an agent’s utility,
it should be easy for the agent to determine what to do. A dominant
strategy is a strategy for an agent that is best for the agent, no matter
what the other agents do. If an agent has a dominant strategy, it can do
its best action without the complicated strategic reasoning described in
the previous sections. A mechanism is dominant-strategy truthful if it
has a dominant strategy for each agent and, in the dominant strategy,
an agent’s best strategy is to declare its true preferences. In a mecha-
nism that is dominant-strategy truthful, an agent simply declares its true
preferences; the agent cannot do better by trying to manipulate the mech-
anism for its own gain.

• A mechanism should give the best outcome aggregated over all of the
agents. A mechanism is economically efficient if the outcome chosen is
one that maximizes the sum of the utilities of the agents.

Example 14.18 Suppose you want to design a meeting scheduler, where users
input the times they are available and the scheduler chooses a time for the meet-
ing. One mechanism is for the users to specify when they are available or not,
and for the scheduler to select the time that has the most people available. A
second mechanism is for the users to specify their utility for the various times,
and the scheduler chooses the time that maximizes the sum of the utilities. Nei-
ther of these mechanisms is dominant-strategy truthful.

For the first mechanism, users may declare that they are unavailable at
some time to force a time they prefer. It is not clear that being available at
a certain time is well defined; at some stage, users must decide whether it is
easier to reschedule what they would have otherwise done at some particular
time, rather than say they are unavailable at this time. Different people may
have different thresholds as to what other activities can be moved.

For the second mechanism, suppose there are three people, Alice, Bob,
and Cory, and they have to decide whether to meet on Monday, Tuesday, or
Wednesday. Suppose they have the following utilities for the meeting days:

Monday Tuesday Wednesday
Alice 0 8 10
Bob 3 4 0
Cory 11 7 6

The economically efficient outcome is to meet on Tuesday. However, if Alice
were to change her evaluation of Tuesday to be 2, the mechanism would choose
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Wednesday. Thus, Alice has an incentive to misrepresent her values. It is not
in Alice’s interest to be honest.

Note that, if there is a mechanism that has dominant strategies, there is a
mechanism that is dominant-strategy truthful. This is known as the revelation
principle. To implement a dominant-strategy truthful mechanism, we could,
in principle, write a program that accepts from an agent its actual preferences
and provides to the original mechanism the optimal input for that agent. This
program would optimally lie for the agent.

It turns out that it is essentially impossible to design a reasonable mech-
anism that is dominant-strategy truthful. Gibbard [1973] and Satterthwaite
[1975] proved that, as long as there are three or more outcomes that are possible
to be chosen, the only mechanisms with dominant strategies have a dictator:
there is one agent whose preferences determine the outcome. This is known as
the Gibbard–Satterthwaite theorem.

One way to obtain dominant-strategy truthful mechanisms is to introduce
money. Assume that money can be added to utility so that, for any two out-
comes o1 and o2, for each agent there is some (possibly negative) amount d such
that the agent is indifferent between the outcomes o1 and o2 + d. By allowing
agents to be paid to accept an outcome they would not otherwise prefer, or to
pay for an outcome they want, we can ensure an agent does not gain by lying.

In a VCG (Vickrey–Clarke–Groves) mechanism, the agents declare their
values for each of the outcomes. The outcome that maximizes the sum of the
declared values is chosen. Agents pay according to how much their participa-
tion affects the outcome. Agent i pays the sum of the value for the other agents
if i had not participated minus the sum of the values for the other agents if i
had participated. Thus the agent needs to pay the amount that its participation
cost the others.

Example 14.19 Consider the values of Example 14.18 (page 630). Suppose
the values given can be interpreted as equivalent to dollars; for example, Alice
is indifferent between meeting on Monday or meeting on Tuesday and pay-
ing $8.00 (she is prepared to pay $7.99 to move the meeting from Monday to
Tuesday, but not $8.01). Given these declared values, Tuesday is chosen as the
meeting day. If Alice had not participated, Monday would have been chosen,
and so the other agents have a net loss of 3, so Alice has to pay $3.00. The net
value to her is then 5; the utility of 8 for the Tuesday minus the payment of 3.
The declarations, payments, and net values are given in the following table:

Monday Tuesday Wednesday Payment Net Value
Alice 0 8 10 3 5
Bob 3 4 0 1 3
Cory 11 7 6 0 7
Total 14 19 16

Consider what would happen if Alice had changed her evaluation of Tuesday
to 2. In this case, Wednesday would be the chosen day, but Alice would have
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had to pay $8.00, with a net value of 2, and so would be worse off. Alice cannot
gain an advantage by lying to the mechanism. One way to think about the pay-
ment is that Alice needs to bribe the mechanism to go along with her favorite
choice.

The VCG mechanism is both economically efficient and dominant-strategy
truthful, assuming that agents only care about their utility and not about other
agents’ utilities or other agents’ payments.

One common mechanism for selling an item, or a set of items, is an auction.
A common auction type for selling a single item is an ascending auction, where
there is a current offering price for the item that increases by a predetermined
increment when the previous offering price has been met. Offering to buy the
item at the current price is called a bid. Only one person may put in a bid for
a particular price. The item goes to the person who put in the highest bid, and
the person pays the amount of that bid.

Consider a VCG mechanism for selling a single item. Suppose there are a
number of people who each put in a bid for how much they value an item. The
outcome that maximizes the payoffs is to give the item to the person who had
the highest bid. If they had not participated, the item would have gone to the
second-highest bidder. Therefore, according to the VCG mechanism, the top
bidder should get the item and pay the value of the second-highest bid. This is
known as a second-price auction. The second-price auction is equivalent (up
to bidding increments) to having an ascending auction, where people specify
how much they want to pay as a proxy bid, and there is an agent to convert the
proxy bids into real bids. Bidding in a second-price auction is straightforward
because the agents do not have to do complex strategic reasoning. It is also
easy to determine a winner and the appropriate payment.

14.7 Multiagent Reinforcement Learning

14.7.1 Perfect-Information Games

For a perfect-information game (page 612), where agents take turns and ob-
serve the state of the world before acting, and each agent acts to maximize its
own utility, the single-agent reinforcement learning algorithms of Chapter 13
can work unchanged. Each agent can assume that the other agents are part
of the environment. This works whether the opponent is playing its optimal
strategy or is also learning. The reason this works is that there is a unique Nash
equilibrium which is the value for the agent of the current node in the game
tree (page 612). This strategy is the best response to the other agents.

If the opponent is not playing its optimal strategy or converging to an op-
timal strategy, a learning agent could converge to a non-optimal strategy. It is
possible for an opponent to train a learning agent to carry out a non-optimal
strategy by playing badly, and then for the opponent to change to another strat-
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egy in order to exploit the agent’s sub-optimal strategy. However, the learning
agent could then learn from the (now) better opponent.

It is possible to use reinforcement learning to simulate both players in a
game, and to learn for both. For two-player, zero-sum, perfect-information
games, as in minimax (page 617), the game can be characterized by a single
value that one agent is trying to minimize and the other is trying to maximize.
In that case, an agent could learn Q(s, a), an estimate of this value for being
in state s and carrying out action a. The algorithms can remain essentially the
same, but need to know which player’s turn it is, and the Q-value would then
be updated by maximizing or minimizing depending on which player’s turn it
is.

14.7.2 Reinforcement Learning with Stochastic Policies

For multiple agents with imperfect information (page 621), including simulta-
neous action games, it is possible that there are multiple Nash equilibria, and
that no deterministic strategy is optimal. Due to the existence of multiple equi-
libria, in many cases it is not clear what an agent should actually do, even if it
knows all of the outcomes for the game and the utilities of the agents. How-
ever, most real strategic encounters are much more difficult, because the agents
do not know the outcomes or the utilities of the other agents.

For games where the only Nash equilibria consist of randomized strategies,
such as in the soccer penalty kick (Figure 14.8 (page 621)), learning any deter-
ministic policy is not a good idea because any deterministic strategy can be
exploited by the other agent. For other games with multiple Nash equilibria,
such as those explored in Section 14.4 (page 621), agents may need to play mul-
tiple games to coordinate on a strategy profile where neither wants to deviate.

Reinforcement learning can be extended to such situations by explicitly rep-
resenting stochastic policies, which are policies that specify a probability dis-
tribution over actions. This automatically allows for a form of exploration,
because any action with a non-zero probability will be tried repeatedly.

This section presents a variant of SARSA (page 595), where each player
represents a stochastic policy using counts for each action, as in a Dirichlet
distribution (page 465). The agent updates the counts of its actions based on
the rewards received.

The stochastic policy iteration controller of Figure 14.10 (page 634) is sim-
ilar to the SARSA algorithm (page 596) but learns a stochastic policy, a prob-
ability distribution over actions for each state. The policy is represented in
π as counts, as in a Dirichlet distribution (page 465), over which action has
highest Q value (plus pseudo counts). The stochastic policy is obtained by
normalizing the π array, so that the probability of doing action a in state s is
π[s, a]/ ∑a′ π[s, a′]

The algorithm is the same as SARSA (page 595), except that it updates π by
adding one to the value for an action with highest estimated Q-value.
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To trade off exploration and exploitation, P is initialized with counts that
are not close to zero (e.g., 5 is used in the examples below) so that one policy
does not become dominant quickly and/or by initializing Q with a high value
to encourage explorations. An open-source implementation of this learning
controller is available from AIPython (aipython.org).

If there is a unique Nash equilibrium in pure strategies, and all of the agents
use this algorithm, they will converge to this equilibrium. Dominated strate-
gies will have their probability converge to zero. In Example 14.15 (page 627),
it will find the Nash equilibrium. Similarly for the prisoner’s dilemma in Ex-
ample 14.13 (page 625), it will converge to the unique equilibrium where both
agents take. Thus, this algorithm does not learn to cooperate, where cooperat-
ing agents will both give in the prisoner’s dilemma to maximize their payoffs.

If there are multiple pure equilibria, this algorithm will converge to one
of them. The agents thus learn to coordinate. For example, in the football–
shopping game of Example 14.12 (page 624), it will converge to one of the
equilibria of both shopping or both going to the football game.

1: controller Stochastic policy iteration(S, A, γ, α, q init, pi init)
2: Inputs
3: S set of states
4: A set of actions
5: γ discount factor
6: α step size
7: q init initial Q value
8: pi init initial π value (must be greater than 0)
9: Local

10: π[S, A] unnormalized probability of doing A in state S
11: Q[S, A] an estimate of the value of doing A in state S
12: π[s, a] := p init for all s ∈ S, a ∈ A
13: Q[s, a] := q init for each s ∈ S, a ∈ A
14: observe state s, choose action a at random
15: repeat
16: do(a)
17: observe reward r, state s′
18: select action a′ based on π[s′, a′]/ ∑a′′ π[s′, a′′]
19: Q[s, a] := Q[s, a] + α ∗ (r + γ ∗Q[s′, a′]−Q[s, a])
20: a best := arg maxa(Q[s, a])
21: π[s, a best] = π[s, a best] + 1
22: s := s′; a := a′
23: until termination()

Figure 14.10: Reinforcement learning with stochastic policies
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Example 14.20 Consider the penalty kick game of Example 14.9 (page 621).
Figure 14.11 shows a plot of two players using the learning algorithm for Ex-
ample 14.9. This figure plots the probabilities for the goalkeeper jumping right
and the kicker kicking right for one run of the learning algorithm. That is, it
shows the right value for the normalized P function. In this run, Q is initialized
to 1, and the counts in P are initialized to 5. At equilibrium, the kicker kicks
right with probability 0.4 and the goalkeeper jumps right with probability 0.3.

Consider a two-agent competitive game where there is only a randomized
Nash equilibrium. If agents A and B are competing and agent B is playing
a Nash equilibrium, it does not matter which action in its support set is per-
formed by agent A; they all have the same value to A. This algorithm tends
to find a Nash equilibrium, and then one agent diverges from the equilibrium
because there is no penalty for doing so when the other agent is playing an
equilibrium strategy. After the agent deviates, the other can change its strategy

A plot of the policy of two players using the stochastic reinforcement learning
algorithm of Figure 14.10 (page 634) (with S having a single element, γ = 0,
α = 0.1, q init = 1, pi init = 5) for the soccer penalty kick of Example 14.9
(page 621).

After the first action, the policy is the position (0.455, 0.545) and follows the
line, ending up at the point (0.338, 0.399). The Nash equilibrium is the point
(0.3, 0.4), as derived in Example 14.16 (page 628).

Figure 14.11: Learning for the soccer penalty kick example
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to exploit the deviation. This is one explanation for the cycling behavior.
There are many variants of this algorithm, including weighting more recent

experiences more than older ones, adjusting the probabilities by a constant (be-
ing careful to ensure the probabilities are between 0 and 1 and sum to 1). See
Exercise 14.9 (page 642).

An agent using this algorithm does not need to know the game or the pay-
offs. When an agent knows the game, another simple strategy is fictitious play,
where the agent collects the statistics of the other player and, assuming those
statistics reflect the stochastic policy of the other agent, plays a best response.
Both players using fictitious play converges to a Nash equilibrium for many
types of games (including two-player zero-sum games).

Note that there is no perfect learning strategy. If an opposing agent knew
the exact strategy (whether learning or not) agent A was using, and could pre-
dict what agent A would do, it could exploit that knowledge.

Example 14.21 Suppose two agents are playing the penalty kick game (Ex-
ample 14.9 (page 621)) and one agent (Agent 1) is using fictitious play. Agent
1 has a deterministic strategy (except for a few cases). The opposing player,
Agent 2, if they know Agent 1 is using fictitious play, could predict what Agent
1 is going to do, and carry out the best response. They will almost always be
able to beat Agent 1.

The only time Agent 2 is not guaranteed to beat Agent 1 is when Agent
2’s history corresponds to a Nash equilibrium, in which case Agent 1 could be
stochastic. In that case, at the next step, Agent 2 will have a different ratio, and
so will not be playing an equilibrium strategy, and then can beat Agent 1.

This property is not a feature of fictitious play. Indeed, if Agent 1 can con-
vince Agent 2 that Agent 1 is using fictitious play, then Agent 1 could predict
what Agent 2 will do, and play to beat that. Agent 2, if they consider the hy-
pothesis that Agent 1 is not actually using fictitious play, should be able to
determine that Agent 1 is not using fictitious play, and change their strategy.

14.7.3 State-of-the-Art Game Players

In 2016 the computer program AlphaGo beat Lee Sedol, one of the top Go play-
ers in the world, in a five-game Go match. AlphaZero, the follow-on program
with zero programmed prior knowledge of the games – beyond a simulator
of the games – plays world-class chess, shogi, and Go. The main features of
AlphaZero are:

• It implements modified policy iteration (page 564), using a deep neu-
ral network with the board position as the input and the output is both
the value function (the expected value with +1 for a win, 0 for a draw,
and −1 for a loss) and a stochastic policy (a probability distribution us-
ing softmax over the possible moves, incorporating the upper confidence
bound (page 592)). The parameters of the neural network are optimized
with respect to the sum of the squared loss of the value function, the log
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loss of the distribution representing the stochastic policy, and an L2 reg-
ularization term.

• At each step, it carries out a stochastic simulation – forward sampling
(page 439), as there are no observations – of the rest of the game, follow-
ing the stochastic policy. This stochastic simulation is used to estimate
the expected value of each action. This is known as Monte Carlo tree
search (MCTS). Note that MCTS relies on a model; it has to be able to
restart the search from any point.

• It was trained on self-play, playing itself for tens of millions of games, us-
ing first and second-generation tensor processing units as the hardware.

14.8 Social Impact

The multiagent version of the prisoner’s dilemma is the tragedy of the com-
mons, named because common resources (such as the air we breathe) do not
become a priority for anyone acting to maximize their utility, making everyone
worse off, as in the following numerical example.

Example 14.22 Suppose there are 100 people and there is an action that each
person can choose (such as driving an internal combustion engine car) that
gives them 10 units of utility but costs the environment 100, which, shared
among everyone, corresponds to−1 for everyone; otherwise each agent can do
an action with utility 1 for them and 0 for the environment (such as walking).
When each person considers driving, they have a reward of 10 minus their
share of the environment, which is −1, so driving has a utility for them of 9,
so they are better off driving. This is independent of what anyone else does.
So then everyone drives, with a driving reward of 1000 minus 10,000, which is
the utility for the environment, giving a total utility of −9000, which is −90 for
each person. Everyone would be much better off if no one drove, even though
individually each person has a great utility by driving.

One way to solve that is to implement a VCG mechanism (page 631), where
each person pays a tax. In this case, the mechanism would specify that each
person would have to pay a tax of 99, which corresponds to the cost of their
action on the others. Then each person would be rational to not drive.

One problem with the scenario in the last example is to convince people to
implement the tax. After all, the only reason they are not driving is because
of the tax, and they want to drive. One major problem is to compute the cost
of changing the environment, where the cost may occur a long time into the
future, so depends on how future values are discounted (page 556), and where
the impact may be in other locations, and so depends on how others’ suffering
and loss of habitable land should be measured. This is a key problem for efforts
to restrict greenhouse gas emissions to mitigate climate change. It occurs at the

https://doi.org/10.1017/9781009258227.019


638 14. Multiagent Systems

individual level as well as at the country level, with countries not reducing
their carbon emissions because it is better for them not to.

AI can potentially help in a number of ways. It can make better predictions
of the future costs, however, it cannot determine how these future values are
discounted, as this depends on society’s values (and each person might value
the future differently). It might be able to help by promoting posts on social
media that are known to be true, not promoting posts known to be false, and
only promoting posts that have appropriate caveats, rather that maximizing
engagement, which is known to lead to promoting extreme views [Acemoglu
et al., 2021]. However, actually determining whether a post is true or false is
very difficult.

Perrault et al. [2020] describe a research agenda about multiagent systems
to address complex societal problems. They present many successful deployed
systems in three application areas: public safety and security, wildlife conser-
vation, and public health in low-resource communities. Much of their work is
framed in the context of Stackelberg security games. A two-player Stackelberg
security game is played between a defender and an attacker. Using limited in-
tervention resources, the defender moves first to protect a number of targets
from the attacker. Perrault et al. [2020] show how AI can play an important
role in fighting social injustice and improving society.

14.9 Review

This chapter has touched on some of the issues that arise with multiple agents.
The following are the main points to remember:

• A multiagent system consists of multiple agents who act autonomously
and have their own utility over outcomes. The outcomes depend on the
actions of all the agents. Agents can compete, cooperate, coordinate, com-
municate, and negotiate.

• The strategic form or normal form of a game specifies the expected out-
come given controllers for each agent.

• The extensive form of a game models agents’ actions and information
through time in terms of game trees.

• A multiagent decision network models probabilistic dependency and in-
formation availability.

• Perfect-information games can be solved by backing up values in game
trees or searching the game tree using minimax with α–β pruning.

• In partially observable domains, sometimes it is optimal to act stochasti-
cally.

• A Nash equilibrium is a strategy profile for each agent such that no agent
can increase its utility by unilaterally deviating from the strategy profile.

• By introducing payments, it is possible to design a mechanism that is
dominant-strategy truthful and economically efficient.
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• Game-theoretic AI can be used to model and promote prosocial environ-
mental behavior.

14.10 References and Further Reading

For overviews of multiagent systems, see Leyton-Brown and Shoham [2008],
Shoham and Leyton-Brown [2008], Wooldridge [2009], Vlassis [2007], Stone
and Veloso [2000], and Jackson [2011]. See also Kochenderfer et al. [2022].

Multiagent decision networks are based on the MAIDs of Koller and Milch
[2003]. Genesereth and Thielscher [2014] describe general game playing, which
uses logical representations for games.

Minimax with α–β pruning was first published by Hart and Edwards [1961].
Knuth and Moore [1975] and Pearl [1984] analyze α–β pruning and other meth-
ods for searching game trees. Ballard [1983] discusses how minimax can be
combined with chance nodes.

The Deep Blue chess computer, which beat Garry Kasparov, the world
chess champion, in May 1997 is described by Campbell et al. [2002]. Silver
et al. [2016] describe AlphaGo, the program that beat a top-ranked Go player
in 2016. AlphaZero is by Silver et al. [2017]. Pluribus [Brown and Sand-
holm, 2019] beat top human professionals in six-player no-limit Texas hold’em
poker, a popular form of poker; this is the only one of these superhuman play-
ers that was not playing a two-player zero-sum game. Cicero [Bakhtin et al.,
2022], playing in an anonymous online blitz league for the game Diplomacy,
achieved more than double the average score of human players and ranked in
the top 10% of participants. Only one human player suspected it was a com-
puter program.

Robot soccer was proposed, and implemented, as an embodied AI chal-
lenge by Mackworth [1993]. Busoniu et al. [2008] survey multiagent reinforce-
ment learning.

Mechanism design is described by Shoham and Leyton-Brown [2008] and
Nisan [2007]. Ordeshook [1986] describes group decision making and game
theory.

Hardin [1968] introduced the concept of the tragedy of the commons. Os-
trom [1990], on the other hand, showed that the commons can be, and is, gov-
ernable.

Gal and Grosz [2022] describe technical and ethical challenges. Perrault
et al. [2020] describe how multiagent systems are having a social impact in
public safety and security, wildlife conservation and public health.

This chapter has only covered non-cooperative games, where agents make
decisions in isolation, without coordinating their actions. It has not covered
cooperative games, where agents can communicate, negotiate, and perhaps
participate in payments and enforceable conflicts. Many of the above refer-
ences cover cooperative games. Kramár et al. [2022] describe an AI system that
learns to play the game Diplomacy, which requires negotiation to play well.
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The state space is enormous, as it includes the actions involved in negotiation.
Siu et al. [2021] evaluated how well AI systems can cooperate with humans to
play the cooperative card game Hanabi, and concluded “We find that humans
have a clear preference toward a rule-based AI teammate (SmartBot) over a
state-of-the-art learning-based AI teammate (Other-Play) across nearly all sub-
jective metrics, and generally view the learning-based agent negatively, despite
no statistical difference in the game score.”

14.11 Exercises

Exercise 14.1 Modify Figure 14.5 (page 617) to include nature moves. Test it on
a (simple) perfect information game that includes randomized moves (e.g., coin
toss or roll of a dice). Recall (page 612) that in an extensive form of a game, each
internal node labeled with nature has a probability distribution over its children.

Exercise 14.2 Consider the game of Tic-Tac-Toe (also called noughts and crosses),
which is played by two players, an “X” player and an “O” player who alternate
putting their symbol in a blank space on a 3× 3 game board. A player’s goal is to
win by placing three symbols in a row, column, or diagonal; the game ends when
a player wins or the board is filled. In the game shown below, player O has just
made its third turn. It is X’s turn to make its fourth move. The playing agent needs
to decide intelligently which of the available three moves X should choose next:
X1, X2, or X3. We have started the search tree, with three branches for the three
possible moves for X:

O

O

X

O

X

X

X1

O

O

X

O

X

X O

O

X

O

X

X2

X O

O

X

O

X

X

X3

Draw the rest of the game tree. Assume the value of the tree is +1 for an X win,
−1 for an O win, and 0 for a draw. Show how the values are backed up to give a
value for each of the nodes. What should X do? Is it likely to win, lose, or draw?

Could α–β pruning prune any of the tree?

Exercise 14.3 For the hawk–dove game of Example 14.11 (page 624), where D > 0
and R > 0, each agent is trying to maximize its utility. Is there a Nash equilibrium
with a randomized strategy? What are the probabilities? What is the expected
payoff to each agent? (These should be expressed as functions of R and D.) Show
your calculations.

Exercise 14.4 Which of the following games in normal form have a Nash equilib-
rium made up of pure strategies? For those that do, specify the pure strategy Nash
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equilibria. For those that do not, explain how you know there is no pure strategy
Nash equilibrium.

(a) Player 2
a2 b2

Player 1 a1 10, 10 110, 0
b1 0, 110 100, 100

(b) Player 2
a2 b2

Player 1 a1 10, 10 11, 20
b1 0, 11 20, 1

(c) Player 2
a2 b2

Player 1 a1 10, 20 5, 10
b1 7, 11 20, 12

Exercise 14.5 In Example 14.12 (page 624), what is the Nash equilibrium with
randomized strategies? What is the expected value for each agent in this equilib-
rium?

Exercise 14.6 Consider the following normal-form game where the row player
can choose action A, B, or C and the column player could choose action D, E, or F:

D E F
A 40, 40 120, 10 60, 30
B 30, 60 110, 60 90, 90
C 30, 110 100, 100 70, 120

where the pairs give the value of the outcome for the row player followed by the
value for the column player.

(a) When eliminating dominated strategies, what strategies (if any) can be elim-
inated? Explain what is eliminated, and what cannot be eliminated.

(b) Specify a Nash equilibrium for this game. (For a randomized strategy, give
just the actions that are randomized; you do not need to give the probabili-
ties). Explain why it is a Nash equilibrium.

(c) Is there more than one Nash equilibrium? If so, give another one. If not
explain why there is no other one.

(d) If the agents could coordinate, could they get a better outcome than in a
Nash equilibrium? Explain why or why not.

Exercise 14.7 Answer the same questions as in the previous exercise for the
following games:

(i)

D E F
A 2, 11 10, 10 3, 12
B 5, 7 12, 1 6, 5
C 6, 5 13, 2 4, 6

(ii)

D E F
A 80, 130 20, 10 130, 80
B 130, 80 30, 20 80, 130
C 20, 10 100, 100 30, 20

Exercise 14.8 Consider the sequential prisoner’s dilemma (page 625).
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(a) Suppose the agents play for a fixed number of times (say three times). Give
two equilibria if there are two or more, otherwise, give the unique equilib-
rium and explain why there is only one. [Hint: Consider the last time first.]

(b) Suppose there is a discount factor (page 556) of γ, which means there is a
probability γ of stopping at each stage. Is tit-for-tat a Nash equilibrium for
all values of γ? If so, prove it. If not, for which values of γ is it a Nash
equilibrium?

Exercise 14.9 Consider the following alternative ways to update the probability
P in the stochastic policy iteration algorithm of Figure 14.10 (page 634).

(i) Make more recent experiences have more weight by multiplying the counts
in P by (1− β), for small β (such as 0.01), before adding 1 to the best action.

(ii) Add some small value, ε (such as 0.01 or 0.001), to the probability of the best
action and subtract values from the other actions to make sure the probabil-
ities are non-negative and sum to 1.

(a) Which of the original, (i), or (ii) has the best payoffs for the game of Exam-
ple 14.15 (page 627), where there is a unique Nash equilibrium but another
strategy profile has a better payoff for both agents?

(b) Which one has the best payoffs in the penalty kick game of Example 14.9
(page 621) when played against the others?

(c) Which of the original and the alternatives, if any, converge to a Nash equilib-
rium in the strategies played (averaging over all of the actions played)? (Do
this experimentally, creating hypotheses from your observations, and then
try to prove your hypotheses.)

Exercise 14.10 The stochastic policy iteration algorithm of Figure 14.10 (page 634)
is based on SARSA (page 596)). How could it be modified to be off-policy as in
Q-learning (page 590)? [Hint: Q-learning updates using the best action, SARSA
updates by the one using the policy and stochastic policy iteration updates using
the expected value.] Does this work better for the example domains?
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Part V

Representing Individuals and
Relations

How can an agent reason, learn, and act in more complex
environments where there are individuals (things, entities, objects)
with complex relations among them?
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Chapter 15

Individuals and Relations

There is a real world with real structure. The program of mind has been
trained on vast interaction with this world and so contains code that re-
flects the structure of the world and knows how to exploit it. This code
contains representations of real objects in the world and represents the in-
teractions of real objects. The code is mostly modular. . . , with modules
for dealing with different kinds of objects and modules generalizing across
many kinds of objects. . . . The modules interact in ways that mirror the
real world and make accurate predictions of how the world evolves. . . .

You exploit the structure of the world to make decisions and take ac-
tions. Where you draw the line on categories, what constitutes a single
object or a single class of objects for you, is determined by the program
of your mind, which does the classification. This classification is not ran-
dom but reflects a compact description of the world, and in particular a
description useful for exploiting the structure of the world.

– Eric B. Baum [2004, pp. 169–170]

This chapter is about how to represent individuals (things, entities, objects)
and relationships among them. As Baum suggests in the quote above, the real
world contains objects and compact representations of those objects and rela-
tionships can make reasoning about them tractable. Such representations can
be much more compact than representations in terms of features alone. This
chapter considers logical representations and gives detailed examples of how
to use such representations for natural language interfaces to databases. Later
chapters address knowledge graphs, ontologies and communicating meaning,
and integrating relations into learning and reasoning under uncertainty.

645
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15.1 Exploiting Relational Structure

One of the main lessons of AI is that successful agents exploit the structure of
the world. Previous chapters showed how states can be represented, learned,
and reasoned with, in terms of features. Representing domains using features
can be much more compact than representing states explicitly, and algorithms
that exploit this compactness can be much more efficient. There is, however,
usually much more structure that can be exploited beyond features for repre-
sentation and inference. In particular, this chapter considers reasoning in terms
of individuals and relations:

• Individuals are things in the world, whether they are concrete individu-
als such as people and buildings, imaginary individuals such as unicorns
and programs that can reliably pass the Turing test, processes such as
reading a book or going on a holiday, or abstract concepts such as money,
a course (such as the course MCS-224 at a particular university), an offer-
ing of a course (such as the 2026 Spring offering of MCS-224) and times.
Individuals are also called entities, objects, or things.

• Relations specify what is true about these individuals. This is meant
to be as general as possible and includes unary relations that are true
or false of single individuals, propositions (page 177), which are true or
false independently of any individuals, as well as relationships among
multiple individuals.

Example 15.1 In the representation of the electrical domain in Example 5.8
(page 186), the propositions up s2, up s3, and ok s2 have no internal structure.
There is no notion that the propositions up s2 and up s3 are about the same
relation, but with different individuals, or that up s2 and ok s2 are about the
same switch. There is no notion of individuals and relations.

An alternative is to represent explicitly the individual switches s1, s2, s3,
and the properties up and ok. Using this representation, “switch s2 is up” is
represented as up(s2). By knowing what up and s1 represent, you do not require
a separate definition of up(s1). A binary relation, like connected to, can be used
to relate two individuals, such as connected to(w1, s1).

Modeling in terms of individuals and relations has a number of advantages
over just using features:

• It is often the natural representation. Often features are properties of in-
dividuals, and this internal structure is lost in converting to features.

• An agent may have to model a domain without knowing what the in-
dividuals are, or how many there will be, and, thus, without knowing
what the features are. When interacting with the environment, the agent
can construct the features when it finds out which individuals are in the
particular environment.
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• An agent can do some reasoning without caring about the particular in-
dividuals. For example, it may be able to derive that something holds
for all individuals without identifying any individuals. An agent may
be able to derive that some individual exists that has some properties,
without caring about other individuals. There may be some queries an
agent can answer for which it does not have to distinguish the individu-
als. For example, a cleaning robot might be able to infer that someone or
something created a mess, without knowing which entity did.

• The existence of individuals could depend on actions or could be un-
certain. For example, in planning in a manufacturing context, whether
there is a working component may depend on many other subcompo-
nents working and being put together correctly; some of these may de-
pend on the agent’s actions, and some may not be under the agent’s con-
trol. Thus, an agent may have to act without knowing what features there
are or what features there will be.

• Often there are infinitely many individuals an agent is reasoning about,
and so infinitely many features. For example, if the individuals are sen-
tences, the agent may only have to reason about a very limited set of
sentences (e.g., those that could be meant by a person speaking, or those
that may be sensible to generate), even though there may be infinitely
many possible sentences, and so infinitely many features.

15.2 Symbols and Semantics

The basic idea behind the use of logic (see Chapter 5) is that, when knowledge
base designers have a particular world they want to characterize, they can se-
lect that world as an intended interpretation, select meanings for the symbols
with respect to that interpretation, and write, as axioms, what is true in that
world. When a system computes a logical consequence of a knowledge base,
a user that knows the meanings of the symbols can interpret this answer with
respect to the intended interpretation. Because the intended interpretation is a
model, and a logical consequence is true in all models, a logical consequence
must be true in the intended interpretation. This chapter expands the propo-
sitional logic (page 177) to allow reasoning about individuals and relations.
Atomic propositions now have internal structure in terms of relations and in-
dividuals.

Example 15.2 Figure 15.1 (page 648) illustrates the general idea of semantics
with individuals and relations. The person who is designing the knowledge
base has a meaning for the symbols. The person knows what the symbols kim,
r123, and in refer to in the domain and supplies a knowledge base of sentences
in the representation language to the computer. The knowledge includes spe-
cific facts “kim is in r123” and “r123 is part of cs building”, and the general rule
that says “if any Z is part of Y and any X is in Z then X is in Y”, where X, Y,
and Z are logical variables. These sentences have meaning to that person. They
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can ask queries using these symbols and with the particular meaning she has
for them. The computer takes these sentences and queries, and it computes
answers. The computer does not know what the symbols mean. However, the
person who supplied the information can use the meaning associated with the
symbols to interpret the answer with respect to the world.

The mapping between the symbols in the mind and the individuals and re-
lations denoted by these symbols is called a conceptualization. This chapter
assumes that the conceptualization is in the user’s head, or written informally,
in comments. Making conceptualizations explicit is the role of a formal ontol-
ogy (page 714).

What is the correct answer is defined independently of how it is computed.
The correctness of a knowledge base is defined by the semantics, not by a par-
ticular algorithm for proving queries. As long as an inference algorithm is
faithful to the semantics, it can be optimized for efficiency. This separation of
meaning from computation lets an agent optimize performance while main-
taining correctness.

15.3 Predicate Calculus

Predicate calculus, often just known as predicate logic, extends propositional
calculus (page 177) in two ways:

in(kim,cs_building)

in(kim,r123).
part of (r123, cs building).
in(X, Y)

part of (Z, Y)
in(X, Z).

kim
r123
r023
cs building

in( , )
part of ( , )
person( )

Figure 15.1: The role of semantics. The meanings of the symbols are in the user’s
head. The computer takes in symbols and outputs symbols. The output can be
interpreted by the user according to the meaning the user places on the symbols
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• atoms have structure and can include logical variables

• quantification of logical variables.

This book follows the syntactic conventions of Prolog, where variables start
with an upper-case letter. In mathematics, variables typically are x, y, and z. In
Prolog, as in other programming languages, longer names are typically used
to make code more readable. The upper case is used to make variables stand
out.

The syntax of the predicate calculus extends the syntax of the propositional
calculus (page 177) as follows, where a symbol is a sequence of letters, digits,
or an underscore (“ ”):

• A logical variable is a symbol starting with an upper-case letter or with
“ ”. For example, X, Room, B4, Raths, and The big guy are all variables.

• A constant is a symbol that starts with a lower-case letter, or is a number
constant or a string.

• A predicate symbol is a symbol that starts with a lower-case letter. Con-
stants and predicate symbols are distinguishable by their context in a
knowledge base.

For example, kim, r123, f , grandfather, and borogroves can be constants
or predicate symbols, depending on the context; 725 is a constant.

• A term is either a variable or a constant.
For example, X, kim, cs422, mome, or Raths can be terms.

• An atomic symbol, or simply an atom, is of the form p or p(t1, . . . , tn),
where p is a predicate symbol and each ti is a term. Each ti is called an
argument to the predicate.

For example, teaches(sue, cs422), in(kim, r123), father(bill, Y), happy(C),
outgrabe(mome, Raths), and sunny can all be atoms. From context in the
atom outgrabe(mome, Raths), the symbol outgrabe is a predicate symbol
and mome is a constant.

A logical formula is built from the atoms using the connectives of the
propositional calculus (page 177), and the quantifiers. The following are also
logical formula:

• ∀X p, where X is a variable, and p is a logical formula (typically con-
taining X), is read “for all X, p”. Variable X is said to be universally
quantified.

• ∃X p, where X is a variable, and p is a logical formula, is read “there exists
an X such that p”. Variable X is said to be existentially quantified.

Example 15.3 The following are logical formulas:

∀G (grandfather(sam, G)← ∃P (father(sam, P) ∧ parent(P, G))).
in(X, Y)← part of (Z, Y) ∧ in(X, Z).
slithy(toves)← ∀Raths (mimsy∧ borogroves∧ outgrabe(mome, Raths)).
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From context, sam, toves, and mome are constants; grandfather, father, parent, in,
part of , slithy, mimsy, borogroves, and outgrabe are predicate symbols; and G, P,
X, Y, Z, and Raths are variables.

The first two formulas may make some intuitive sense, even without an ex-
plicitly provided formal specification for the meaning of formulas. However,
regardless of the mnemonic names’ suggestiveness, as far as the computer is
concerned, the first two formulas have no more meaning than the third. Mean-
ing is provided only by virtue of a semantics.

An expression is ground if it does not contain any variables. For example,
teaches(chris, cs322) is ground, but teaches(Prof , Course) is not ground.

The next sections define the semantics. First consider ground expressions
and then extend the semantics to include variables.

15.3.1 Semantics of Ground Logical Formulas

The first step in giving the semantics of predicate calculus is to give the seman-
tics for the ground (variable-free) case.

An interpretation is a triple I = 〈D, φ, π〉:
• D is a non-empty set called the domain. Elements of D are individuals.
• φ is a mapping that assigns to each constant an element of D.
• π is a mapping that assigns to each n-ary predicate symbol a function

from Dn into {true, false}.

φ is a function from names into individuals in the world. The constant c is
said to denote the individual φ(c). Here c is a symbol but φ(c) can be anything:
a real physical individual such as a person or a virus, an abstract concept such
as a course, love, the number 2, or a symbol.

π(p) specifies whether the relation denoted by the n-ary predicate symbol
p is true or false for each n-tuple of individuals. If predicate symbol p has
no arguments, then π(p) is either true or false. Thus, for predicate symbols
with no arguments, this semantics reduces to the semantics of the propositional
calculus (page 178).

Example 15.4 Consider the world consisting of three individuals on a table:

� � �

These are drawn in this way because they are things in the world, not symbols.
� is a pair of scissors, � is a model airplane, and � is a pencil.

Suppose the constants in our language are plane, pencil, and model, and
predicate symbols are noisy and left of . Assume noisy is a unary predicate (it
takes a single argument) and that left of is a binary predicate (it takes two argu-
ments).

An example interpretation that represents the individuals on the table is

• D = {�, �, �}.
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• φ(plane) = �, φ(pencil) = �, φ(model) = �.
• π(noisy): 〈�〉 false 〈�〉 true 〈�〉 false

π(left of ):
〈�, �〉 false 〈�, �〉 true 〈�, �〉 true
〈�, �〉 false 〈�, �〉 false 〈�, �〉 true
〈�, �〉 false 〈�, �〉 false 〈�, �〉 false

Because noisy is unary, it takes a singleton individual and has a truth
value for each individual.

Because left of is a binary predicate, it takes a pair of individuals and is
true when the first element of the pair is left of the second element. Thus,
for example, π(left of )(〈�, �〉) = true, because the scissors are to the left
of the model; π(left of )(〈�, �〉) = false, because the pencil is not to the
left of itself.

Note how the D is a set of things in the world. The relations are among the
individuals in the world, not among the names. As φ specifies that plane and
model refer to the same individual, exactly the same statements are true about
them in this interpretation.

Example 15.5 Consider the interpretation of Figure 15.1 (page 648).
D is the set with four elements: the person Kim, room 123, room 023, and

the CS building. This is not a set of four symbols, but it is the set containing
the actual person, the actual rooms, and the actual building. It is difficult to
write down this set and, fortunately, you never really have to. To remember
the meaning and to convey the meaning to another person, knowledge base
designers typically describe D, φ, and π by pointing to the physical individuals,
or a depiction of them (as is done in Figure 15.1), or describe the meaning in
natural language.

The constants are kim, r123, r023, and cs building. The mapping φ is defined
by the gray arcs from each of these constants to an individual in the world in
Figure 15.1.

The predicate symbols are person, in, and part of . The meanings of these are
meant to be conveyed in the figure by the arcs from the predicate symbols.

Thus, the person called Kim is in room r123 and is also in the CS building,
and these are the only instances of the in relation that are true. Similarly, room
r123 and room r023 are part of the CS building, and there are no other part of
relationships that are true in this interpretation.

Each ground term denotes an individual in an interpretation. A constant c
denotes in I the individual φ(c).

A ground atom is either true or false in an interpretation. Atom p(t1, . . . , tn)
is true in I if π(p)(〈t′1, . . . , t′n〉) = true, where t′i is the individual denoted by
term ti, and is false in I otherwise.

Example 15.6 The atom in(kim, r123) is true in the interpretation of Exam-
ple 15.5, because the person denoted by kim is indeed in the room denoted by
r123. Similarly, person(kim) is true, as is part of (r123, cs building). The atoms
in(cs building, r123) and person(r123) are false in this interpretation.
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Logical connectives have the same meaning as in the propositional calculus
(page 178); see Figure 5.1 (page 179) for the truth tables for the logical connec-
tives.

15.3.2 Interpreting Variables

To define the semantics of logical formulas with variables, a variable assign-
ment, ρ, is a function from the variables into the domain D. Thus, a variable
assignment assigns an element of the domain to each variable. Given interpre-
tation 〈D, φ, π〉 and variable assignment ρ, each term denotes an individual in
the domain. If the term is a constant, the individual is given by φ. If the term is
a variable, the individual is given by ρ. Given an interpretation and a variable
assignment for all variables, each atom is either true or false, using the same
definition as earlier.

The semantics of quantification is as follows:

• Universally quantified formula ∀X p is true in an interpretation if p is
true for all variable assignments of X to an individual. Thus, a formula
is false in an interpretation whenever there is a variable assignment to X
under which the formula is false. The formula p is the scope of X.

• Existentially quantified formula ∃X p is true in an interpretation if p is
true for some variable assignment of X to an individual. The individual
that exists can depend on universally quantified variables that ∃X p is in
the scope of. For example, in ∀Y (∃X p), the X can depend on Y; for every
number Y there is an X such that X = Y + 1. In ∃X (∀Y p), the X cannot
depend on Y because X is not in the scope of Y; there does not exist an X
such that for every number Y, X = Y + 1.

A formula that contains a variable that does not have an enclosing qualification
is said to be open, and does not have a truth value, because not all variables
have a variable assignment.

Example 15.7 The formula

∀X ∀Y part of (X, Y)← in(X, Y).

is false in the interpretation of Example 15.5 (page 651), because under the vari-
able assignment with X denoting Kim and Y denoting Room 123, in(X, Y) is
true and part of (X, Y) is false.

The formula

∀X ∀Y ∀Z in(X, Y)← part of (Z, Y) ∧ in(X, Z).

is true in that interpretation, because in(X, Y) is true in all variable assignments
where part of (Z, Y) ∧ in(X, Z) is true.

https://doi.org/10.1017/9781009258227.021


15.3. Predicate Calculus 653

Logical consequence is defined in the same way as it was for propositional
calculus in Section 5.1.2 (page 179): g is a logical consequence of KB, written
KB |= g, if g is true in every model of KB.

Example 15.8 Suppose the knowledge base KB is the conjunction of the for-
mulas

in(kim, r123).
part of (r123, cs building).
∀X ∀Y∀Z in(X, Y)← part of (Z, Y) ∧ in(X, Z).

The interpretation defined in Example 15.5 (page 651) is a model of KB, because
each formula is true in that interpretation.

KB |= in(kim, r123), because this is stated explicitly in the knowledge base.
If every formula in KB is true in an interpretation, then in(kim, r123) must be
true in that interpretation.

KB �|= in(kim, r023). The interpretation defined in Example 15.5 is a model
of KB, in which in(kim, r023) is false.

KB �|= part of (r023, cs building). Although part of (r023, cs building) is true
in the interpretation of Example 15.5, there is another model of KB in which
part of (r023, cs building) is false. In particular, the interpretation which is like
the interpretation of Example 15.5, but where

π(part of )(〈φ(r023), φ(cs building)〉) = false

is a model of KB in which part of (r023, cs building) is false.
KB |= in(kim, cs building). If the formula in KB are true in interpretation I,

it must be the case that in(kim, cs building) is true in I, otherwise, there is an
instance of the third formula of KB that is false in I – a contradiction to I being
a model of KB.

The Human’s View of Semantics

The formal description of semantics does not tell us why semantics is interest-
ing or how it can be used as a basis to build intelligent systems. The method-
ology for using semantics for propositional logic programs (page 180) can be
extended to predicate logic:

Step 1 Select the task domain or world to represent. This could be some aspect
of the real world, for example, the structure of courses and students at a
university or a laboratory environment at a particular point in time, some
imaginary world, such as the world of Alice in Wonderland, or the state
of the electrical environment if a switch breaks, or an abstract world, for
example, the world of money, numbers, and sets. Within this world, let
the domain D be the set of all individuals or things that you want to be
able to refer to and reason about. Also, select which relations to represent.
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Step 2 Associate constants in the language with individuals in the world that
you want to name. For each element of D you want to refer to by name,
assign a constant in the language. For example, you may select the name
“kim” to denote a particular professor and the name “cs322” for a particu-
lar introductory AI course. Each of these names denotes the correspond-
ing individual in the world.

Step 3 For each relation that you may want to represent, associate a predicate
symbol in the language. Each n-ary predicate symbol denotes a function
from Dn into {true, false}, which specifies the subset of Dn for which the
relation is true. For example, the predicate symbol “teaches” of two ar-
guments (a teacher and a course) may correspond to the binary relation
that is true when the individual denoted by the first argument teaches
the course denoted by the second argument.

The association of symbols with their meanings forms an intended
interpretation. This specifies what the symbols are intended to mean.

Step 4 Write formulas that are true in the intended interpretation. This is of-
ten called axiomatizing the domain, where the given formulas are the
axioms of the domain, or the knowledge base. For example, if the per-
son denoted by the symbol kim teaches the course denoted by the symbol
cs322, you can assert the formula teaches(kim, cs322) as being true in the
intended interpretation. Not everything that is true needs to be written
down; there is no need to state what is implied by other axioms.

Step 5 Ask queries about the intended interpretation. The system gives an-
swers that you can interpret using the meaning assigned to the symbols.

Following this methodology, the knowledge base designer does not actually
tell the computer anything until step 4. The first three steps are carried out in
the head of the designer. Of course, the designer should document the deno-
tations to make their knowledge base understandable to other people, so that
they remember each symbol’s denotation, and so that they can check the truth
of the formulas.

The world itself does not prescribe what the individuals are.

Example 15.9 In one conceptualization of a domain, pink may be a predicate
symbol of one argument that is true when the individual denoted by that argu-
ment is pink. In another conceptualization, pink may be an individual that is
the color pink, and it may be used as the second argument to a binary predicate
color, which says that the individual denoted by the first argument has the color
denoted by the second argument. Alternatively, someone may want to describe
the world at a level of detail where various shades of red are not distinguished,
and so the color pink would not be included. Someone else may describe the
world in more detail, and decide that pink is too general a term, and use the
terms coral and salmon.

When the individuals in the domain are real physical things, it is usu-
ally difficult to give the denotation without physically pointing at the individ-
ual. When the individual is an abstract individual – for example, a university
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course or the concept of love – it is virtually impossible to write the denotation.
However, this does not prevent the system from representing and reasoning
about such concepts.

15.4 Datalog: A Relational Rule Language

Datalog expands the language of propositional definite clauses (page 185) to
include individuals and relations. It can be seen as a restricted form of the
predicate logic where

• The only formulas allowed are definite clauses, of the form h ← a1 ∧
. . . ∧ am, where h is the head and a1 ∧ . . . ∧ am is the body. If m > 0, the
clause is called a rule. If m = 0, the “←” is ignored and the clause is
called a fact.

• There is no explicit quantification; all variables are assumed to be univer-
sally quantified at the outside of the clause.

The clause h(X) ← b(X, Y) thus means ∀X ∀Y (h(X) ← b(X, Y)),
which is equivalent to ∀X (h(X)← ∃Y b(X, Y)).

Datalog is of interest because it is a database language for defining and
querying relations.

Example 15.10 A relation is often written as a table:

Course Section Time Room
cs111 7 830 dp101
cs422 2 1030 cc208
cs502 1 1230 dp202

This can be represented using a relation scheduled(Course, Section, Time, Room),
with the knowledge base containing the facts

scheduled(cs111, 7, 830, dp101).
scheduled(cs422, 2, 1030, cc208).
scheduled(cs502, 1, 1230, dp202).

Suppose the relation enrolled(StudentNum, Course, Section) is also defined by facts.
The relation busy(StudentNum, Time), which is the join of these relations, pro-
jected into student number and time, can be represented using the rule

busy(StudentNum, Time)←
enrolled(StudentNum, Course, Section) ∧
scheduled(Course, Section, Time, Room).

A student is busy at a time if they are enrolled in a section of a course that is
scheduled at that time.
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Example 15.11 Example 5.8 (page 186) represented the electrical environment
of Figure 5.2 (page 186) using propositions. Using individuals and relations
can make the representation more intuitive, because the general knowledge
about how switches work can be clearly separated from the knowledge about
a specific house.

To represent this domain, the first step is to decide what individuals ex-
ist in the domain. In what follows, assume that each switch, each light, and
each power outlet is an individual. Each wire between two switches and be-
tween a switch and a light is also an individual. Someone may claim that, in
fact, there are pairs of wires joined by connectors and that the electricity flow
must obey Kirchhoff’s laws. Someone else may decide that even that level of
abstraction is inappropriate because the flow of electrons should be modeled.
However, an appropriate level of abstraction is one that is useful for the task
at hand. A resident of the house may not know the whereabouts of the con-
nections between the individual strands of wire or even the voltage. Therefore,
let’s assume a flow model of electricity, where power flows from the outside
of the house through wires to lights. This model is appropriate for the task of
determining whether a light should be lit or not, but it may not be appropriate
for other tasks.

Next, give names to each individual to which you want to refer. This is
done in Figure 5.2 (page 186) by writing the name next to the component. For
example, the individual w0 is the wire between light l1 and switch s2.

Next, choose which relationships to represent. Assume the following pred-
icates with their associated intended interpretations:

• light(L) is true if the individual denoted by L is a light.
• lit(L) is true if the light L is lit and emitting light.
• live(W) is true if there is power coming into W; that is, W is live.
• up(S) is true if switch S is up.
• down(S) is true if switch S is down.
• ok(E) is true if E is not faulty; E can be either a circuit breaker or a light.
• connected to(X, Y) is true if component X is connected to Y such that cur-

rent would flow from Y to X.

At this stage, the computer has not been told anything. It does not know what
the predicates are, let alone what they mean. It does not know which individu-
als exist or their names.

Before anything about the particular house is known, the system can be
told general rules such as

lit(L)← light(L) ∧ live(L) ∧ ok(L).

This means that a light is lit if it has electricity coming in and is not broken.
Recursive rules let you state what is live from what is connected to what:

live(X)← connected to(X, Y) ∧ live(Y).
live(outside).

This specifies that there is electricity coming into the building, and if there is
electricity coming into Y and X is connected to Y, then there will be electricity
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coming into X. Note that the order of clauses and the order of the elements of
the body has no effect on the semantics.

For the particular house and configuration of components and their con-
nections, the following facts about the world can be told to the computer:

light(l1). light(l2). down(s1).
up(s2). ok(cb1).
connected to(w0, w1)← up(s2).
connected to(w0, w2)← down(s2).
connected to(w1, w3)← up(s1).
connected to(w3, outside)← ok(cb1).

These rules and atomic clauses are all that the computer is told. It does not
know the meaning of these symbols. However, it can now answer queries
about this particular house.

15.4.1 Queries with Variables

Queries are used to ask whether some statement is a logical consequence of
a knowledge base. With propositional queries (page 187), a user can only ask
yes-or-no queries. Queries with variables allow users to ask for the individuals
that make the query true.

An instance of a query is obtained by substituting terms for the variables in
the query. Each occurrence of a distinct variable in a query must be replaced by
the same term; if variable X appears in a formula, each occurrence of X must
be replaced by the same term.

Given a query with free variables, an answer is either an instance of the
query that is a logical consequence of the knowledge base, or “no”, meaning
that no instances of the query logically follow from the knowledge base. In-
stances of the query are specified by providing values for the variables in the
query. Determining which instances of a query follow from a knowledge base
is known as answer extraction.

An answer of “no” does not mean that the query is false in the intended
interpretation; it simply means that there is no instance of the query that is a
logical consequence.

Example 15.12 Consider the facts about some of the counties in South Amer-
ica in Figure 15.2 (page 658). The computer knows nothing about geography or
South America. All it knows are the clauses it is given, however it can compute
logical consequences. Note that the constants denoting the countries and lan-
guages start with a lower-case letter, as that is the convention of the language
used; English has the opposite convention, where proper nouns start with an
upper-case letter.

The user can ask the following query:

language(chile, spanish).
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country(C) is true if C is a country%%%%%%%

country(argentina).
country(brazil).
country(chile).
country(paraguay).
country(peru).

area(C, A) is true if C is a country and A is its area in square kilometers%%%%%%%%%%%%%%%

area(argentina, 2780400).
area(brazil, 8515767).
area(chile, 756102).
area(paraguay, 406756).
area(peru, 1285216).

language(C, L) is true if L is the principal language of country C%%%%%%%%%%

language(argentina, spanish).
language(brazil, portuguese).
language(chile, spanish).
language(paraguay, spanish).
language(peru, spanish).

borders0(C1, C2) is true if countries C1 and C2 border each other and C1 is%%%%%%%%%%%%%%
alphabetically before C2%%

borders0(chile,peru).
borders0(argentina,chile).
borders0(brazil,peru).
borders0(brazil,argentina).
borders0(brazil,paraguay).
borders0(argentina,paraguay).

borders(C1, C2) is true if country C1 borders country C2%%%%%%%%

borders(X,Y)← borders0(X,Y).
borders(X,Y)← borders0(Y,X).

Figure 15.2: Some facts about South America
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and the answer is yes. The user can ask the query

language(venezuela, spanish).

and the answer is no. This means it is not a logical consequence, not that it is
false. There is not enough information in the database to determine the princi-
pal language of venezuela.

The query

language(C, spanish).

has four answers. The answer with X= chile means language(chile, spanish) is a
logical consequence of the clauses.

The borders relation is true of two countries when they share a border. This
relation is symmetric; borders(X, Y) if and only if borders(Y, X). To represent
this, Figure 15.2 represents one of the pairs (arbitrarily, with the alphabetically
first one as the first argument) using borders0, and then borders is derived from
this. This uses half as many facts as would be if borders were represented di-
rectly, with the extra cost of two rules.

The query

ask borders0(paraguay, X).

has no answers. The query

ask borders(paraguay, X).

has two answers: X= argentina and X= brazil.
The query

ask borders(X, Y).

has 12 answers.
To ask for a country that borders Chile with an area greater than two million

square kilometers, one could give the query

ask borders(chile, Y) ∧ area(Y, A) ∧A > 2000000.

where > is a predicate that is true if its arguments are numbers and its left
argument is greater than its right argument. As is traditional in mathematics,
this predicate is written using infix notation.

Example 15.13 Figure 15.3 (page 660) gives more facts about some South
American countries and their capitals. Note how it distinguishes the name of
the country from the country itself. The constant chile denotes the county, and
the constant ”Chile” denotes the string that is the name of the country. These
are very different, for example ”Chile” is five characters long, whereas chile is
4270 kilometers long (from North to South).

To ask for the name of the capital city of Chile, one would ask

ask capital(chile, C) ∧ name(C, N).
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15.5 Proofs and Substitutions

Both the bottom-up and top-down propositional proof procedures of Section
5.3.2 (page 188) can be extended to Datalog. A proof procedure extended for
variables must account for the fact that a free variable in a clause means that
all instances of the clause are true. A proof may have to use different instances
of the same clause in a single proof.

15.5.1 Instances and Substitutions

An instance of a clause is obtained by uniformly substituting terms for vari-
ables in the clause. All occurrences of a particular variable are replaced by the
same term.

The specification of which value is assigned to each variable is called a sub-
stitution. A substitution is a set of the form {V1/t1, . . . , Vn/tn}, where each Vi
is a distinct variable and each ti is a term. The element Vi/ti is a binding for
variable Vi. A substitution is in normal form if no Vi appears in any tj.

Example 15.14 For example, {X/Y, Z/chile} is a substitution in normal form
that binds X to Y and binds Z to chile. The substitution{X/Y, Z/X} is not in
normal form, because the variable X occurs both on the left and on the right of
a binding.

capital(A, B) is true if B is the capital city of A%%%%%%%%%%

capital(argentina, beunos aires).
capital(chile, santiago).
capital(peru, lima).
capital(brazil, brasilia).
capital(paraguay, asuncion).

name(E, N) is true if string N is the name of individual E%%%%%%%%%%%

name(beunos aires, ”Buenos Aires”).
name(santiago, ”Santiago”).
name(lima, ”Lima”).
name(brasilia, ”Brasilia”).
name(asuncion, ”Asunción”).
name(argentina, ”Argentina”).
name(chile, ”Chile”).
name(peru, ”Peru”).
name(brazil, ”Brazil”).
name(paraguay, ”Paraguay”).

Figure 15.3: Some facts about South American capitals
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The application of a substitution σ = {V1/t1, . . . , Vn/tn} to expression e,
written eσ, is an expression that is the same as the original expression e except
that each occurrence of Vi in e is replaced by the corresponding ti. The expres-
sion eσ is called an instance of e. If eσ does not contain any variables, it is called
a ground instance of e.

Example 15.15 Some applications of substitutions are

borders(peru, X){X/chile} = borders(peru, chile).
borders(Y, chile){Y/peru} = borders(peru, chile).
borders(peru, X){Y/peru, Z/X} = borders(peru, X).
p(X, X, Y, Y, Z){X/Z, Y/brazil} = p(Z, Z, brazil, brazil, Z).

Substitutions can apply to clauses, atoms, and terms. For example, the result of
applying the substitution {X/Y, Z/peru} to the clause

p(X, Y)← q(peru, Z, X, Y, Z)

is the clause

p(Y, Y)← q(peru, peru, Y, Y, peru).

A substitution σ is a unifier of expressions e1 and e2 if e1σ is identical to
e2σ; expressions e1 and e2 are said to unify. That is, a unifier of two expres-
sions is a substitution that when applied to each expression results in the same
expression.

Example 15.16 Substitution {X/chile, Y/peru} is a unifier of borders(peru, X)
and borders(Y, chile). Applying this substitution to either gives borders(peru, chile).

{X/a, Y/b} is a unifier of t(a, Y, c) and t(X, b, c) as

t(a, Y, c){X/a, Y/b} = t(X, b, c){X/a, Y/b} = t(a, b, c).

Expressions can have many unifiers.

Example 15.17 Atoms p(X, Y) and p(Z, Z) have many unifiers, including
{X/b, Y/b, Z/b}, {X/c, Y/c, Z/c}, {X/Z, Y/Z}, and {Y/X, Z/X}. The last two
unifiers are more general than the first two, because the first two both have X
the same as Z and Y the same as Z but make more commitments to what these
values are.

Substitution σ is a most general unifier (MGU) of expressions e1 and e2 if

• σ is a unifier of the two expressions, and
• if substitution σ′ is also a unifier of e1 and e2, then eσ′ must be an instance

of eσ for all expressions e.
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Example 15.18 {X/Z, Y/Z} and {Z/X, Y/X} are both most general unifiers
of p(X, Y) and p(Z, Z). {X/a, Y/a, Z/a} is a unifier, but not a most general
unifier, of these. The resulting applications are

p(X, Y){X/Z, Y/Z} = p(Z, Z){X/Z, Y/Z} = p(Z, Z)
p(X, Y){Z/X, Y/X} = p(Z, Z){Z/X, Y/X} = p(X, X)

p(X, Y){X/a, Y/a, Z/a} = p(Z, Z){X/a, Y/a, Z/a} = p(a, a).

Note that p(a, a) is an instance of p(Z, Z) and an instance of p(X, X), but these
are not instances of p(a, a). p(Z, Z) and p(X, X) are instances of each other.

The definition of MGU refers to “all expressions e” to preclude a substi-
tution such as {X/Z, Y/Z, W/a} being a most general unifier of p(X, Y) and
p(Z, Z), because it affects other expressions such as r(W).

Expression e1 is a renaming of e2 if they differ only in the names of vari-
ables. In this case, they are both instances of each other.

If two expressions have a unifier, they have at least one MGU. The expres-
sions resulting from applying the MGUs to the expressions are all renamings
of each other. That is, if σ and σ′ are both MGUs of expressions e1 and e2, then
e1σ is a renaming of e1σ′.

15.5.2 Bottom-Up Procedure for Datalog

The propositional bottom-up proof procedure (page 189) can be extended to
Datalog by using ground instances of the clauses. A ground instance of a
clause is obtained by uniformly substituting constants for the variables in the
clause. The constants required are those appearing in the knowledge base or
in the query. If there are no constants in the knowledge base or the query, one
must be invented.

Example 15.19 Suppose the knowledge base is

q(a). q(b). r(a).
s(W)← r(W). p(X, Y)← q(X) ∧ s(Y).

The set of all ground instances is

q(a). q(b). r(a).
s(a)← r(a). s(b)← r(b). p(a, a)← q(a) ∧ s(a).
p(a, b)← q(a) ∧ s(b). p(b, a)← q(b) ∧ s(a). p(b, b)← q(b) ∧ s(b).

The propositional bottom-up proof procedure of Section 5.3.2 (page 189) can be
applied to the grounding to derive q(a), q(b), r(a), s(a), p(a, a), and p(b, a) as the
ground instances that are logical consequences.

Example 15.20 Suppose the knowledge base is

p(X, Y).
g ← p(W, W).
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The bottom-up proof procedure for query “ask g” must invent a new constant
symbol, say c. The set of all ground instances is then

p(c, c).
g ← p(c, c).

The propositional bottom-up proof procedure will derive p(c, c) and g.
If the query were “ask p(b, d)” the set of ground instances would change to

reflect the constants b and d.

The bottom-up proof procedure applied to the grounding of the knowledge
base is sound, because each instance of each rule is true in every model. This
procedure is essentially the same as the variable-free case, but it uses the set of
ground instances of the clauses, all of which are true because the variables in a
clause are universally quantified.

This bottom-up procedure will eventually halt for Datalog because there
are only finitely many grounded atoms, and one ground atom is added to the
consequence set each time through the loop.

This procedure is also complete for ground atoms. That is, if a ground atom
is a consequence of the knowledge base, it will be derived. To prove this, as in
the propositional case (page 191), construct a particular generic model. Recall
that a model specifies the domain, what the constants denote, and what is true.
A Herbrand interpretation is an interpretation where the domain is symbolic
and consists of all constants of the language. A constant is invented if there
are no constants in the knowledge base or the query. In a Herbrand interpre-
tation, each constant denotes itself. Thus, in the definition of an interpretation
(page 650), D and φ are fixed for a given program, and all that needs to be
specified is π, which defines the predicate symbols.

Consider the Herbrand interpretation where the true atoms are the ground
instances of the relations that are eventually derived by the bottom-up proce-
dure. It is easy to see that this Herbrand interpretation is a model of the rules
given. As in the variable-free case (page 189), it is a minimal model in that it
has the fewest true atoms of any model. If KB |= g for ground atom g, then g is
true in the minimal model and, thus, is eventually derived.

15.5.3 Unification

A computer does not need to reason at the propositional level by ground-
ing. Instead, it can reason in terms of variables instead of multiple ground
instances. Sometimes, it needs to replace variables by other variables or by
constants.

The problem of unification is the following: given two atoms or terms, de-
termine whether they unify, and, if they do, return a unifier of them. The uni-
fication algorithm finds a most general unifier (MGU) of two atoms or returns
⊥ if they do not unify.
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The unification algorithm is given in Figure 15.4. E is a set of equality state-
ments implying and implied by the unification of t1 and t2. S is a substitution
in normal form; if α/β is in the substitution S, then, by construction, α is a
variable that does not appear elsewhere in S or in E. In line 20, α and β must
have the same predicate and the same number of arguments; otherwise the
unification fails.

Example 15.21 Consider the call Unify(p(X, Y, Y), p(a, Z, b)). Initially E is
{p(X, Y, Y) = p(a, Z, b)}. The first time through the while loop, E becomes
{X = a, Y = Z, Y = b}. Suppose X = a is selected next. Then S becomes
{X/a} and E becomes {Y = Z, Y = b}. Suppose Y = Z is selected. Then Y
is replaced by Z in S and E. S becomes {X/a, Y/Z} and E becomes {Z = b}.
Finally Z = b is selected, Z is replaced by b, S becomes {X/a, Y/b, Z/b}, and E
becomes empty. The substitution {X/a, Y/b, Z/b} is returned as an MGU.

Consider unifying p(a, Y, Y) with p(Z, Z, b). E starts off as {p(a, Y, Y) =
p(Z, Z, b)}. In the next step, E becomes {a = Z, Y = Z, Y = b}. Then Z is
replaced by a in E, and E becomes {Y = a, Y = b}. Then Y is replaced by a in

1: procedure Unify(t1, t2)
2: Inputs
3: t1, t2: atoms or terms
4: Output
5: most general unifier of t1 and t2 if it exists or ⊥ otherwise
6: Local
7: E: a set of equality statements
8: S: substitution
9: E ← {t1 = t2}

10: S = {}
11: while E �= {} do
12: select and remove α = β from E
13: if β is not identical to α then
14: if α is a variable then
15: replace α with β everywhere in E and S
16: S ← {α/β} ∪ S
17: else if β is a variable then
18: replace β with α everywhere in E and S
19: S ← {β/α} ∪ S
20: else if α is p(α1, . . . , αn) and β is p(β1, . . . , βn) then
21: E ← E∪ {α1 = β1, . . . , αn = βn}
22: else
23: return ⊥
24: return S

Figure 15.4: Unification algorithm for Datalog
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E, and E becomes {a = b}, and then ⊥ is returned indicating that there is no
unifier.

15.5.4 Definite Resolution with Variables

The top-down proof procedure for propositional definite clauses (page 191)
can be extended to handle variables by allowing instances of rules to be used
in the derivation.

A generalized answer clause is of the form

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am

where t1, . . . , tk are terms and a1, . . . , am are atoms. The use of yes enables an-
swer extraction: determining which instances of the query variables are a log-
ical consequence of the knowledge base.

Initially, the generalized answer clause for query q is

yes(V1, . . . , Vk)← q

where V1, . . . , Vk are the variables that appear in the query q. Intuitively this
means that an instance of yes(V1, . . . , Vk) is true if the corresponding instance
of the query is true.

The proof procedure maintains a current generalized answer clause.
At each stage, the algorithm selects an atom in the body of the generalized

answer clause. It then chooses a clause in the knowledge base whose head
unifies with the atom.

The SLD resolution where SLD stands for selection linear definite, of the gen-
eralized answer clause

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am

on a1 with the chosen clause

a ← b1 ∧ . . . ∧ bp

where a1 and a have most general unifier σ, is the answer clause

(yes(t1, . . . , tk)← b1 ∧ . . . ∧ bp ∧ a2 ∧ . . . ∧ am)σ

where the body of the chosen clause has replaced a1 in the answer clause, and
the MGU σ is applied to the whole answer clause.

An SLD derivation is a sequence of generalized answer clauses γ0, γ1, . . .,
γn such that

• γ0 is the answer clause corresponding to the original query. If the query
is q, with free variables V1, . . . , Vk, the initial generalized answer clause
γ0 is

yes(V1, . . . , Vk)← q.
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• γi is obtained by selecting an atom a1 in the body of γi−1; choosing a copy
of a clause a ← b1 ∧ . . .∧ bp in the knowledge base whose head, a, unifies
with ai; replacing a1 with the body, b1 ∧ . . . ∧ bp; and applying the unifier
to the whole resulting answer clause.

The main difference between this and the propositional top-down
proof procedure (page 191) is that, for clauses with variables, the proof
procedure must take copies of clauses from the knowledge base. The
copying renames the variables in the clause with new names. This is both
to remove name clashes between variables and because a single proof
may use different instances of a clause.

• γn is an answer. That is, it is of the form

yes(t1, . . . , tk)← .

When this occurs, the algorithm returns the answer

V1 = t1, . . . , Vk = tk.

Notice how the answer is extracted; the arguments to yes keep track of the
instances of the variables in the initial query that lead to a successful proof.

Figure 15.5 gives a non-deterministic algorithm that answers queries by
searching for SLD derivations. This is non-deterministic (page 89) in the sense
that all derivations can be found by making appropriate choices that do not fail.
If all choices fail, the algorithm fails, and there are no derivations. The “choose”

1: non-deterministic procedure Prove datalog TD(KB, q)
2: Inputs
3: KB: a set of definite clauses
4: Query q: a set of atoms to prove, with variables V1, . . . , Vk

5: Output
6: substitution θ if KB |= qθ and fail otherwise
7: Local
8: G is a generalized answer clause
9: Set G to generalized answer clause yes(V1, . . . , Vk)← q

10: while G is not an answer do
11: Suppose G is yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am
12: select atom a1 in the body of G
13: choose clause a ← b1 ∧ . . . ∧ bp in KB
14: Rename all variables in a ← b1 ∧ . . . ∧ bp to have new names
15: Let σ be Unify(a1, a). Fail if Unify returns ⊥.
16: G := (yes(t1, . . . , tk)← b1 ∧ . . . ∧ bp ∧ a2 ∧ . . . ∧ am)σ

17: return {V1 = t1, . . . , Vk = tk}where G is yes(t1, . . . , tk)←
Figure 15.5: Top-down definite-clause proof procedure for Datalog
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on line 13 is implemented using search, as in Example 5.12 (page 194). Recall
that Unify(ai, a) returns an MGU of ai and a, if there is one, and⊥ if they do not
unify. The algorithm for Unify is given in Figure 15.4 (page 664).

Example 15.22 The singer Shakira was born in Barranquilla, the capital of
Atlántico Department in Colombia. It follows that she was born in Colombia
and so also in South America. Consider the following propositions (as part of
a larger knowledge base):

born in(shakira, barranquilla).
born in(P, L)← part of (S, L) ∧ born in(P, S).
part of (barranquilla, atlantico).
part of (atlantico, colombia).
part of (colombia, south america).

A query to ask who is born in Colombia is

ask born in(P, colombia).

Figure 15.6 (page 668) shows a successful derivation with answer P = shakira.
Note that this derivation used two instances of the rule

born in(P, L)← part of (S, L) ∧ born in(P, S).

One instance eventually substituted colombia for S, and one instance substituted
atlantico for S.

15.6 Function Symbols and Data Structures

Datalog requires a name, using a constant, for every individual about which
the system reasons. Often it is simpler to identify an individual in terms of its
components, rather than requiring a separate constant for each individual.

Example 15.23 In many domains, you want to be able to refer to a time as an
individual. You may want to say that some course is held at 11:30 a.m. You do
not want a separate constant for each possible time, although this is possible. It
is better to define times in terms of, say, the number of hours past midnight and
the number of minutes past the hour. Similarly, you may want to reason with
facts about particular dates. You cannot give a constant for each date arbitrarily
far in the future, as there are infinitely many possible dates. It is easier to define
a date in terms of the year, the month, and the day.

Using a constant to name each individual means that the knowledge base can
only represent a finite number of individuals, and the number of individuals
is fixed when the knowledge base is built. However, you may want to reason
about a potentially infinite set of individuals.
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Example 15.24 Suppose you want to build a system that takes questions in
English and answers them by consulting an online database. In this case, each
sentence is an individual. You do not want to have to give each sentence its
own name, because there are too many English sentences to name them all. It
may be better to name the words and then to specify a sentence in terms of
the sequence of words in the sentence. This approach may be more practical
because there are far fewer words to name than sentences, and each word has
its own natural name. You may also want to specify the words in terms of the
letters in the word or in terms of their constituent parts.

Function symbols allow you to describe individuals indirectly. Rather than
using a constant to describe an individual, an individual is described in terms
of other individuals. Function symbols enable the language to represent rich
data structures; a function symbol gives a structured collection of other enti-
ties.

Syntactically a function symbol is a word starting with a lower-case letter.
The definition of a term (page 649) is extended so that a term is either a variable,
a constant, or of the form f (t1, . . . , tn), where f is a function symbol and each ti

yes(P)← born in(P, colombia)
resolve with: born in(P1, L1)← part of (S1, L1) ∧ born in(P1, S1)

substitution: {P1/P, L1/colombia}
yes(P)← part of (S1, colombia) ∧ born in(P, S1)

select leftmost conjunct
resolve with: part of (atlantico, colombia)
substitution: {S1/atlantico}

yes(P)← born in(P, atlantico)
resolve with: born in(P2, L2)← part of (S2, L2) ∧ born in(P2, S2)

substitution: {P2/P, L2/atlantico}
yes(P)← part of (S2, atlantico) ∧ born in(P, S2)

resolve with: part of (barranquilla, atlantico)
substitution: {S2/barranquilla}

yes(P)← born in(P, barranquilla)
resolve with: bornin(shakira, barranquilla)
substitution: {P/shakira}

yes(shakira)←

Figure 15.6: A derivation for query born in(P, colombia)
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is a term. Apart from extending the definition of terms, the language stays the
same.

Terms only appear within predicate symbols. You do not write clauses that
imply terms. You may, however, write clauses that include atoms that use
function symbols.

The semantics of Datalog (page 650) must be expanded to reflect the new
syntax. The definition of φ (page 650) is extended so that φ also assigns to each
n-ary function symbol a function from Dn into D. A constant can be seen as a
0-ary function symbol (i.e., one with no arguments). Thus, φ specifies which
individual is denoted by each ground term.

Example 15.25 Suppose you want to define dates, such as 20 July 1969, which
is the date the first time a human was on the moon. You can use the function
symbol ce (common era), so that ce(Y, M, D) denotes a date with year Y, month
M, and day D. For example, ce(1969, jul, 20) may denote 20 July 1969. Similarly,
you can define the symbol bce to denote a date before the common era.

The only way to use the function symbol is to write clauses that define re-
lations using the function symbol. There is no notion of defining the ce function;
dates are not in a computer any more than people are.

To use function symbols, you can write clauses that are quantified over
the arguments of the function symbol. For example, Figure 15.7 defines the
before(D1, D2) relation that is true if date D1 is before date D2 in a day.

This assumes the predicate “<” represents the relation “less than” between
integers. This could be represented in terms of clauses, but is often predefined,

before(D1, D2) is true if date D1 is before date D2%%%%%%%%

before(ce(Y1, M1, D1), ce(Y2, M2, D2))←
Y1 < Y2.

before(ce(Y, M1, D1), ce(Y, M2, D2))←
month(M1, N1) ∧
month(M2, N2) ∧
N1 < N2.

before(ce(Y, M, D1), ce(Y, M, D2))←
D1 < D2.

month(M, N) is true if month M is the Nth month of the year%%%%%%%%%%%%

month(jan, 1). month(feb, 2). month(mar, 3).
month(apr, 4). month(may, 5). month(jun, 6).
month(jul, 7). month(aug, 8). month(sep, 9).
month(oct, 10). month(nov, 11). month(dec, 12).

Figure 15.7: Axiomatizing a “before” relation for dates in the common era

https://doi.org/10.1017/9781009258227.021


670 15. Individuals and Relations

as it is in Prolog. The months are represented by constants that consist of the
first three letters of the month.

A knowledge base consisting of clauses with function symbols can com-
pute any computable function. Thus, a knowledge base can be interpreted as
a program, called a logic program. Logic programs are Turing complete; they
can compute any function computable on a digital computer.

This expansion of the language has a major impact. With just one function
symbol and one constant, the language contains infinitely many ground terms
and infinitely many ground atoms. The infinite number of terms can be used
to describe an infinite number of individuals.

Function symbols are used to build data structures, as in the following ex-
ample.

Example 15.26 A tree is a useful data structure. You could use a tree to build a
syntactic representation of a sentence for a natural language processing system.
You could decide that a labeled tree is either of the form node(N, LT, RT) or of
the form leaf (L). Thus, node is a function from a name, a left tree, and a right
tree into a tree. The function symbol leaf denotes a function from the label of a
leaf node into a tree.

The relation at leaf (L, T) is true if label L is the label of a leaf in tree T. It can
be defined by

at leaf (L, leaf (L)).
at leaf (L, node(N, LT, RT))←

at leaf (L, LT).
at leaf (L, node(N, LT, RT))←

at leaf (L, RT).

This is an example of a structural recursive program. The rules cover all of the
cases for each of the structures representing trees.

The relation in tree(L, T), which is true if label L is the label of an interior
node of tree T, can be defined by

in tree(L, node(L, LT, RT)).
in tree(L, node(N, LT, RT))←

in tree(L, LT).
in tree(L, node(N, LT, RT))←

in tree(L, RT).

Example 15.27 A list is an ordered sequence of elements. You can reason
about lists using just function symbols and constants, without the notion of a
list being predefined in the language. A list is either the empty list or an element
followed by a list. You can invent a constant to denote the empty list. Suppose
you use the constant nil to denote the empty list. You can choose a function
symbol, say cons(Hd, Tl), with the intended interpretation that it denotes a list
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with first element Hd and rest of the list Tl. The list containing the elements a,
b, c would then be represented as

cons(a, cons(b, cons(c, nil))).

To use lists, one must write predicates that do something with them. For ex-
ample, the relation append(X, Y, Z) that is true when X, Y, and Z are lists, such
that Z contains the elements of X followed by the elements of Z, can be defined
recursively by

append(nil, L, L).
append(cons(Hd, X), Y, cons(Hd, Z))←

append(X, Y, Z).

There is nothing special about cons or nil; you could have just as well used foo
and bar.

15.6.1 Proof Procedures with Function Symbols

The proof procedures with variables carry over for the case with function sym-
bols. The main difference is that the class of terms is expanded to include func-
tion symbols.

The use of function symbols involves infinitely many terms. To be com-
plete, forward chaining on the clauses has to ensure that the selection criterion
for selecting clauses is fair (page 89).

Example 15.28 To see why fairness is important, consider the following clauses:

num(0).
num(s(N))← num(N).
a ← b.
b.

An unfair strategy could initially select the first clause to forward chain on and,
for every subsequent selection, select the second clause. The second clause can
always be used to derive a new consequence. This strategy never selects either
of the last two clauses and thus never derives a or b.

This problem of ignoring some clauses forever is known as starvation. A fair
selection criterion is one such that any clause available to be selected will even-
tually be selected. The bottom-up proof procedure can generate an infinite
sequence of consequences and if the selection is fair, each consequence will
eventually be generated and so the proof procedure is complete.

The top-down proof procedure is the same as for Datalog (see Figure 15.5
(page 666)). Unification becomes more complicated, because it must recur-
sively descend into the structure of terms. There is one change to the unifica-
tion algorithm (page 664): a variable X does not unify with a term t in which X
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First-Order and Second-Order Logic

First-order predicate calculus is a logic that extends propositional calculus
(page 177) to include atoms with function symbols and logical variables. All
logical variables must have explicit quantification in terms of “for all” (∀) and
“there exists” (∃) (page 649). The semantics of first-order predicate calculus
is like the semantics of logic programs presented in this chapter, but with a
richer set of operators.

The language of logic programs forms a pragmatic subset of first-order
predicate calculus, which has been developed because it is useful for many
tasks. First-order predicate calculus can be seen as a language that adds dis-
junction and explicit quantification to logic programs.

First-order logic is first order because it allows quantification over individ-
uals in the domain. First-order logic allows neither predicates as variables nor
quantification over predicates.

Second-order logic allows for quantification over first-order relations, and
allows for predicates whose arguments are first-order relations. These are
second-order relations. For example, the second-order logic formula

∀R symmetric(R)↔ (∀X∀Y R(X, Y)→ R(Y, X))

defines the second-order relation symmetric, which is true if its argument is a
symmetric relation.

Second-order logic seems necessary for many applications because transi-
tive closure is not first-order definable. For example, suppose you want before
to be the transitive closure of next, where next(X, s(X)) is true. Think of next
meaning the “next millisecond” and before denoting “before.” The natural
first-order definition would be the definition

∀X∀Y before(X, Y)↔ (Y = s(X) ∨ before(s(X), Y)) . (15.1)

This expression does not accurately capture the definition, because, for exam-
ple:

∀X∀Y before(X, Y)→ ∃W Y = s(W)

does not logically follow from formula (15.1), because there are nonstandard
models of formula (15.1) with Y denoting infinity. To capture the transitive
closure, you require a formula stating that before is the minimal predicate that
satisfies the definition. This can be stated using second-order logic.

First-order logic is semi-decidable, which means that a sound and com-
plete proof procedure exists in which every true statement can be proved, but
it may not halt. Second-order logic is undecidable; no sound and complete
proof procedure can be implemented on a Turing machine.
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occurs and is not X itself. The algorithm should return ⊥ if X/t is to be added
to S where variable X occurs in term t. Checking for this condition is known
as the occurs check. The occurs check is sometimes omitted (e.g., in Prolog),
because removing it makes the proof procedure more efficient, even though
removing it makes the proof procedure unsound, as shown in the following
example.

Example 15.29 Consider the knowledge base with only one clause:

lt(X, s(X)).

Suppose the intended interpretation is the domain of integers in which lt means
“less than” and s(X) denotes the integer after X. The query ask lt(Y, Y) should
fail because it is false in the intended interpretation; there is no number less
than itself. However, if X and s(X) could unify, this query would succeed. In
this case, the proof procedure would be unsound because something could be
derived that is false in a model of the axioms.

The following example shows the details of SLD resolution with function
symbols.

Example 15.30 Consider the clauses

append(c(A, X), Y, c(A, Z))←
append(X, Y, Z).

append(nil, Z, Z).

For now, ignore what this may mean. Like the computer, treat this as a problem
of symbol manipulation. Consider the following query:

ask append(F, c(L, nil), c(l, c(i, c(s, c(t, nil))))).

The following is a derivation:

yes(F, L)← append(F, c(L, nil), c(l, c(i, c(s, c(t, nil)))))
resolve with append(c(A1, X1), Y1, c(A1, Z1))← append(X1, Y1, Z1)

substitution: {F/c(l, X1), Y1/c(L, nil), A1/l, Z1/c(i, c(s, c(t, nil)))}
yes(c(l, X1), L)← append(X1, c(L, nil), c(i, c(s, c(t, nil))))

resolve with append(c(A2, X2), Y2, c(A2, Z2))← append(X2, Y2, Z2)

substitution: {X1/c(i, X2), Y2/c(L, nil), A2/i, Z2/c(s, c(t, nil))}
yes(c(l, c(i, X2)), L)← append(X2, c(L, nil), c(s, c(t, nil)))

resolve with append(c(A3, X3), Y3, c(A3, Z3))← append(X3, Y3, Z3)

substitution: {X2/c(s, X3), Y3/c(L, nil), A3/s, Z3/c(t, nil)}
yes(c(l, c(i, c(s, X3))), L)← append(X3, c(L, nil), c(t, nil))

At this stage both clauses are applicable. Choosing the first clause gives

resolve with append(c(A4, X4), Y4, c(A4, Z4))← append(X4, Y4, Z4)
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substitution: {X3/c(t, X4), Y4/c(L, nil), A4/t, Z4/nil}
yes(c(l, c(i, c(s, X3))), L)← append(X4, c(L, nil), nil).

At this point, there are no clauses whose head unifies with the atom in the
generalized answer clause’s body. The proof fails.

Choosing the second clause instead of the first gives

resolve with append(nil, Z5, Z5)

substitution: {Z5/c(t, nil), X3/nil, L/t}
yes(c(l, c(i, c(s, nil))), t)← .

At this point, the proof succeeds, with answer F = c(l, c(i, c(s, nil))), L = t.

For the rest of this chapter, the “syntactic sugar” notation of Prolog for rep-
resenting lists is used. The empty list, nil, is written as [ ]. The list with first ele-
ment E and the rest of the list R, which is cons(E, R) in Example 15.27 (page 670),
is written as [E | R]. There is one other notational simplification: [X | [Y]] is
written as [X, Y], where Y can be a sequence of values. For example, [a | [ ]] is
written as [a], and [b | [a | [ ]]] is written as [b, a]. The term [a | [b | C]] is written
as [a, b | C].

Example 15.31 Using the list notation, append from the previous example can
be written as

append([A | X], Y, [A | Z])←
append(X, Y, Z).

append([ ], Z, Z).

The query

ask append(F, [L], [l, i, s, t])

has an answer F = [l, i, s], L = t. The proof is exactly as in the previous example.
As far as the proof procedure is concerned, nothing has changed; there is just a
renamed function symbol and constant.

15.7 Applications in Natural Language

Natural language processing is an interesting and difficult domain in which
to develop and evaluate representation and reasoning theories. Many of the
problems of AI arise in this domain; solving “the natural language problem”
is almost as difficult as solving “the AI problem” because any domain can be
expressed in natural language. The field of computational linguistics has a
wealth of techniques and knowledge. This book only gives an overview.

There are at least three reasons for studying natural language processing:

https://doi.org/10.1017/9781009258227.021


15.7. Applications in Natural Language 675

• Users want to communicate on their own terms and many prefer natural
language to some artificial language or a graphical user interface. This is
particularly important for casual users and those users, such as managers
and children, who have neither the time nor the inclination to learn new
interaction skills.

• There is a vast store of information recorded in natural language that
could be accessible using computers. Information is constantly gener-
ated in the form of tweets, blogs, books, news, business and government
reports, and scientific papers, many of which are available online. A sys-
tem requiring a great deal of information must be able to process natural
language to retrieve much of the information available on computers.

• Many of the problems of AI arise in a very clear and explicit form in
natural language processing and, thus, it is a good domain in which to
experiment with general theories.

Two Traditions for Natural Language Processing

Natural language processing systems in AI have generally followed two tra-
ditions:

• Systems with broad coverage, trying to understand language in the
wild, but being content with some errors.

• Systems in a constrained domain where the users can be expected to use
controlled natural language, and the results can be unambiguous.

Systems of the first type are used for predictive typing in smartphones and
for broad-coverage language translation. Systems of the second type are used
when the same people interact with the system on an ongoing basis, such as
database queries for supermarket inventories, games, or when the language
is stylized – such as parsing the question in the game of Jeopardy! (as was
done by the Watson system; see references).

One difference is how to treat ungrammatical sentences or questions, or
unfamiliar words. In the first type, these are treated like grammatical ones.
However, systems of the second type may ask for clarification or rephrasing,
or even fail for such sentences.

Translation using the systems for broad coverage are good for casual use
with low cost for being wrong or when the person you are communicating
with can ask a question and interact to find the appropriate meaning. How-
ever, you might not want to use such a system when there is a large cost for
errors or misunderstanding, such as for legal contracts.

The state of the art for systems with broad coverage is to learn them from
data, for example using neural networks and deep learning (page 327).

This chapter considers systems of the second type, where the techniques
presented here are still used.
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There are at least three major aspects of natural language:

Syntax The syntax describes the form of the language. Natural language is
much more complicated than the formal languages used for logics and
computer programs. Syntax is usually specified by a grammar. Some nat-
ural language models are represented using neural networks that predict
each word from its context (see Section 8.5, page 350), without explicitly
building a parse tree.

Semantics The semantics provides the meaning of utterances or sentences of
the language. Although general semantic theories exist, when natural
language processing systems are built for a particular application, it is
typical to use the simplest representation available. For example, in the
development that follows, there is a fixed mapping between words and
concepts in the knowledge base, which is inappropriate for many do-
mains but simplifies development. There can be different senses for the
same word (such as a bank of a river and a bank to keep money). Neural
models typically represent words using fixed-length vectors called em-
beddings (page 350), which represent enough semantics to predict each
word in context or other tasks they are trained on.

Pragmatics The pragmatic component explains how the utterances relate to
the world. To understand language, an agent should consider more than
the sentence; it has to take into account the context of the sentence, the
state of the world, the goals of the speaker and the listener, special con-
ventions, and the like.

To understand the difference among these aspects, consider the following sen-
tences, which might appear at the start of an AI textbook:

• This book is about artificial intelligence.
• The green frogs sleep soundly.
• Colorless green ideas sleep furiously.
• Furiously sleep ideas green colorless.

The first sentence would be quite appropriate at the start of such a book; it
is syntactically, semantically, and pragmatically well formed. The second sen-
tence is syntactically and semantically well formed, but it would appear very
strange at the start of an AI book; it is not pragmatically well formed for that
context. The last two sentences are by the linguist Noam Chomsky [1957]. The
third sentence is syntactically well formed, but it is semantically nonsensical.
The fourth sentence is syntactically ill formed; it does not make any sense –
syntactically, semantically, or pragmatically.

The next section shows how to write a natural language query answering
system that is applicable to very narrow domains using stylized natural lan-
guage that users have to adhere to. This approach may be adequate for do-
mains in which little, if any, ambiguity exists. At the other extreme are shal-
low but broad systems, such as the help system presented in Example 9.36
(page 430) and Example 10.5 (page 469).
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15.7.1 Using Definite Clauses for Context-Free Grammars

This section shows how to use definite clauses to represent aspects of the syn-
tax and semantics of natural language.

Languages are defined by their legal sentences. A sentence is a sequence
of tokens, which typically represent words in the language, common phrases
(such as “artificial intelligence”), and often include punctuation. Some models
represent words in terms of their parts, for example, splitting off the ending
such as “ing” and “er” as separate tokens or using sequences of characters (as
in Example 8.11 (page 359)). Sentences are represented here using lists, and
tokens as strings written in double quotes.

The legal sentences are specified by a grammar. A context-free grammar is
defined by a set of rewrite rules, with non-terminal symbols transforming into
a sequence of terminal and non-terminal symbols. A sentence of the language
is a sequence of terminal symbols generated by such rewriting rules. For
example, the grammar rule

sentence %−→ noun phrase, verb phrase

means that a non-terminal symbol sentence can be a noun phrase followed by a
verb phrase. The symbol “ %−→” means “can be rewritten as.”

A context-free grammar provides a first approximation of the grammar of
some natural languages. For natural languages, the terminal symbols are the
tokens of the language. If a sentence of natural language is represented as a list
of tokens, the following definite clause means that a list of words is a sentence
if it is a noun phrase followed by a verb phrase:

sentence(S)← noun phrase(N) ∧ verb phrase(V) ∧ append(N, V, S).

To say that the word “country” is a noun, you could write

noun([”country”]).

An alternative, simpler, representation of grammar rules, known as a definite-
clause grammar (DCG), uses definite clauses without requiring an explicit
append. To represent a context-free grammar, each non-terminal symbol s be-
comes a predicate with two arguments, s(L1, L2), which is true when list L2 is
an ending of list L1 such that all of the words in L1 before L2 form a sequence
of words of the category s. Lists L1 and L2 together form a difference list of
words that make the class given by the non-terminal symbol, because it is the
difference of these that forms the syntactic category.

Example 15.32 Under this representation, noun phrase(L1, L2) is true if list L2
is an ending of list L1 such that all of the words in L1 before L2 form a noun
phrase. L2 is the part of L1 after the noun phrase.

noun phrase([”large”, ”country”, ”bordering”, ”Paraguay”, ”borders”, ”Chile”],
[”bordering”, ”Paraguay”, ”borders”, ”Chile”])
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is true in the intended interpretation because “large country” forms a noun
phrase.

noun phrase([”large”, ”country”, ”bordering”, ”Paraguay”, ”borders”, ”Chile”],
[”borders”, ”Chile”])

is also true because “large country bordering Paraguay” forms a noun phrase.

The grammar rule

sentence %−→ noun phrase, verb phrase

means that there is a sentence between some L0 and L2 if there exists a noun
phrase between L0 and L1 and a verb phrase between L1 and L2:

sentence︷ ︸︸ ︷
L0︸ ︷︷ ︸

noun phrase

L1︸ ︷︷ ︸
verb phrase

L2

This grammar rule can be specified as the clause

sentence(L0, L2)←
noun phrase(L0, L1) ∧
verb phrase(L1, L2).

In general, the rule

h %−→ b1, b2, . . . , bn

says that h is composed of a b1 followed by a b2, . . . , followed by a bn, and is
written as the definite clause

h(L0, Ln)←
b1(L0, L1) ∧
b2(L1, L2) ∧
...
bn(Ln−1, Ln).

using the interpretation

h︷ ︸︸ ︷
L0︸ ︷︷ ︸

b1

L1︸ ︷︷ ︸
b2

L2 · · · Ln−1︸ ︷︷ ︸
bn

Ln

where the Li are unique variables.
To say that non-terminal h gets mapped to the terminal symbols, t1, . . . , tn,

one would write

h([t1, . . . , tn | T], T)
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using the interpretation

h︷ ︸︸ ︷
t1, . . . , tn T

Thus, h(L1, L2) is true if L1 = [t1, . . . , tn | L2].

Example 15.33 The rule that specifies that the non-terminal h can be rewritten
to the non-terminal a followed by the non-terminal b followed by the terminal
symbols c and d, followed by the non-terminal symbol e followed by the termi-
nal symbol f and the non-terminal symbol g, can be written as

h %−→ a, b, [c, d], e, [f ], g

and can be represented as

h(L0, L6)←
a(L0, L1) ∧
b(L1, [c, d | L3]) ∧
e(L3, [f | L5]) ∧
g(L5, L6).

Note that the translations L2 = [c, d | L3] and L4 = [f | L5] were done manually.

Figure 15.8 (page 680) shows a simple grammar of English questions. Note
that % indicates that the rest of the line is a comment. Figure 15.9 (page 681)
gives a simple dictionary of words and their parts of speech, which can be
used with this grammar. The first rule for question allows for questions such
as “What country borders Chile?” or “What large county bordering Paraguay
borders Chile?” while the second rules allows for “What is bordering Chile?”

Example 15.34 Consider the question “What large county bordering Paraguay
borders Chile?” This is represented as a list of strings, one for each word.

For the grammar of Figure 15.8 (page 680), the dictionary of Figure 15.9
(page 681), and the definition of name of Figure 15.3 (page 660), the query

ask noun phrase([”large”, ”country”, ”bordering”,
”Paraguay”, ”borders”, ”Chile”], R).

has an answer

R = [”bordering”, ”Paraguay”, ”borders”, ”Chile”]

meaning “large country” is a noun phrase.
Another answer is

R = [”borders”, ”Chile”]

meaning “large country bordering Paraguay” is a noun phrase.
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A noun phrase is a determiner (or article, such as “the” or “a”) followed by%%%%%%%%%%%%%%%
adjectives followed by a noun followed by an optional modifying phrase%%%%%%%%%

noun phrase(L0, L4)←
det(L0, L1) ∧
adjectives(L1, L2) ∧
noun(L2, L3) ∧
omp(L3, L4).

Adjectives consist of a (possibly empty) sequence of adjectives%%%%%%%%

adjectives(L, L).
adjectives(L0, L2)←

adj(L0, L1) ∧
adjectives(L1, L2).

A modifying phrase is a relation (verb or preposition) followed by a noun%%%%%%%%%%%%
phrase

mp(L0, L2)←
reln(L0, L1) ∧
noun phrase(L1, L2).

An optional modifying phrase is a modifying phrase or nothing%%%%%%%%%

omp(L, L).
omp(L0, L1)← mp(L0, L1).

Some simple questions are “What” and “What is” questions%%%%%%%%

question([”What”|L0], L2)←
noun phrase(L0, L1)∧
mp(L1, L2). ←

question([”What”, ”is”|L0], L1)←
mp(L0, L1).

Figure 15.8: A context-free grammar for simple English questions
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15.7.2 Augmenting the Grammar

A context-free grammar does not adequately express the complexity of the
grammar of natural languages, such as English. Two mechanisms can be added
to this grammar to make it more expressive:

• extra arguments to the non-terminal symbols
• arbitrary constraints on the rules.

The extra arguments enable us to do several things, including constructing a
parse tree and representing a query to a database. The use of arbitrary ar-
guments and conditions means that a definite-clause grammar can represent
much more than a context-free grammar; it can represent anything computable
by a Turing machine (see Exercise 15.13 (page 700)).

15.7.3 Building a Natural Language Interface to a Database

The preceding grammar can be augmented to implement a simple natural lan-
guage interface to a database. Instead of transforming sub-phrases into parse
trees, you can transform them directly into the entity the part of speech is
about. To do this, let’s make the following simplifying assumptions, which
are not always true, but form a useful first approximation:

• Proper nouns (such as “Chile”) correspond to individuals.

• Nouns (e.g., “country”) and adjectives (e.g., “large”) correspond to prop-
erties.

• Verbs (e.g., “borders”) and prepositions (e.g., “next to”) correspond to a
binary relation between two individuals, the subject and the object.

In this case, a noun phrase represents an individual with a set of properties
defining it. To answer a question, the system can find an individual that has

det(L, L). adj([”large” | L], L).
det([a | L], L). reln([”bordering” | L], L).
det([the | L], L). reln([”borders” | L], L).
noun([”country”|L], L). reln([”next”, ”to” | L], L).
noun([”city”|L], L). reln([”the”, ”name”, ”of ” | L], L).
noun([N|L], L) : −name(E,N).

Figure 15.9: A simple dictionary
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these properties. A modifying phrase (such as a propositional phrase or rela-
tive clause) describes an individual in terms of a relation with another individ-
ual. The following assumes only the linguistic structure required to implement
database queries from limited natural language.

Example 15.35 In the sentence “What large country borders Chile?” the
phrase “large country” is the subject of the verb ‘borders” and “Chile” is the
object. Assume the geographic database of Figure 15.2 (page 658). For the
individual S that is the subject, large(S) and country(S) are true. The object is
the individual chile and the verb specifies borders(S, chile). Thus, the question
“‘What large country borders Chile?” can be converted into the query

ask large(S) ∧ country(S) ∧ borders(S, chile)

where large is a predicate that might be true of countries larger than two million
square kilometers.

The question “What is the name of the capital of a Spanish-speaking coun-
try that borders Argentina?” could be translated into asking for a value of S for
the query

ask name(C, S) ∧ capital(X, C) ∧ language(X, spanish)
∧ borders(X, argentina).

Figure 15.10 (page 683) shows a simple grammar that parses an English
question and answers it at the same time. This ignores most of the grammar
of English, such as the differences between prepositions and verbs or between
determiners and adjectives, and makes a guess at the meaning, even if the ques-
tion is not grammatical. Adjectives, nouns, and noun phrases refer to an indi-
vidual. The extra argument to the predicates is an individual which satisfies
the adjectives and nouns. Here an mp is a modifying phrase, which could be a
prepositional phrase or a relative clause. A reln, either a verb or a preposition,
is a relation between two individuals, the subject and the object, so these are
extra arguments to the reln predicate.

Example 15.36 Suppose question(Q, A) means A is an answer to question
Q, where a question is a list of words. The following provides some ways
questions can be asked from the clauses of Figure 15.10 (page 683), even given
the very limited vocabulary used there. The following ignores punctuation.

The following rule is used to answer questions such as “What is next to
Chile?”

question([”What”, ”is” | L0], Ind)←
mp(L0, [ ], Ind).

Note that [ ] means that in the question there is nothing after the modifying
phrase.

The following rule is used to answer questions such as “What is a large
Spanish-speaking country next to Chile?”

question([”What”, ”is” | L], Ind)←
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A noun phrase is a determiner followed by adjectives followed by a noun%%%%%%%%%%%%
followed by an optional modifying phrase, all about the same individual%%%%%%%%%%

noun phrase(L1, L4, Ind)←
adjectives(L1, L2, Ind) ∧
noun(L2, L3, Ind) ∧
omp(L3, L4, Ind).

Adjectives consist of a sequence of adjectives about the same individual%%%%%%%%%%

adjectives(L0, L2, Ind)←
adj(L0, L1, Ind) ∧
adjectives(L1, L2, Ind).

adjectives(L, L, Ind).

A modifying phrase/relative clause is a relation (verb or preposition) fol-%%%%%%%%%
lowed by a noun phrase%%%%

mp(L0, L2, Subject)←
reln(L0, L1, Subject, Object) ∧
noun phrase(L1, L2, Object).

An optional modifying phrase is either a modifying phrase or nothing%%%%%%%%

omp(L0, L1, Ind)← mp(L0, L1, Ind).
omp(L, L, Ind).

adj(L0, L1, Ind) is true if L0 − L1 is an adjective that is true of Ind%%%%%%%%%%%%

adj([”large”|L], L, Ind)← large(Ind).
adj([LangName, ”speaking”|L], L, Ind)←

name(Lang, LangName) ∧ language(Ind, Lang).
adj([a | L], L, Ind).

noun(L0, L1, Ind) is true if L0 − L1 is a noun that is true of Ind%%%%%%%%%%%%

noun([”country”|L], L, Ind)← country(Ind).
noun([N|L], L, E) : −name(E, N).

reln(L0, L1, Sub, Obj) is true if L0 − L1 is a relation on individuals Sub and Obj%%%%%%%%%%%

reln([”borders”|L], L, Sub, Obj)← borders(Sub, Obj).
reln([”bordering”|L], L, Sub, Obj)← borders(Sub, Obj).
reln([”the”, ”capital”, ”of ”|L], L, Sub, Obj)← capital(Obj, Sub).
reln([”the”, ”name”, ”of ”|L], L, Sub, Obj)← name(Obj, Sub).

Figure 15.10: Simple grammar that directly answers a question
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noun phrase(L, [ ], Ind).

The following rule allows it to answer questions, such as “What large country
bordering Paraguay borders Chile?”

question([”What” | L0], L2, Ind)←
noun phrase(L0, L1, Ind) ∧
mp(L1, L2, Ind).

The preceding grammar directly found an answer to the natural language
question. Two problems with this way of answering questions are:

• It is difficult to separate the cases where the program could not parse the
language from the case where there were no answers; in both cases the
answer is “no”.

• When there is ambiguity, meaning multiple legal parses, and there are
possibly multiple answers for each parse, it gives all of the answers for
all of the parses, without distinguishing them.

These properties make it difficult to debug the programs that use this style.
An alternative is, instead of directly querying the knowledge base while

parsing, to build a logical form of the natural language – a logical proposition
that conveys the meaning of the utterance – before asking it of the knowledge
base. The semantic form can be used for other tasks, such as telling the sys-
tem knowledge, paraphrasing natural language, or even translating it into a
different language.

You can construct a query by allowing noun phrases to return an individ-
ual and a list of constraints imposed by the noun phrase on the individual.
Appropriate grammar rules are specified in Figure 15.11 (page 685), and they
are used with the dictionary of Figure 15.12 (page 686).

noun phrase(L0, L1, Ind, C0, C1)

means that list L1 is an ending of list L0, and the words in L0 before L1 form a
noun phrase. This noun phrase refers to the individual Ind. C1 is an ending of
C0, and the formulas in C0 before C1 are the constraints on the individual Ind
imposed by the noun phrase.

Procedurally, L0 is the list of words to be parsed, and L1 is the list of re-
maining words after the noun phrase. C1 is the list of conditions coming into
the noun phrase, and C0 is C1 with the extra conditions imposed by the noun-
phrase added.

Example 15.37 The query

ask noun phrase([”a”, ”Spanish”, ”speaking”, ”country”,
”bordering”, ”Argentina”], [ ], E1, C0, [ ]).
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returns

C0 = [language(E1, A), name(A, ”Spanish”), country(E1),
borders(E1, argentina)].

The query

ask mp([”the”, ”name”, ”of ”, ”the”, ”capital”, ”of ”, ”a”,
”country”, ”bordering”, ”Argentina”], [ ], Ind, C0, [ ]).

returns

C0 = [name(A, Ind), capital(B, A), country(B), borders(B, argentina)].

If the elements of list C0 are queried against a database that uses these relations
and constants, as in Figure 15.2 (page 658), they can return a Spanish-speaking
country that borders Argentina or the name of the capital of a country border-
ing Argentina. In Prolog, the built-in predicate call queries an atom.

A noun phrase is a determiner followed by adjectives followed by a noun%%%%%%%%%%%%
followed by an optional modifying phrase%%%%%

noun phrase(L0, L4, Ind, C0, C4)←
det(L0, L1, Ind, C0, C1) ∧
adjectives(L1, L2, Ind, C1, C2) ∧
noun(L2, L3, Ind, C2, C3) ∧
omp(L3, L4, Ind, C3, C4).

Adjectives consist of a sequence of adjectives.%%%%%%

adjectives(L, L, Ind, C, C).
adjectives(L0, L2, Ind, C0, C2)←

adj(L0, L1, Ind, C0, C1) ∧
adjectives(L1, L2, Ind, C1, C2).

A modifying phrase is a relation followed by a noun phrase%%%%%%%%%

mp(L0, L2, Sub, C0, C2)←
relation(L0, L1, Sub, Obj, C0, C1) ∧
noun phrase(L1, L2, Obj, C1, C2).

An optional modifying phrase is either nothing or a modifying phrase%%%%%%%%%%

omp(L, L, Ind, C, C).
omp(L0, L1, Ind, C0, C1)← mp(L0, L1, Ind, C0, C1).

Figure 15.11: Part of a grammar that constructs a query
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15.7.4 Comparison with Large Language Models

The preceding grammars provide a different way to answer natural language
queries than the large language models discussed in Section 8.5.5 (page 364).
The differences in aims were discussed in the box on page 675.

The large language models, such as the GPT family (page 365), can be used
to answer the questions about the geography of South America, for example.
The main differences are:

• GPT models give a probabilistic prediction of the next word. The next
word can be sampled, and the prediction can be repeated to give a nat-
ural language answer. The grammar of the previous section directly an-
swers the question, giving a symbolic answer, designed for subsequent
reasoning.

• The preceding grammar can be used to give all the answers and then stop
when there are no more answers, whereas GPT models predict answers
with a probability or sample from the distribution of answers.

• GPT models provide each answer for each parse without distinguish-
ing the parses, similar to the grammar that directly answers questions,
shown in Figure 15.10 (page 683). The grammar of Figure 15.11 can be

det(L, L, O, C, C).
det([”a” | T], T, O, C, C).
det([”the” | T], T, O, C, C).
noun([”country”|L], L, Ind, [country(Ind)|C], C).
noun([”city”|L], L, Ind, [city(Ind)|C], C).
noun([N|L], L, Ind, C, C) : −name(Ind, N).
adj([”large”|L], L, Ind, [large(Ind)|C], C).
adj([LangName, ”speaking”|L], L, Ind,

[language(Ind, Lang), name(Lang, LangName)|C], C).
reln([”borders”|L], L, Sub, Obj, [borders(Sub, Obj)|C], C).
reln([”bordering”|L], L, Sub, Obj, [borders(Sub, Obj)|C], C).
reln([”next”, ”to”|L], L, Sub, Obj, [borders(Sub, Obj)|C], C).
reln([”the”, ”capital”, ”of ”|L], L, Sub, Obj, [capital(Obj, Sub)|C], C).
reln([”the”, ”name”, ”of ”|L], L, Sub, Obj, [name(Obj, Sub)|C], C).

Figure 15.12: A dictionary for constructing a query
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used to separately provide the parses and the answers for each parse,
which might be useful for some applications.

• Modern large language models can output realistic-looking queries in,
for example, SQL or Datalog. To actually use a generated query to in-
terface to a database requires the language model to access the database
schema to find out the predicates, their arity and meaning, etc., as well as
to the database itself, to disambiguate constants such as “Chile” (which
can mean the country, the football team, or is a spelling of the chili pep-
per).

• The preceding grammars can fail if the user does not use the appropriate
grammar and vocabulary, whereas GPT models are very forgiving in the
use of language.

• GPT models have a much broader coverage and can converse on arbi-
trary topics, whereas the preceding grammars need to be engineered for
each domain.

Depending on your needs, on whether you are prepared to engineer a sys-
tem for each domain, and whether the users can be trained to use the assumed
grammar, either one of these techniques might be more useful.

15.8 Equality

Sometimes it is useful to use more than one term to name a single individual.
For example, the terms 4 ∗ 4, 24, 273− 257, and 16 may denote the same num-
ber. Sometimes, you want to have each name refer to a different individual.
For example, you may want unique names for different courses in a university.
Sometimes you do not know whether or not two names denote the same indi-
vidual – for example, whether the 8 a.m. delivery person is the same as the 1
p.m. delivery person.

This section considers the role of equality, which allows us to represent
whether or not two terms denote the same individual in the world. Note that,
in the definite-clause language presented earlier in the chapter, all of the an-
swers were valid whether or not terms denoted the same individuals.

Equality is a special predicate symbol with a standard domain-independent
intended interpretation.

Term t1 equals term t2, written t1 = t2, is true in interpretation I if t1 and t2
denote the same individual in I.

Equality does not mean similarity. If a and b are constants and a = b, it is
not the case that there are two things that are similar or even identical. Rather,
it means there is one thing with two names.

Example 15.38 Consider the world consisting of two chairs given in Figure
15.13 (page 688). In this world it is not true that chair1 = chair2, even though
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the two chairs may be identical in all respects; without representing the exact
position of the chairs, they cannot be distinguished. It may be the case that
chairOnRight = chair2. It is not the case that the chair on the right is similar to
chair2. It is chair2.

15.8.1 Allowing Equality Assertions

Without allowing equality in the head of clauses, the only thing that is equal to
a term in all interpretations is itself.

It is often useful to be able to assert or infer that two terms denote the same
individual, such as chairOnRight = chair2. To allow this, the representation and
reasoning system must be able to derive what follows from a knowledge base
that includes clauses with equality in the head of clauses. There are two ways
of doing this. The first is to axiomatize equality like any other predicate. The
other is to build special-purpose inference machinery for equality.

If t1 = t2, any occurrence of t1 can be replaced by t2. Equality can thus be
treated as a rewrite rule, substituting equals for equals. This approach works
best if you can select a canonical representation for each individual, which is
a term that other representations for that individual can be mapped into.

One classic example is the representation of numbers. There are many
terms that represent the same number (e.g., 4 ∗ 4, 13 + 3, 273 − 257, 24, 42,
16), but typically the sequence of digits (in base 10) is used as the canonical
representation of the number.

Universities invented student numbers to provide a canonical representa-
tion for each student. Different students with the same name are distinguish-
able and different names for the same person can be mapped to the person’s
student number.

Each rewrite rule should make the description closer to the canonical rep-
resentation. In theorem proving, using equality as rewriting rules is called
paramodulation. Determining the canonical representation is sometimes re-
ferred to as determining the identity of the description (e.g., determining the
identity of a student who submitted as assignment without a name).

chair 1 chair 2

Figure 15.13: Two chairs
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15.8.2 Unique Names Assumption

Instead of being agnostic about the equality of each term and expecting the
user to axiomatize which names denote the same individual and which denote
different individuals, it is often easier to have the convention that different
ground terms denote different individuals.

Example 15.39 Consider a student database example where a student must
have two courses as science electives. Suppose a student has passed math302
and psyc303; then you only know whether they have passed two courses if you
know math302 �= psyc303. That is, the constants math302 and psyc303 denote
different courses. Thus, you must know which course numbers denote differ-
ent courses. Rather than writing n ∗ (n− 1)/2 inequality axioms for n individ-
uals, it may be better to have the convention that every course number denotes
a different course and thus the use of inequality axioms is avoided.

Under the unique names assumption (UNA), distinct ground terms denote
different individuals. That is, for every pair of distinct ground terms t1 and t2,
it assumes t1 �= t2, where “ �=” means “not equal to.”

The unique names assumption is very useful for database applications. You
may not want to have to state that, for example, kim �= sam and kim �= chris and
chris �= sam, and similarly for each pair of entities.

The unique names assumption does not follow from the semantics for the
definite clause language (page 650). As far as that semantics was concerned,
distinct ground terms t1 and t2 could denote the same individual or could de-
note different individuals.

With the unique names assumption, inequality ( �=) can be in the bodies of
clauses.

Ground terms are different if and only if they do not unify. This is not
the case for non-ground terms. For example, a �= X has some instances that
are true – for example, when X has value b – and an instance which is false,
namely, when X has value a.

Sometimes the unique names assumption is inappropriate – for example,
2 + 2 �= 4 is wrong, and it may not be the case that clark kent �= superman.

Top-Down Proof Procedure for the Unique Names Assumption

A top-down proof procedure (page 665) incorporating the unique names as-
sumption should not treat inequality as just another predicate, mainly because
too many different individuals exist for any given individual.

If there is a subgoal (page 191) of the form t1 �= t2, for terms t1 and t2 there
are three cases:

1. t1 and t2 do not unify. In this case, t1 �= t2 succeeds.

For example, the inequality f (X, a, g(X)) �= f (t(X), X, b) succeeds be-
cause the two terms do not unify.
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2. t1 and t2 are identical, including having the same variables in the same
positions. In this case, t1 �= t2 fails.

For example, f (X, a, g(X)) �= f (X, a, g(X)) fails.

Note that, for any pair of ground terms, one of these first two cases
must occur.

3. Otherwise, there are instances of t1 �= t2 that succeed and instances of
t1 �= t2 that fail.

For example, consider the subgoal f (W, a, g(Z)) �= f (t(X), X, Y). The
most general unifier of f (W, a, g(Z)) and f (t(X), X, Y) is {X/a, W/t(a),
Y/g(Z)}. Some instances of the inequality, such as the ground instances
consistent with the unifier, should fail. Any instance that is not consistent
with the unifier should succeed. Unlike other goals, you do not want to
enumerate every instance that succeeds because that would mean unify-
ing X with every function and constant different than a, as well as enu-
merating every pair of values for Y and Z where Y is different than g(Z).

The top-down proof procedure can be extended to incorporate the unique
names assumption. Inequalities of the first type can succeed and those of the
second type can fail. Inequalities of the third type can be delayed, waiting for
subsequent goals to unify variables so that one of the first two cases occur. To
delay a goal in the proof procedure of Figure 15.5 (page 666), when selecting
an atom in the body of the answer clause G, the algorithm should select one of
the atoms that is not being delayed. If there are no other atoms to select, and
neither of the first two cases is applicable, the query should succeed. There is
always an instance of the inequality that succeeds, namely, the instance where
every variable gets a different constant that does not appear anywhere else.
When this occurs, the user has to be careful when interpreting the free variables
in the answer. The answer does not mean that it is true for every instance of
the free variables, but rather that it is true for some instance.

Example 15.40 Consider the rules that specify whether a student has passed
at least two courses:

passed two courses(S)←
C1 �= C2 ∧
passed(S, C1) ∧
passed(S, C2).

passed(S, C)←
grade(S, C, M) ∧
M ≥ 50.

grade(sam, engl101, 87).
grade(sam, phys101, 89).
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For the query

ask passed two courses(sam)

the subgoal C1 �= C2 cannot be determined and so must be delayed. The top-
down proof procedure can, instead, select passed(sam, C1), which binds engl101
to C1. It can then call passed(sam, C2), which in turn calls grade(sam, C2, M),
which can succeed with substitution {C2/engl101, M/87}. At this stage, the
variables for the delayed inequality are bound enough to determine that the
inequality should fail.

Another clause can be chosen for grade(sam, C2, M), returning substitution
{C2/phys101, M/89}. The variables in the delayed inequality are bound enough
to test the inequality and, this time, the inequality succeeds. It can then go on
to prove that 89 > 50, and the goal succeeds.

One question that may arise from this example is “why not simply make
the inequality the last call, because then it does not need to be delayed?” There
are two reasons. First, it may be more efficient to delay. In this example, the de-
layed inequality can be tested before checking whether 87 > 50. Although this
particular inequality test may be fast, in many cases substantial computation
can be avoided by noticing violated inequalities as soon as possible. Second,
if a subproof were to return one of the values before it is bound, the proof
procedure should still remember the inequality constraint, so that any future
unification that violates the constraint can fail.

15.9 Complete Knowledge Assumption

The complete knowledge assumption, as discussed in Section 5.7 (page 207), is
the assumption that any statement that does not follow from a knowledge base
is false. It also allows for proof by negation as failure.

The complete knowledge assumption for logic programs with variables and
functions symbols requires axioms for equality, and the domain closure, and a
more sophisticated notion of the completion.

Example 15.41 Suppose a student relation is defined by

student(huan).
student(manpreet).
student(karan).

The complete knowledge assumption would say that these three are the only
students:

student(X)↔ X = huan∨X = manpreet∨X = karan.

That is, if X is huan, manpreet, or karan, then X is a student, and if X is a student,
X must be one of these three. In particular, kim is not a student.

Concluding ¬student(kim) requires proving kim �= huan∧ kim �= manpreet∧
kim �= karan. To derive the inequalities, the unique names assumption (page 689)
is required.
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The complete knowledge assumption includes the unique names assump-
tion.

The Clark normal form of the clause

p(t1, . . . , tk)← B.

is the clause

p(V1, . . . , Vk)← ∃W1 . . . ∃Wm V1 = t1 ∧ . . . ∧Vk = tk ∧ B.

where V1, . . . , Vk are k variables that did not appear in the original clause, and
W1, . . . , Wm are the original variables in the clause. “∃” means “there exists”
(page 649). When the clause is an atomic clause (page 185), B is true.

Suppose all of the clauses for p are put into Clark normal form, with the
same set of introduced variables, giving

p(V1, . . . , Vk)← B1.
...

p(V1, . . . , Vk)← Bn.

which is equivalent to

p(V1, . . . , Vk)← B1 ∨ . . . ∨ Bn.

This implication is logically equivalent to the set of original clauses.
Clark’s completion of predicate p is the equivalence

∀V1 . . . ∀Vk p(V1, . . . , Vk)↔ B1 ∨ . . . ∨ Bn

where negation as failure (∼) in bodies is replaced by standard logical nega-
tion (¬). The completion means that p(V1, . . . , Vk) is true if and only if at least
one body Bi is true.

Clark’s completion of a knowledge base consists of the completion of every
predicate symbol.

Example 15.42 For the clauses

student(huan).
student(manpreet).
student(karan).

the Clark normal form is

student(V)← V = huan.
student(V)← V = manpreet.
student(V)← V = karan.

which is equivalent to

student(V)← V = huan∨V = manpreet∨V = karan.

The completion of the student predicate is

∀V student(V)↔ V = huan∨V = manpreet∨V = karan.
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Example 15.43 Consider the following recursive definition:

passed each([ ], St, MinPass).
passed each([C | R], St, MinPass)←

passed(St, C, MinPass) ∧
passed each(R, St, MinPass).

In Clark normal form, with variable renaming, this can be written as

passed each(L, S, M)← L = [ ].
passed each(L, S, M)←

∃C ∃R L = [C | R] ∧
passed(S, C, M) ∧
passed each(R, S, M).

Clark’s completion of passed each is

∀L ∀S ∀M passed each(L, S, M)↔ L = [ ] ∨
∃C ∃R (L = [C | R] ∧
passed(S, C, M) ∧
passed each(R, S, M)).

Under the complete knowledge assumption, relations that cannot be de-
fined using only definite clauses can now be defined.

Example 15.44 Suppose you are given a database of course(C) that is true
if C is a course, and enrolled(S, C), which means that student S is enrolled in
course C. Without the complete knowledge assumption, you cannot define
empty course(C), which is true if there are no students enrolled in course C. This
is because there is always a model of the knowledge base where every course
has someone enrolled.

Using negation as failure, empty course(C) can be defined by

empty course(C)← course(C) ∧∼has enrollment(C).
has enrollment(C)← enrolled(S, C).

The completion of this is

∀C empty course(C)↔ course(C) ∧ ¬has enrollment(C).
∀C has enrollment(C)↔ ∃S enrolled(S, C).

As a word of caution, you should be very careful when you include free vari-
ables within negation as failure. They usually do not mean what you think
they might. The predicate has enrollment was introduced in the previous exam-
ple to avoid having a free variable within a negation as failure. See Exercise
15.15 (page 700).
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15.9.1 Complete Knowledge Assumption Proof Procedures

The top-down proof procedure for negation as failure with the variables and
functions is much like the top-down procedure for propositional negation as
failure (page 213). As with the unique names assumption (page 689), a problem
arises when there are free variables in negated goals.

Example 15.45 Consider the clauses

p(X)← ∼q(X) ∧ r(X).
q(a).
q(b).
r(d).

According to the semantics, there is only one answer to the query ask p(X),
which is X = d. As r(d) follows, so does ∼q(d) and so p(d) logically follows
from the knowledge base.

When the top-down proof procedure encounters ∼q(X), it should not try
to prove q(X), which succeeds (with substitution {X/a}). This would make
the goal p(X) fail, when it should succeed with X = d. Thus, the proof proce-
dure would be incomplete. Note that, if the knowledge base contained s(X)←
∼q(X), the failure of q(X) would mean s(X) succeeding. Thus, with negation
as failure, incompleteness leads to unsoundness.

As with the unique names assumption (Section 15.8.2 (page 689)), a sound
proof procedure should delay the negated subgoal until the free variable is
bound.

A more complicated top-down procedure is required when there are calls to
negation as failure with free variables:

• Negation-as-failure goals that contain free variables must not be selected
in the negation-as-failure procedure of Figure 5.12 (page 213) until the
variables become bound.

• If the variables never become bound, the goal flounders. In this case,
you cannot conclude anything about the goal. The following example
shows that you should do something more sophisticated for the case of
floundering goals.

Example 15.46 Consider the clauses

p(X)← ∼q(X)

q(X)← ∼r(X)

r(a)

and the query

ask p(X).

The completion of the knowledge base is

p(X)↔ ¬q(X)
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q(X)↔ ¬r(X)

r(X)↔ X = a.

Substituting X = a for r gives q(X) ↔ ¬X = a, and so p(X) ↔ X = a. Thus,
there is one answer, namely X = a, but delaying the goal will not help find it.
A proof procedure should analyze the cases for which the goal failed to derive
this answer. However, such a procedure is beyond the scope of this book.

15.10 Social Impact

There are numerous applications of logic programming. It is used in the Java
virtual machine type checker: “The type checker enforces type rules that are
specified by means of Prolog clauses. English language text is used to describe
the type rules in an informal way, while the Prolog clauses provide a formal
specification” [Lindholm et al., 2022]. Prolog was used for the parser for the
clues in the IBM Watson system which beat the human world champion in the
TV quiz show “Jeopardy!” [Lally et al., 2012].

The idea of a robot scientist [King et al., 2004, 2009a; Sparkes et al., 2010] is
that a computer creates and tests hypotheses. The robot scientist Adam [King
et al., 2009b] automatically generates functional genomics hypotheses about
yeast and tests the hypotheses using a physical robot that automates a labora-
tory. It represents the hypotheses using a logic program. A hypothesis in the
form of a logic program allows it to be interpreted and also the consequences
can be tested. The robot created a hypothesis, physically runs an experiment
to test the hypothesis, interprets the results, and repeats.

15.11 Review

The following are the main points you should have learned from this chapter:

• In domains characterized by individuals and relations, constants denot-
ing individuals and predicate symbols denoting relations can be reasoned
with to determine what is true in the domain.

• Datalog is a logical language with constants, universally quantified vari-
ables, relations, and rules.

• Substitutions are used to make instances of atoms and rules. Unification
makes atoms identical for use in proofs.

• Function symbols are used to denote a possibly infinite set of individuals
described in terms of other individuals. Function symbols can be used to
build data structures.

• Definite-clause grammars can be used for flexible language natural lan-
guage processing in cases where the language used can be controlled,
such as natural language interfaces to databases.

• Equality between terms means that the terms denote the same individual.
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• Clark’s completion can be used to define the semantics of negation as
failure under the complete knowledge assumption.

• Logic programming is useful for creating specifications, parsers, and for-
mal scientific hypotheses.

15.12 References and Further Reading

Datalog and logic programs are described by Kowalski [2014], Sterling and
Shapiro [1994], and Garcia-Molina et al. [2009]. The history of logic program-
ming is described by Kowalski [1988] and Colmerauer and Roussel [1996].

The work on negation as failure (page 207), as well as the unique names
assumption (page 689), is based on the work of Clark [1978]. See the book by
Lloyd [1987] for a formal treatment of logic programming in general and nega-
tion as failure in particular. Apt and Bol [1994] provide a survey of different
techniques for handling negation as failure.

Jurafsky and Martin [2023] provide an excellent introduction to computa-
tional linguistics. The use of definite clauses for describing natural language is
described by Dahl [1994] and Pereira and Shieber [2002].

15.13 Exercises

Exercise 15.1 Consider a domain with two individuals (� and �), two predicate
symbols (p and q), and three constants (a, b, and c). The knowledge base KB is
defined by

p(X)← q(X).
q(a).

(a) Give one interpretation that is a model of KB.
(b) Give one interpretation that is not a model of KB.
(c) How many interpretations are there? Give a brief justification for your an-

swer.
(d) How many of these interpretations are models of KB? Give a brief justifica-

tion for your answer.

Exercise 15.2 Suppose a language has constant symbols a, b, and c; predicate
symbols p and q; and no function symbols. The following knowledge bases are
built from this language:

KB1 KB2 KB3
p(a). p(X)← q(X). p(X)← q(X).

p(a). q(b).

Consider possible interpretations for this language of the form I = 〈D, π, φ〉,
where D = {�, �, �, �}.
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(a) How many interpretations with the four domain elements exist for our sim-
ple language? Give a brief justification for your answer. [Hint: Determine
the number of possible assignments φ for the constant symbols. Consider
how many extensions predicates p and q can have to determine how many
assignments π exist.] Do not try to enumerate all possible interpretations.

(b) Of the interpretations outlined above, how many are models of KB1? Give a
brief justification for your answer.

(c) Of the interpretations outlined above, how many are models of KB2? Give a
brief justification for your answer.

(d) Of the interpretations outlined above, how many are models of KB3? Give a
brief justification for your answer.

Exercise 15.3 Consider the following knowledge base:

r(a). r(e). p(c).
q(b). s(a, b). s(d, b).
s(e, d). p(X)← q(X) ∧ r(X). q(X)← s(X, Y) ∧ q(Y).

Show the set of ground atomic consequences derivable from this knowledge base.
Use the bottom-up proof procedure (page 662) assuming, at each iteration, the
first applicable clause is selected in the order shown. Furthermore, applicable
constant substitutions are chosen in “alphabetic order” if more than one applies
to a given clause; for example, if X/a and X/b are both applicable for a clause at
some iteration, derive q(a) first. In what order are consequences derived?

Exercise 15.4 Consider the following knowledge base:

has access(X, library)← student(X).
has access(X, library)← faculty(X).
has access(X, library)← has access(Y, library) ∧ parent(Y, X).
has access(X, office)← has keys(X).
faculty(diane). faculty(ming). student(william).
student(mary). parent(diane, karen). parent(diane, robyn).
parent(susan, sarah). parent(sarah, ariel). parent(karen, chelsey).
parent(karen, todd).

(a) Provide an SLD derivation of the query has access(todd, library), similar to
Figure 15.6 (page 668).

(b) The query has access(mary, library) has two SLD derivations. Give both, but
do not show the clauses chosen or the substitutions.

(c) Is there a derivation for has access(ariel, library)? Explain why, or why not.
(d) Explain why the set of answers to the query has access(X, office) is empty.
(e) Suppose the following clause is added to the knowledge base:

has keys(X)← faculty(X).

What are the answers to the query has access(X, office)?

Exercise 15.5 What is the result of the following applications of substitutions?

(a) f (A, X, Y, X, Y){A/X, Z/b, Y/c}.
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(b) yes(F, L)← append(F, c(L, nil), c(l, c(i, c(s, c(t, nil)))))
{F/c(l, X1), Y1/c(L, nil), A1/l, Z1/c(i, c(s, c(t, nil)))}.

(c) append(c(A1, X1), Y1, c(A1, Z1))← append(X1, Y1, Z1)
{F/c(l, X1), Y1/c(L, nil), A1/l, Z1/c(i, c(s, c(t, nil)))}.

Exercise 15.6 Give a most general unifier of the following pairs of expressions:

(a) p(f (X), g(g(b))) and p(Z, g(Y))
(b) g(f (X), r(X), t) and g(W, r(Q), Q)
(c) bar(val(X, bb), Z) and bar(P, P)

Exercise 15.7 For each of the following pairs of atoms, either give a most general
unifier or explain why one does not exist:

(a) p(X, Y, a, b, W) and p(E, c, F, G, F)
(b) p(Y, a, b, Y) and p(c, F, G, F)
(c) foo(Z, [a, z|X], X) and foo([a, m|W], W, [i, n, g])
(d) ap(F0, c(b, c(B0, L0)), c(a, c(b, c(a, emp)))) and ap(c(H1, T1), L1, c(H1, R1)).

Exercise 15.8 List all of the ground atomic logical consequences of the following
knowledge base:

q(Y)← s(Y, Z) ∧ r(Z). p(X)← q(f (X)). s(f (a), b).
s(f (b), b). s(c, b). r(b).

Exercise 15.9 Consider the following logic program:

rd(cons(H, cons(H, T)), T).
rd(cons(H, T), cons(H, R))← rd(T, R).

Give a top-down derivation, showing all substitutions for the query

ask rd(cons(a, cons(cons(a, X), cons(B, cons(c, Z)))), W).

What is the answer corresponding to this derivation?
Is there a second answer? If yes, show the derivation; if not, explain why.

Exercise 15.10 Consider the following logic program:

ap(emp, L, L).
ap(c(H, T), L, c(H, R))← ap(T, L, R).
adj(A, B, L)← ap(F, c(A, c(B, E)), L).

(a) Give a top-down derivation (including all substitutions) for one answer to
the query

ask adj(b, Y, c(a, c(b, c(b, c(a, emp))))).

(b) Are there any other answers? If so, explain where a different choice could be
made in the derivation in the previous answer, and continue the derivation,
showing another answer. If there are no other answers, explain why not.

[You are meant to do this exercise as if you were a computer, without knowing
what the symbols mean. If you want to give a meaning to this program, you could
read ap as append, c as cons, emp as empty, and adj as adjacent.]
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Exercise 15.11 The aim of this question is to get practice writing simple logic
programs.

(a) Write a relation remove(E, L, R) that is true if R is the list resulting from re-
moving one instance of E from list L. The relation is false if E is not a member
of L.

(b) Give all of the answers to the following queries:

ask remove(a, [b, a, d, a], R).
ask remove(E, [b, a, d, a], R).
ask remove(E, L, [b, a, d]).
ask remove(p(X), [a, p(a), p(p(a)), p(p(p(a)))], R).

(c) Write a relation subsequence(L1, L2) that is true if list L1 contains a subset of
the elements of L2 in the same order.

(d) How many different proofs are there for each of the following queries:

ask subsequence([a, d], [b, a, d, a]).
ask subsequence([b, a], [b, a, d, a]).
ask subsequence([X, Y], [b, a, d, a]).
ask subsequence(S, [b, a, d, a]).

Explain why there are that many.

Exercise 15.12 In this question, you are to write a definite-clause knowledge base
for the design of custom video presentations.

Assume that the video is annotated using the relation

segment(SegId, Duration, Covers)

where SegId is an identifier for the segment. (In a real application this will be
enough information to extract the video segment.) Duration is the running time of
the segment (in seconds). Covers is a list of topics covered by the video segment.
An example of a video annotation is the database

segment(seg0, 10, [welcome]).
segment(seg1, 30, [skiing, views]).
segment(seg2, 50, [welcome, artificial intelligence, robots]).
segment(seg3, 40, [graphics, dragons]).
segment(seg4, 50, [skiing, robots]).

A presentation is a sequence of segments. Represent a presentation by a list of
segment identifiers.

(a) Axiomatize a predicate

presentation(MustCover, Maxtime, Segments)

that is true if Segments is a presentation whose total running time is less than
or equal to Maxtime seconds, such that all of the topics in the list MustCover
are covered by a segment in the presentation. The aim of this predicate is
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to design presentations that cover a certain number of topics within a time
limit.

For example, the query

ask presentation([welcome, skiing, robots], 90, Segs)

should return at least the following two answers (perhaps with the segments
in some other order):

presentation([welcome, skiing, robots], 90, [seg0, seg4])
presentation([welcome, skiing, robots], 90, [seg2, seg1]).

Give the intended interpretation of all symbols used and demonstrate
that you have tested your axiomatization (including finding all answers to
your query) in AIPython (aipython.org) or Prolog. Explain briefly why each
answer is an answer.

(b) Assuming you have a good user interface and a way to actually view the
presentations, list three things that the preceding program does not do that
you may want in such a presentation system. (There is no correct answer for
this part. You must be creative to get full marks.)

Exercise 15.13 The extra arguments in a definite-clause grammar makes it strictly
more powerful than a context-free grammar. The language {anbncn | n ≥ 0},
which consists of sentences that are made up of a number of as, followed by the
same number of bs followed by the same number of cs cannot be defined with
a context-free grammar. Define this language using a definite clause grammar.
[Hint: Define a predicate copies for a non-terminal that creates n copies of one of
its arguments, and represent numbers using 0 for zero and s(N) for the numbers
after n.]

Exercise 15.14 Construct a knowledge base and a dictionary based on Figure
15.12 (page 686) to answer geographical questions such as that given in Figure 1.3
(page 13). For each query, either show how it can be answered or explain why it is
difficult to answer given the tools presented in this chapter.

Exercise 15.15 Consider what would happen in Example 15.44 (page 693) if
empty course had been defined as

empty course(C)← course(C) ∧∼enrolled(S, C).

Suppose the rest of the knowledge base is

course(cs422). course(cs486). course(cs987).
enrolled(huan, cs422). enrolled(sally, cs486).

(a) What is Clark’s completion of the clause for empty course?
(b) What is a counter example to the soundness of the completion? Give an

instance of the clause for which the body is true and the head is false.
(c) What does an implementation with negation as failure (e.g., Prolog) give?

Compare with empty course(C)← ∼enrolled(S, C) ∧ course(C).
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Chapter 16

Knowledge Graphs and
Ontologies

The most serious problems standing in the way of developing an adequate
theory of computation are as much ontological as they are semantical. It
is not that the semantic problems go away; they remain as challenging as
ever. It is just that they are joined – on center stage, as it were – by even
more demanding problems of ontology.

– Brian Cantwell Smith [1996, p. 14]

How do you represent knowledge about a world to make it easy to acquire,
debug, maintain, communicate, share, and reason with that knowledge? This
chapter explores flexible methods for storing and reasoning with facts, and
knowledge and data sharing using ontologies. As Smith points out, the prob-
lems of ontology are central for building intelligent computational agents.

16.1 Knowledge Graphs

16.1.1 Triples

Given a logical representation language, such as the one developed in the pre-
vious chapter, and a world to reason about, people designing databases and
knowledge bases have to choose which individuals and relations to represent.
It may seem that a modeler can just refer to the individuals and relations that
exist in the world. However, the world does not determine which individuals
there are. How the world is divided into individuals is invented by whomever
is modeling the world. The modeler divides the world up into things so that
the agent can refer to parts of the world that make sense for the task at hand.

701
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Example 16.1 It may seem as though “red” is a reasonable property to ascribe
to things in the world. You may do this because you want to tell the delivery
robot to go and get the red parcel. In the world, there are surfaces absorbing
some frequencies and reflecting other frequencies of light. Some user may have
decided that, for some application, some particular set of reflectance properties
should be called red. Some other modeler might decide on another mapping of
the spectrum and use the terms pink, scarlet, ruby, and crimson, and yet another
modeler may divide the spectrum into regions that do not correspond to words
in any language but are those regions most useful to distinguish different cate-
gories of individuals.

Just as modelers choose which individuals to represent, they also choose which
relations to use. There are, however, some guiding principles that are useful
for choosing relations and individuals. These will be demonstrated through a
sequence of examples.

Example 16.2 Suppose you decide that “red” is an appropriate category for
classifying individuals. You could treat the name red as a unary relation and
write that parcel a is red:

red(a).

If you represent the color information in this way, then you can easily ask what
is red:

ask red(X).

The X returned are the red individuals.
With this representation, it is hard to ask the question “What color is parcel

a?” In the syntax of definite clauses, you cannot ask

ask X(a).

because, in languages based on first-order logic (page 672), predicate names
cannot be variables. In second-order or higher-order logic, this may return any
property of a, not just its color.

There are alternative representations that allow you to ask about the color
of parcel a. There is nothing in the world that forces you to make red a predicate.
You could just as easily say that colors are individuals too, and you could use
the constant red to denote the color red. Given that red is a constant, you can
use the predicate color where color(Ind, Val) means that physical individual Ind
has color Val. “Parcel a is red” can now be written as

color(a, red).

What you have done is reconceive the world: the world now consists of colors
as individuals that you can name. There is now a new binary relation color
between physical individuals and colors. Under this new representation you
can ask “What has color red?” with the query

ask color(X, red).
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and ask “What color is block a?” with the query

ask color(a, C).

To make an abstract concept into an entity is to reify it. In the preceding
example, the color red is reified.

Example 16.3 It seems as though there is no disadvantage to the new rep-
resentation of colors in the previous example. Everything that could be done
before can be done now. It is not much more difficult to write color(X, red) than
red(X), but you can now ask about the color of things. So the question arises of
whether you can do this to every relation, and what do you end up with?

You can do a similar analysis for the color predicate as for the red predicate
in Example 16.2 (page 702). The representation with color as a predicate does
not allow you to ask the question “Which property of parcel a has value red?”
where the appropriate answer is “color.” Carrying out a similar transformation
to that of Example 16.2, you can reify properties such as color as individuals,
and invent a relation prop and write “individual a has the color red” as

prop(a, color, red).

This representation allows for all of the queries of this and the previous exam-
ple. You do not have to do this again, because you can write all relations in
terms of the prop relation.

The individual–property–value representation is in terms of a single rela-
tion prop where

prop(Ind, Prop, Val)

means that individual Ind has value Val for property Prop. This is also called
the triple representation because all of the relations are represented as triples.
The first element of the triple is called the subject, the second is the verb, and
the third is the object, using the analogy that a triple is a simple three-word
sentence.

A triple is sometimes written as a three-word sentence:

subject verb object.

meaning the atom

prop(subject, verb, object).

or written in functional notation as

verb(subject, object).

The verb of a triple is a property. The domain of property p is the set of
individuals that can appear as the subject of a triple when p is the verb. The
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range of a property p is the set of values that can appear as the object of a triple
that has p as the verb.

An attribute is a property–value pair. For example, an attribute of a parcel
may be that its color is red.

There are some predicates that may seem to be too simple for the triple
representation:

Example 16.4 Consider parcel(a), which means that a is a parcel; there are
two ways to represent it using triples.

The first is to reify the concept parcel to say that a is a parcel:

prop(a, type, parcel).

where type is a property that relates an individual to a class. The constant parcel
denotes the class of all, real or potential, things that are parcels. This triple spec-
ifies that the individual a is in the class parcel. The property type is sometimes
written as is a, in which case the triple represents “a is a parcel”.

The second is to make parcel a property and write “a is a parcel” as

prop(a, parcel, true).

In this representation, parcel is a Boolean property which is true of things that
are parcels. The property corresponds to an indicator variable used in CSPs
(page 182) and in machine learning (page 286).

A Boolean property is a property whose range is {true, false}, where true
and false are constant symbols in the language.

Some predicates may seem to be too complicated for the triple representa-
tion:

Example 16.5 The verb “give” requires three participants: an agent giving, a
recipient, and a patient (the item being given). The sentence “Alex gave Chris
a book” loses information if only two of the entities involved are specified in a
relation. It could be represented by gave(alex, chris, book). It can be represented
using triples by inventing a giving act, say ga3545, with the triples:

prop(ga3545, type, giving act).
prop(ga3545, agent, alex).
prop(ga3545, patient, b342).
prop(ga3545, recipient, chris).
prop(b342, type, book).

Here, ga3545 is a reified entity denoting the action, and b342 is the book given.
The agent is the one carrying out the action, the patient is the object the action is
carried out on, and the recipient is the one receiving the patient. The properties
agent, patient, and recipient are thematic relations or semantic roles used for
giving meaning to sentences. The reification allows for other properties of the
giving act, such as the date or perhaps the price paid.
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Words and numbers that represent reified relations are very common. For
example, a booking, a reservation, a marriage, a flight number, a purchase or-
der all denote a relation and have properties such as the participants and a start
time.

16.1.2 Individuals and Identifiers

Individuals are denoted by unique identifiers. For example, in a university,
a student number is an identifier used to denote a student. The name is not
adequate as there might be multiple students with the same name, and some
students change their name.

A uniform resource identifier (URI), or its unicode extension, an inter-
nationalized resource identifier (IRI), is a unique name that can be used to
identify anything. A resource is anything that can be named. An IRI typically
has the form of a uniform resource locator (URL), a web address, typically star-
ing with http:// or https://, because URLs are unique. The IRI denotes the
entity, not the website. The idea is that if someone uses the IRI, they mean
the individual denoted by the IRI. A IRI has meaning because people use it
with that meaning. There need not be a formal definition; it just has to be used
consistently.

Wikidata (https://www.wikidata.org) is a free, collaborative knowledge graph
with around 1.25 billion triples describing 100 million entities (as of 2022).

Example 16.6 Christine Sinclair is a Canadian association football (soccer)
player, who has scored more goals than any other player in international play.
In Wikidata [2021], Christine Sinclair is represented using the identifier “http:
//www.wikidata.org/entity/Q262802”, which we shorten to “Q262802”. Wiki-
data uses this to disambiguate the footballer from any other person called Chris-
tine Sinclair. The identifier “http://www.wikidata.org/entity/Q262802” denotes
the footballer, not the web page (which doesn’t play football).

Wikidata uses unique identifiers for properties. For example, it uses the
identifier “http://schema.org/name” for the property that gives the name of
the subject. We use “name”, but remember that it is an abbreviation for the
property defined by schema.org. If you don’t want that meaning, you should
use another identifier. The value of a triple with “name” as the property is the
pair of a string and a language, such as (“Christine Sinclair”,en).

Wikidata uses “http://www.wikidata.org/prop/direct/P27” for the property
“country of citizenship”, where the subject is a person and the object is a coun-
try they are a citizen of. Canada is “http://www.wikidata.org/entity/Q16”, so
“Christine Sinclair is a citizen of Canada” is represented using the triple

/entity/Q262802 /prop/direct/P27 /entity/Q16

but using the full IRIs (including “http://www.wikidata.org”).

https://www.wikidata.org
http://www.wikidata.org/entity/Q262802
http://www.wikidata.org/entity/Q262802
http://www.wikidata.org/entity/Q262802
http://www.wikidata.org/prop/direct/P27
http://www.wikidata.org/entity/Q16
http://www.wikidata.org
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16.1.3 Graphical Representations

You can interpret the prop relation in terms of a knowledge graph, a directed
labelled graph, where nodes are entities (and other values such as strings and
numbers). The relation

prop(Ind, Prop, Val)

defines an arc with tail Ind and head Val, labelled with Prop. Such a graph is
also called a semantic network.

Example 16.7 Figure 16.1 shows part of the Wikidata knowledge graph about
Christine Sinclair (Q262802). Wikidata provides over 3400 triples about her,
including her name in 47 languages (as of August 2022); her name in English
and Korean is shown.

Christine Sinclair is a citizen of Canada. Instead of the Wikidata name,
“http://www.wikidata.org/prop/direct/P27”, country of citizenship is shown.

She has played 319 games since 2000 for the Canada women’s national soc-
cer team (identifier Q499946), scoring 190 goals. The relationship between her
and the team is reified using the identifier Q262802-9c5c267f (the actual iden-
tifier is longer than this), connected to her with the property “http://www.
wikidata.org/prop/P54” (member of sports team). The property between the
reified entity and Q499946 is “http://www.wikidata.org/prop/statement/P54”,
also shown as member of sports team.

She has played 161 games for Portland Thorns (identifier Q1446672) since
2013, scoring 65 goals.

Q262802

q262802-3B1AE42E

Q16

human

“크리스틴 싱클레어” (ko)

12 June 1983

“Canada” (en)

member_of_
sports_team

date_of_birth
name

instance_of

country_of_citizenship

name

Q30

“United States of 
America” (en)

name

“États-Unis” (fr) name

Q1446672

member_of_
sports_team

2013

start_time

65

number_
of_goals

161

number_of_
matches

“Portland Thorns” (en)

name

country

Q262802-9c5c267f

member_of_sports_team

Q499946

member_of_
sports_team

2000

start_time

190

number_
of_goals 319

number_of_
matches

“Canada women's 
national soccer team” (en)

name

country

“Christine Sinclair” (en)

name

Figure 16.1: Part of the Wikidata knowledge graph about Christine Sinclair. The
English names, not the IRIs, of the properties are shown

http://www.wikidata.org/prop/direct/P27
http://www.wikidata.org/prop/P54
http://www.wikidata.org/prop/P54
http://www.wikidata.org/prop/statement/P54
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Apart from the flexibility outlined earlier, the graphical notation has a number
of advantages:

• It is easy for a human to see the relationships without being required
to learn the syntax of a particular logic. The graphical notation helps
the builders of knowledge bases to organize their knowledge. There are
many tools for creating knowledge graphs where users just draw nodes
and arcs (sometimes called knowledge maps or mind maps).

• A person browsing the knowledge graph can ignore the labels of nodes
that just have meaningless names – for example, the name ga3545 in Ex-
ample 16.5 (page 704), or Q262802-9c5c267f in Figure 16.1 (page 706).
A representation and visualization can just leave these nodes blank and
make up an arbitrary name if they must be mapped to explicit triples.

• Triples can be stored efficiently in a triple store. In a relational database,
the designer needs to specify the keys used to index into the database;
given a key, the associated tuples can be found efficiently. A triple store
needs eight indexes to be able to find the tuples associated with any com-
bination of given positions. One extreme is where the subject, verb, and
object are given and the query is to determine if a particular triple is in
the store. At the other extreme, no positions are specified, and the aim is
to enumerate the triples. In between these, for example, just the subject
and object could be given and the aim is to enumerate the verbs that link
them, or just the subject and verb are given and the aim is to enumerate
the objects. Eight indexes are required because each of the subject, verb,
and object could be given or not. With these indexes, the designer does
not need to define keys to access the triples efficiently.

16.2 Classes and Properties

Typically, you know more about a domain than a database of facts; you may
know general rules from which other facts can be derived. Which facts are
explicitly given and which are derived is a choice to be made when designing
and building a knowledge base.

Primitive knowledge is knowledge that is specified explicitly. Derived
knowledge is knowledge that can be inferred from primitive knowledge and
other derived knowledge.

The use of rules allows for a more compact representation of knowledge.
Derived relations allow for generalizations to be drawn from knowing some-
thing is in a class. This is important because you do not directly observe every-
thing about a domain. Much of what is known about a domain is inferred from
the observations and more general knowledge, including learned knowledge.

A standard way to use derived knowledge is to specify attributes (property–
value pairs) that hold for all members of a class. Individuals inherit the at-
tributes associated with the classes they are in. Grouping individuals into
classes enables a more concise representation than representing the attributes
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for each individual separately. This issue was discussed in the context of prob-
abilistic classifiers (page 467) and unsupervised learning (page 473).

A class is the set of those actual and potential individuals that would be
members of the class. This is typically an intensional set (page 131), defined
by a characteristic function that is true of members of the set and false of other
individuals. The alternative to an intensional set is an extensional set, which
is defined by listing its elements.

For example, the class chair is the set of all things that would be chairs. The
definition is not the set of things that are chairs, because chairs that have not
yet been built also fall into the class of chairs. Without this definition, an agent
could not design a chair, because the chair doesn’t exist during the designing
(and may never exist).

Two classes are not equivalent just because they have the same members.
For example, the class of green unicorns and the class of chairs that are exactly
124 meters high are different classes, even though they may contain the same
elements; they are both empty. A green unicorn is not a 124 meter high chair.

The definition of class allows any set that can be described to be a class.
For example, the set consisting of the number 17, the Taj Mahal in Agra, and
the first goal scored in the 2022 FIFA world cup final can be considered a class,
but it is not very useful. A natural kind is a class such that describing indi-
viduals using the class is more succinct than describing individuals without
the class. For example, “mammal” is a natural kind, because describing the
common attributes of mammals makes a knowledge base that uses “mammal”
more succinct than one that does not use “mammal” and instead repeats the
attributes for every individual.

16.2.1 Class and Property Hierarchies

Class S is a subclass of class C means S is a subset of C. That is, every individual
of type S is of type C.

Example 16.8 Figure 16.2 (page 709) shows the class structure for the Brazil
national football team and the Canada women’s national soccer team, up to the
level of organization. Shown is the English name of the entity or class with the
Wikidata identifier in parentheses.

At the lowest level, the Brazil national football team is an instance of the
class Q6979593, which has the name in English “national association football
team”. This is a subclass of the classes called “national football team” and
“association football team”.

The relationship between types and subclasses can be written as a definite
clause:

prop(E, type, C)←
prop(S, subClassOf , C) ∧
prop(E, type, S).
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or using functional notation, if subClassOf (S, C) and type(E, S), then type(E, C).
You can treat type and subClassOf as special properties that allow property

inheritance. Property inheritance occurs when a value for a property is speci-
fied at the class level and inherited by the members of the class. If all members
of class c have value v for property p, this can be written as the definite clause

prop(Ind, p, v)←
prop(Ind, type, c).

which, together with the above rule that relates types and subclasses, can be
used for property inheritance.

Property p1 is a sub-property of property C if every pair related by p1 is
also related by p2. In functional notation this means p1(x, y) implies p2(x, y), or
in triple notation (x, p1, y) implies (x, p2, y).

Example 16.9 Some sub-properties in Wikidata are

• “member of sports team” (P54) is a sub-property of “member of” (P463)

national sports team 
(Q1194951)

sports team (Q12973014)

subClassOf

national association 
football team (Q6979593)

Brazil national football 
team (Q83459)

type

subClassOf

association football 
team (Q15944511)

subClassOf

football team 
(Q28083137)

subClassOf

subClassOf

sports organization (Q4438121) team (Q327245)

subClassOf subClassOf

subClassOf

organization (Q43229) 

subClassOf

Canada women's national 
soccer team (Q499946)

women's national 
association football team 

(Q23905105)

type

subClassOf

women's national 
team (Q8031011)

subClassOf

subClassOf

women's sports team 
(Q61740358)

subClassOf

subClassOf

women's association 
(Q1451906)

subClassOf

subClassOf

Figure 16.2: Part of the Wikidata class structure for the Brazil national football
team and the Canada women’s national soccer team
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• “member of” (P463) is a sub-property of “affiliation” (P1416)

• “affiliation” (P1416) is a sub-property of “part of” (P361)

• “part of” (P361) is a sub-property of “partially coincident with” (P1382)

• “partially coincident with” (P1382) is a sub-property of “different from”
(P1889).

The domain of a property is a class such that the subject (first argument)
of a triple with the property has to be in the class. That is, “the domain of
property p is class C” means if p(x, y) then x ∈ C. If a property p has domain C1
and has domain C2, then every individual in the subject of p must be in both
C1 and C2.

The range of a property is a class such that the object (last argument) of a
triple with the property has to be in the class. That is, the range of property p
is class C means if p(x, y) then y ∈ C.

A property p is functional means that there is at most one object associated
with any subject; i.e., if p(x, y1) and p(x, y2) then y1 = y2. This corresponds to
the mathematical definition of a partial function.

Functional properties play a special role in relational learning and relational
probabilistic models in Chapter 17, because features (page 127), as used in con-
straint satisfaction problems and in machine learning, and random variables
(page 377) are assumed to be functional (having only one value). What is spe-
cial here is that non-functional properties such as “has-friend” are allowed.

Example 16.10 The following are not (currently) part of Wikidata, but could
be:

• the domain of “member of sports team” (P54) is “human” (Q5)

• the range of “member of sports team” (P54) is “sports team” (Q12973014)

• “member of sports team” (P54) is not functional, because someone could
be in multiple sports teams at the same time; as shown in Figure 16.1,
Christine Sinclair was in two sports teams

• “date of birth” (P569) is functional as each person has only one date of
birth.

Some general guidelines are useful for deciding what should be primitive
and what should be derived:

• When associating an attribute with an individual, select the most general
class C that the individual is in, where all members of C have that at-
tribute, and associate the attribute with class C. Inheritance can be used
to derive the attribute for the individual and all other members of class C.
This representation methodology tends to make knowledge bases more
concise, and it means that it is easier to incorporate new individuals be-
cause members of C automatically inherit the attribute. For example, peo-
ple have backbones; this is represented by having a class of vertebrates
which humans are a subclass of.
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• Do not associate a contingent attribute of a class with the class. A contin-
gent attribute is one whose value changes when circumstances change.
For example, do not define a football team in terms of having a coach; a
team does not stop being a team because the coach resigns or dies.

16.2.2 Designing Classes

Categorizing objects, the basis for modern ontologies, has a long history. Aris-
totle [350 BCE] suggested the definition of a class C in terms of

• Genus: a superclass of C. The plural of genus is genera.
• Differentia: the attributes that make members of the class C different

from other members of the superclass of C.

He anticipated many of the issues that arise in definitions:

If genera are different and co-ordinate, their differentiae are themselves
different in kind. Take as an instance the genus “animal” and the genus
“knowledge”. “With feet”, “two-footed”, “winged”, “aquatic”, are differ-
entiae of “animal”; the species of knowledge are not distinguished by the
same differentiae. One species of knowledge does not differ from another
in being “two-footed”.

– Aristotle [350 BCE]

Note that “co-ordinate” here means neither is subordinate to the other.
In the style of modern ontologies, we would say that “animal” is a class

and “knowledge” is a class. The property “two-footed” has domain “animal”.
If something is an instance of knowledge, it does not have a value for the prop-
erty “two-footed”.

The art of ranking things in genera and species is quite important, and
greatly helps our judgment as well as our memory. . . . This helps one
not merely to retain things in one’s memory, but also to find them there.
Writers who have laid out all sorts of notions under certain headings or
categories have done something very useful.

– Leibniz [1705]

To build an ontology based on Aristotelian definitions:

• For each class you may want to define, determine a relevant superclass
and then select those attributes that distinguish the class from other sub-
classes. Each attribute gives a property and a value.
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Classes in Knowledge Bases and Object-Oriented Programming

The use of “individuals” and “classes” in knowledge-based systems is very
similar to the use of “objects” and “classes” in object-oriented programming
(OOP) languages such as Smalltalk, Python, or Java. This should not be too
surprising because they have an interrelated history. But there are important
differences that tend to make the direct analogy often more confusing than
helpful:

• Objects in OOP are computational objects; they are data structures and
associated programs. A “person” object in Java is not a person. How-
ever, individuals in a knowledge base (KB) are (typically) things in the
real world. A “person” individual in a KB can be a real person. A
“chair” individual can be a real chair you can actually sit in; it can hurt
you if you bump into it. You can send a message to, and get answers
from, a “chair” object in Java, whereas a chair in the real world tends
to ignore what you tell it. A KB is not typically used to interact with a
chair, but to reason about a chair. A real chair stays where it is unless it
is moved by a physical agent.

• In a KB, a representation of an object is only an approximation at one
(or a few) levels of abstraction. Real objects tend to be much more com-
plicated than what is represented. You typically do not represent the
individual fibers in the fabric of a chair. In an OOP system, there are
only the represented properties of an object. The system can know ev-
erything about a Java object, but not about a real individual.

• The class structure of Java is intended to represent designed objects. A
systems analyst or a programmer gets to create a design. For example,
in Java, an object is only a member of one lowest-level class. There is
no multiple inheritance. Real objects are not so rigidly constrained. The
same person could be a football coach, a mathematician, and a mother.

• A computer program cannot be uncertain about its data structures; it
has to select particular data structures to use. However, you can be
uncertain about the types of things in the world.

• The representations in a KB do not actually do anything. In an OOP
system, objects do computational work. In a KB, they just represent –
that is, they just refer to objects in the world.

• While an object-oriented modeling language, like UML, may be used for
representing KBs, it may not be the best choice. A good OO modeling
tool has facilities to help build good designs. However, the world being
modeled may not have a good design at all. Trying to force a good
design paradigm on a messy world may not be productive.

Knublauch et al. [2006] present a more detailed comparison between object-
orientated software design and the use of ontologies.

https://doi.org/10.1017/9781009258227.022


16.2. Classes and Properties 713

• For each property, define the most general class for which it makes sense,
and define the domain (page 703) of the property to be this class. Make
the range (page 704) of the property another class that makes sense (per-
haps requiring this range class to be defined, either by enumerating its
values or by defining it using an Aristotelian definition).

Example 16.11 In Example 16.8 (page 708), a national sports team is a “team
that represents a nation in a sport”, where “team” is the genus and “represents a
nation in a sport” is the differentia. An association football team is a sports team
that plays association football (soccer). So a national association football team
is a team that represents a nation in association football, and so is a subclass of
both. A team is “a group linked in a common purpose”.

In Figure 16.2 (page 709), the differentia that distinguishes the classes on
the left is that the members have to be women. There can also be a women’s
association football team, a women’s football team, and a women’s team, not
all of which are given identifiers in Wikidata. Note that, while “men’s football
team” defines a class, it does not exist in Wikidata because most teams allow
women, even if none actually play.

The class hierarchy is a directed graph with arcs from subclasses to their
immediate superclasses. Cyclic definitions are not useful; for example, defin-
ing x is above y as y is below x and defining y is below x as x is above y does
not define either; it just creates an equivalence. Thus, it is reasonable to as-
sume that the graph is a directed acyclic graph (DAG), forming a lattice. This
methodology does not, in general, give a tree hierarchy of classes. Objects can
be in many classes. Each class does not have a single most-specific superclass.

Example 16.12 Consider the definitions of rectangle, rhombus, and square:

• A rectangle is a quadrilateral where all inside angles are right angles (90◦).
• A rhombus is a quadrilateral where all four sides have the same length.

• A square is a quadrilateral where all four sides have the same length and
all inside angles are right angles.

A square is both a rectangle and a rhombus; both are most specific superclasses.
A square could be defined as a rectangle where all sides have the same length.
It could equally well be defined as a rhombus where the inside angles are right
angles.

A quadrilateral is a planar figure made up of four straight sides. The defi-
nition of square can be expanded so that a square is a planar figure made up of
four straight sides of equal length and the inside angles are right angles.

In rare cases, the natural class hierarchy forms a tree, most famously in the
Linnaean taxonomy of living things. The reason this is a tree is because of
evolution. Trying to force a tree structure in other domains has been much less
successful.

If the class structure is acyclic and each class – except for a top class, which
we call thing – is defined in terms of a superclass and the attributes that form
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the differentia, then each class has a normal form as thing conjoined with at-
tributes, by replacing each superclass by its definition. If the attributes are
property–value pairs then one class is a subclass of the other if its normal form
is a superset of the other; Section 16.3.1 (page 718) describes more expressive
class constructs. In Example 16.12 (page 713), square is a subclass of rectangle
and is a subclass of rhombus as all of the attributes are the same, with an extra
one for the differentia of the square.

16.3 Ontologies and Knowledge Sharing

Building large knowledge-based systems is complex:

• Knowledge often comes from multiple sources, including people, sen-
sors, and the web, which must be integrated. Moreover, these sources
may not have the same division of the world. Often knowledge comes
from different fields that have their own distinctive terminology and di-
vide the world according to their own needs.

• Systems evolve over time and it is difficult to anticipate all future distinc-
tions that should be made.

• The people involved in designing a knowledge base must choose what
individuals and relationships to represent. The world is not divided
into individuals; that is something done by intelligent agents to under-
stand the world. Different people involved in a knowledge-based system
should agree on this division of the world.

• It is often difficult to remember what your own notation means, let alone
to discover what someone else’s notation means. This has two aspects:

– given a symbol used in the computer, determining what it means

– given a concept in someone’s mind, determining what symbol to
use. This has three aspects:

* determining whether the concept has already been defined

* if it has been defined, discovering what symbol has been used
for it

* if it is not already defined, finding related concepts that it can
be defined in terms of.

To share and communicate knowledge, it is important to be able to develop
a common vocabulary and an agreed-on meaning for that vocabulary.

A conceptualization or intended interpretation (page 647) is a mapping
between symbols used in the computer, the vocabulary, and the individuals
and relations in the world. It provides a particular abstraction of the world
and notation for that abstraction. A conceptualization for small knowledge
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The Semantic Web

The semantic web is a way to allow machine-interpretable knowledge to be
distributed on the World Wide Web. Instead of just serving HTML pages that
are meant to be read by humans, websites can also provide information that
can be used by computers.

At the most basic level, XML (the Extensible Markup Language) provides
a syntax designed to be machine readable, but which is also possible for hu-
mans to read. It is a text–based language, where items are tagged in a hier-
archical manner. The syntax for XML can be quite complicated, but at the
simplest level, the scope of a tag is either in the form 〈tag . . . /〉, or in the form
〈tag . . . 〉 . . . 〈/tag〉.

An IRI (internationalized resource identifier) is used to uniquely identify
a resource. A resource is anything that can be uniquely identified, including
individuals, classes, and properties. Typically, IRIs use the syntax of web
addresses (URLs).

RDF (the resource description framework) is a language built on XML,
for individual–property–value triples.

RDFS (RDF schema) lets you define resources (classes and properties) in
terms of other resources (e.g., using subClassOf and subPropertyOf ). RDFS also
lets you restrict the domain and range of properties and provides containers:
sets, sequences, and alternatives.

RDF allows sentences in its own language to be reified. This means that
it can represent arbitrary logical formulas and so is not decidable in general.
Undecidability is not necessarily a bad thing; it just means that you cannot put
a bound on the time a computation may take. Logic programs with function
symbols and programs in virtually all programming languages are undecid-
able.

OWL (the web ontology language) is an ontology language for the World
Wide Web. It defines some classes and properties with a fixed interpretation
that can be used for describing classes, properties, and individuals. It has
built-in mechanisms for equality of individuals, classes, and properties, in
addition to restricting domains and ranges of properties and other restrictions
on properties (e.g., transitivity, cardinality).

There have been some efforts to build large universal ontologies, such as
Cyc (www.cyc.com), but the idea of the semantic web is to allow communities
to converge on ontologies. Anyone can build an ontology. People who want
to develop a knowledge base can use an existing ontology or develop their
own ontology, usually building on existing ontologies. Because it is in their
interest to have semantic interoperability, companies and individuals should
tend to converge on standard ontologies for their domain or to develop map-
pings from their ontologies to others’ ontologies.
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bases can be in the head of the designer or specified in natural language in
the documentation. This informal specification of a conceptualization does not
scale to larger systems where the conceptualization must be shared.

In philosophy, ontology is the study of what exists. In AI, an ontology
is a specification of the meanings of the symbols in an information system.
That is, it is a specification of a conceptualization. It is a specification of what
individuals and relationships are assumed to exist and what terminology is
used for them. Typically, it specifies what types of individuals will be modeled,
specifies what properties will be used, and gives some axioms that restrict the
use of that vocabulary.

Example 16.13 An ontology of individuals that could appear on a map could
specify that the symbol “ApartmentBuilding” will represent apartment build-
ings. The ontology will not define an apartment building, but it will describe it
well enough so that others can understand the definition. We want other peo-
ple, who may call such buildings “Condos”, “Flats”, or “Apartment Complex”
to be able to find the appropriate symbol in the ontology (see Figure 16.3). That
is, given a concept, people want to be able to find the symbol, and, given the
symbol, they want to be able to determine what it means.

An ontology may give axioms to restrict the use of some symbols. For ex-
ample, it may specify that apartment buildings are buildings, which are human-
constructed artifacts. It may give some restriction on the size of buildings so
that shoeboxes cannot be buildings or that cities cannot be buildings. It may
state that a building cannot be at two geographically dispersed locations at the

Figure 16.3: Mapping from a conceptualization to a symbol
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same time (so if you take off some part of the building and move it to a differ-
ent location, it is no longer a single building). Because apartment buildings are
buildings, these restrictions also apply to apartment buildings.

Ontologies are usually written independently of a particular application
and often involve a community agreeing on the meanings of symbols. An on-
tology consists of:

• a vocabulary of the categories of the things (both classes and properties)
that a knowledge base may want to represent

• an organization of the categories, for example into an inheritance hier-
archy using subClassOf (page 708) or subPropertyOf (where property S is
a sub-property of property P if S(x, y) implies R(x, y) for all x and y), or
using Aristotelian definitions (page 711), and

• a set of axioms restricting the definition of some of the symbols to bet-
ter reflect their intended meaning – for example, that some property is
transitive, or the domain and range of a property, or restrictions on the
number of values a property can take for each individual. Sometimes re-
lationships are defined in terms of other relationships but, ultimately, the
relationships are grounded out into primitive relationships that are not
actually defined.

An ontology does not specify the individuals not known at design time. For
example, an ontology of buildings would typically not include actual build-
ings. An ontology would specify those individuals that are fixed and should
be shared, such as the days of the week, or colors.

Example 16.14 Consider a trading agent that is designed to find accommo-
dations. Users could use such an agent to describe what accommodation they
want. The trading agent could search multiple knowledge bases to find suitable
accommodations or to notify users when some appropriate accommodation be-
comes available. An ontology is required to specify the meaning of the symbols
for the user and to allow the knowledge bases to interoperate. It provides the
semantic glue to tie together the users’ needs with the knowledge bases.

In such a domain, houses and apartment buildings may both be residential
buildings. Although it may be sensible to suggest renting a house or an apart-
ment in an apartment building, it may not be sensible to suggest renting an
apartment building to someone who does not actually specify that they want
to rent the whole building. A “living unit” could be defined to be the collection
of rooms that some people, who are living together, live in. A living unit may
be what a rental agency offers to rent. At some stage, the designer may have to
decide whether a room for rent in a house is a living unit, or even whether part
of a shared room that is rented separately is a living unit. Often the boundary
cases – cases that may not be initially anticipated – are not clearly delineated
but become better defined as the ontology evolves.

The ontology would not contain descriptions of actual houses or apart-
ments because, at the time the ontology is defined, the designers will not know
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which houses will be described by the ontology. The ontology will change
much slower than the actual available accommodation.

The primary purpose of an ontology is to document what the symbols mean
– the mapping between symbols (in a computer) and concepts (in someone’s
head). Given a symbol, a person is able to use the ontology to determine what it
means. When someone has a concept to be represented, the ontology is used to
find the appropriate symbol or to determine that the concept does not exist in
the ontology. The secondary purpose, achieved by the use of axioms, is to allow
inference or to determine that some combination of values is inconsistent. The
main challenge in building an ontology is the organization of the concepts to
allow a human to map concepts into symbols in the computer, and to allow a
computer to infer useful new knowledge from stated facts.

16.3.1 Description Logic

Modern ontology languages such as OWL (page 715) are based on description
logics. A description logic is used to describe classes, properties, and individ-
uals. One of the main ideas behind a description logic is to separate

• a terminological knowledge base (or TBox), describes the terminology;
it defines what the symbols mean

• an assertional knowledge base (or ABox), specifies what is true at some
point in time.

Usually, the terminological knowledge base is defined at the design time of the
system and defines the ontology, and it only changes as the meaning of the
vocabulary changes, which should be relatively rarely. The assertional knowl-
edge base usually contains the knowledge that is situation specific and is only
known at run time.

It is typical to use triples (page 703) to define the assertional knowledge
base and a language such as OWL to define the terminological knowledge base.

The web ontology language (OWL) describes domains in terms of

• Individuals – things in the world that is being described (e.g., a particular
house or a particular booking may be individuals).

• Classes – sets of individuals. A class is the set of all real or potential
things that would be in that class. For example, the class “House” may
be the set of all things that would be classified as a house, not just those
houses that exist in the domain of interest.

• Properties – used to describe binary relationships between individuals
and other individuals or values. A datatype property has values that
are primitive data types, such as integers, strings, or dates. For example,
“streetName” may be a datatype property between a street and a string.
An object property has values that are other individuals. For example,
“nextTo” may be a property between two houses, and “onStreet” may be
a property between a house and a street.
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OWL comes in a few variants that differ in restrictions imposed on the classes
and properties, and how efficiently they can be implemented. For example, in
OWL-DL a class cannot be an individual or a property, and a property is not an
individual. In OWL-Full, the categories of individuals, properties, and classes
are not necessarily disjoint. OWL-DL comes in three profiles that are targeted
towards particular applications, and do not allow constructs they do not need
that would make inference slower. OWL 2 EL is designed for large biohealth
ontologies, allowing rich structural descriptions. OWL 2 QL is designed to be
the front end of database query languages. OWL 2 RL is a language that is
designed for cases where rules are important.

OWL does not make the unique names assumption (page 689); two names
do not necessarily denote different individuals or different classes. It also does
not make the complete knowledge assumption (page 207); it does not assume
that all the relevant facts have been stated.

Ck are classes, p is a property, Ik are individuals, and n is an integer. #S is the
number of elements in set S.

Class Class Contains
owl:Thing all individuals
owl:Nothing no individuals (empty set)
owl:ObjectIntersectionOf(C1, . . . , Ck) individuals in C1 ∩ · · · ∩ Ck
owl:ObjectUnionOf(C1, . . . , Ck) individuals in C1 ∪ · · · ∪ Ck
owl:ObjectComplementOf(C) the individuals not in C
owl:ObjectOneOf(I1, . . . , Ik) I1, . . . , Ik
owl:ObjectHasValue(p, v) individuals with value v on property

p; i.e., {x : p(x, v)}
owl:ObjectAllValuesFrom(p, C) individuals with all values in C on

property p; i.e.,
{x : ∀y p(x, y)→ y ∈ C}

owl:ObjectSomeValuesFrom(p, C) individuals with some values in C on
property p; i.e.,
{x : ∃y ∈ C such that p(x, y)}

owl:ObjectMinCardinality(n, p, C) individuals x with at least n individu-
als of class C related to x by p; i.e.,
{x : #{y : p(x, y) and y ∈ C} ≥ n}

owl:ObjectMaxCardinality(n, p, C) individuals x with at most n individu-
als of class C related to x by p; i.e.,
{x : #{y : p(x, y) and y ∈ C} ≤ n}

owl:ObjectHasSelf(p) individuals x such that p(x, x); i.e.,
{x : p(x, x)}

Figure 16.4: Some OWL built-in classes and class constructors
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Figure 16.4 (page 719) gives some primitive classes and some class con-
structors. This figure uses set notation to define the set of individuals in a
class. Figure 16.5 gives some primitive predicates of OWL. The owl: prefix is an
abbreviation for the standard IRI for OWL.

In these figures, p(x, y) is a triple. OWL defines some terminology that is
used to define the meaning of the predicates, rather than any syntax. The pred-
icates can be used with different syntaxes, such as XML, triples, or functional
notation.

Example 16.15 As an example of a class constructor in functional notation:

ObjectHasValue(country of citizenship, Q16)

is the class containing the citizens of Canada (Q16).

OWL has the following predicates with a fixed interpretation, where Ck are
classes, pk are properties, and Ik are individuals; x and y are universally quan-
tified variables.

Statement Meaning
rdf:type(I, C) I ∈ C
owl:ClassAssertion(C, I) I ∈ C
rdfs:subClassOf(C1, C2) C1 ⊆ C2
owl:SubClassOf(C1, C2) C1 ⊆ C2
rdfs:domain(p, C) if p(x, y) then x ∈ C
owl:ObjectPropertyDomain(p, C) if p(x, y) then x ∈ C
rdfs:range(p, C) if p(x, y) then y ∈ C
owl:ObjectPropertyRange(p, C) if p(x, y) then y ∈ C
owl:EquivalentClasses(C1, C2, . . . , Ck) Ci ≡ Cj for all i, j
owl:DisjointClasses(C1, C2, . . . , Ck) Ci ∩ Cj = {} for all i �= j
rdfs:subPropertyOf(p1, p2) p1(x, y) implies p2(x, y)
owl:EquivalentObjectProperties(p1, p2) p1(x, y) if and only if p2(x, y)
owl:DisjointObjectProperties(p1, p2) p1(x, y) implies not p2(x, y)
owl:InverseObjectProperties(p1, p2) p1(x, y) if and only if p2(y, x)
owl:SameIndividual(I1, . . . , In) ∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ∀j∀k j �= k implies Ij �= Ik
owl:FunctionalObjectProperty(p) if p(x, y1) and p(x, y2) then y1 = y2
owl:InverseFunctionalObjectProperty(p) if p(x1, y) and p(x2, y) then x1 = x2
owl:TransitiveObjectProperty(p) if p(x, y) and p(y, z) then p(x, z)
owl:SymmetricObjectProperty if p(x, y) then yPx
owl:AsymmetricObjectProperty(p) p(x, y) implies not p(y, x)
owl:ReflectiveObjectProperty(p) p(x, x) for all x
owl:IrreflectiveObjectProperty(p) not p(x, x) for all x

Figure 16.5: Some RDF, RDFS, and OWL built-in predicates
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Q113489728 is the class of countries that are members of the Organization
for Economic Co-operation and Development (OECD), so

ObjectSomeValuesFrom(country of citizenship, Q113489728)

is the class of people that are citizens of a country that is a member of the OECD.
For people with multiple citizenships, at least one of the countries they are a
citizen of has to be an OECD country.

MinCardinality(2, country of citizenship, Q113489728)

is the class of individuals who are citizens of two or more countries that are
members of the OECD.

The class constructors must be used in a statement, for example, to say that
some individual is a member of this class or to say that one class is equivalent
to some other class.

OWL does not have definite clauses. To say that all of the elements of a set
S have value v for a predicate p, we say that S is a subset of the set of all things
with value v for predicate p.

Some of OWL and RDF or RDFS statements have the same meaning. For ex-
ample, rdf:type(I, C) means the same as owl:ClassAssertion(C, I) and rdfs:domain
means the same as owl:ObjectPropertyDomain for object properties. Some on-
tologies use both definitions, because the ontologies were developed over long
periods of time, with contributors who adopted different conventions.

Example 16.16 Consider an Aristotelian definition (page 711) of an apartment
building. We can say that an apartment building is a residential building with
multiple units and the units are rented. (This is in contrast to a condominium
building, where the units are individually sold, or a house, where there is only
one unit.) Suppose we have the class ResidentialBuilding that is a subclass of
Building.

The following defines the functional object property numberOfUnits, with
domain ResidentialBuilding and range {one, two, moreThanTwo}:

FunctionalObjectProperty(numberOfunits)

ObjectPropertyDomain(numberOfunits, ResidentialBuilding)

ObjectPropertyRange(numberOfunits,

ObjectOneOf(two, one, moreThanTwo)).

The functional object property ownership with domain ResidentialBuilding
and range {rental, ownerOccupied, coop} can be defined similarly.

An apartment building is a ResidentialBuilding where the numberOfUnits
property has the value moreThanTwo and the ownership property has the value
rental. To specify this in OWL, we define the class of things that have value
moreThanTwo for the property numberOfUnits, the class of things that have value
rental for the property ownership, and say that ApartmentBuilding is equivalent
to the intersection of these classes. In OWL functional syntax, this is
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EquivalentClasses(ApartmentBuilding,

ObjectIntersectionOf(

ResidentialBuilding,

ObjectHasValue(numberOfunits, moreThanTwo),

ObjectHasValue(ownership, rental))).

This definition can be used to answer questions about apartment buildings,
such as the ownership and the number of units. Apartment buildings inherit
all of the properties of residential buildings.

The previous example did not really define ownership. The system has no
idea what ownership actually means. Hopefully, a user will know what it
means. Everyone who wants to adopt an ontology should ensure that their
use of a property and a class is consistent with other users of the ontology.

There is one property constructor in OWL, owl:ObjectInverseOf(p), which is
the inverse property of p; that is, it is the property p−1 such that p−1(x, y) if
and only if p(x, y). Note that it is only applicable to object properties; datatype
properties do not have inverses, because data types cannot be the subject of a
triple.

The list of classes and statements in these figures is not complete. There
are corresponding datatype classes for datatype properties, where appropriate.
For example, owl:DataSomeValuesFrom and owl:EquivalentDataProperties have
the same definitions as the corresponding object symbols, but are for datatype
properties. There are also other constructs in OWL to define properties, com-
ments, annotations, versioning, and importing other ontologies.

A domain ontology is an ontology about a particular domain of interest.
Most existing ontologies are in a narrow domain that people write for specific
applications. There are some guidelines that have evolved for writing domain
ontologies to enable knowledge sharing:

• If possible, use an existing well-established ontology. This means that
your knowledge base will be able to interact with others who use the
same ontology.

• If an existing ontology does not exactly match your needs, import it and
add to it. Do not start from scratch, because people who have used the
existing ontology will have a difficult time also using yours, and oth-
ers who want to select an ontology will have to choose one or the other.
If your ontology includes and improves the other, others who want to
adopt an ontology will choose yours, because their application will be
able to interact with adopters of either ontology.

• Make sure that your ontology integrates with neighboring ontologies.
For example, an ontology about resorts may have to interact with on-
tologies about food, beaches, recreation activities, and so on. When first
designing the ontology, you may not know the full extent of what it needs
to interoperate with. Try to make sure that it uses the same terminology
as possibly related ontologies for the same things.
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• Try to fit in with higher-level ontologies (see below). This will make it
much easier for others to integrate their knowledge with yours.

• If you must design a new ontology, consult widely with other potential
users. This will make it most useful and most likely to be adopted.

• Follow naming conventions. For example, call a class by the singular
name of its members. For example, call a class “Resort” not “Resorts”.
Resist the temptation to call it “ResortConcept” (thinking it is only the
concept of a resort, not a resort; see the box on page 724). When naming
classes and properties, think about how they will be used. It sounds bet-
ter to say that “r1 is a Resort” than “r1 is a Resorts”, which is better than
“r1 is a ResortConcept”.

• As a last option, specify the matching between ontologies. Sometimes
ontology matching has to be done when ontologies are developed inde-
pendently. It is best if matching can be avoided; it makes knowledge
using the ontologies much more complicated because there are multiple
ways to say the same thing.

OWL is at a lower level than most people will want to specify or read. It
is designed to be a machine-readable specification. There are many editors
that let you edit OWL representation. One example is Protégé (http://protege.
stanford.edu/). An ontology editor should support the following:

• It should provide a way for people to input ontologies at the level of
abstraction that makes the most sense.

• Given a concept a user wants to use, an ontology editor should facilitate
finding the terminology for that concept or determining that there is no
corresponding term.

• It should be straightforward for someone to determine the meaning of a
term.

• It should be as easy as possible to check that the ontology is correct (i.e.,
matches the user’s intended interpretation for the terms).

• It should create an ontology that others can use. This means that it should
use a standardized language as much as possible.

16.3.2 Top-Level Ontologies

Example 16.16 (page 721) defines a domain ontology for apartment building
that could be used by people who want to write a knowledge base that refers to
things that can appear on maps. Each domain ontology implicitly or explicitly
assumes a higher-level ontology that it can fit into. The apartment building
ontology assumes buildings are defined.

A top-level ontology provides a definition of everything at a very abstract
level. The goal of a top-level ontology is to provide a useful categorization
on which to base other ontologies. Making it explicit how domain ontologies
fit into an upper-level ontology promises to facilitate the integration of these

http://protege.stanford.edu/
http://protege.stanford.edu/
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ontologies. The integration of ontologies is necessary to allow applications to
refer to multiple knowledge bases, each of which may use different ontologies.

At the top is entity. OWL calls the top of the hierarchy thing. Essentially,
everything is an entity.

Some of the high-level properties used to define domain ontologies include

• Concrete or abstract: physical objects and events are concrete, but math-
ematic objects and times are abstract.

• Continuant or occurrent: A continuant is something that exists at an in-
stant in time and continues to exist through time. Examples include a
person, a finger, a country, a smile, the smell of a flower, and an email.
When a continuant exists at any time, so do its parts. Continuants main-
tain their identity through time. An occurrent is something that has tem-
poral parts, for example, a life, infancy, smiling, the opening of a flower,

Classes and Concepts

When defining an ontology, it is tempting to name the classes concepts, be-
cause symbols represent concepts: mappings from the internal representation
into the object or relations that the symbols represent.

For example, it may be tempting to call the class of unicorns “unicornCon-
cept” because there are no unicorns, only the concept of a unicorn. However,
unicorns and the concept of unicorns are very different; one is an animal and
one is a subclass of knowledge. A unicorn has four legs and a horn coming
out of its head. The concept of a unicorn does not have legs or horns. You
would be very surprised if a unicorn appeared in a university lecture about
ontologies, but you should not be surprised if the concept of a unicorn ap-
peared. There are no instances of unicorns, but there are many instances of
the concept of a unicorn. If you mean a unicorn, you should use the term
“unicorn”. If you mean the concept of a unicorn, you should use “concept of
a unicorn”. You should not say that a unicorn concept has four legs, because
instances of knowledge do not have legs; animals, furniture, and some robots
have legs.

As another example, consider a tectonic plate, which is part of the Earth’s
crust. The plates are millions of years old. The concept of a plate is less than
a hundred years old. Someone can have the concept of a tectonic plate in
their head, but they cannot have a tectonic plate in their head. It should be
clear that a tectonic plate and the concept of a tectonic plate are very differ-
ent things, with very different properties. You should not use “concept of a
tectonic plate” when you mean “tectonic plate” and vice versa.

Calling objects concepts is a common error in building ontologies. Al-
though you are free to call things by whatever name you want, it is only use-
ful for knowledge sharing if other people adopt your ontology. They will not
adopt it if it does not make sense to them.
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and sending an email. One way to think about the difference is to con-
sider the entity’s parts: a finger is part of a person, but is not part of a life;
infancy is part of a life, but is not part of a person. Continuants partici-
pate in occurrents. Processes that last through time and events that occur
at an instant in time are both occurrents.

An alternative to the continent/occurrent dichotomy is a four-dimensional
or perdurant view where objects exist in the space-time, so a person is
a trajectory though space and time, and there is no distinction between
the person and the life. At any time, a person is a snapshot of the four-
dimensional trajectory.

• Dependent or independent: An independent continuant is something
that can exist by itself or is part of another entity. For example, a person,
a face, a pen, a flower, a country, and the atmosphere are independent
continuants. A dependent continuant only exists by virtue of another
entity and is not a part of that entity. For example, a smile, the ability to
laugh, or the inside of your mouth, or the ownership relation between a
person and a phone, can only exist in relation to another object or objects.
Note that something that is a part of another object is an independent
continuant; for example, while a heart cannot exist without a body, it can
be detached from the body and still exist. This is different from a smile;
you cannot detach a smile from a cat.

An occurrent that is dependent on an entity is a process or an event.
A process is something that happens over time, has temporal parts, and
depends on a continuant. For example, Joe’s life has parts such as infancy,
childhood, adolescence, and adulthood and involves a continuant, Joe. A
holiday, writing an email, and a robot cleaning the lab are all processes.
An event is something that happens at an instant, and is often a process
boundary. For example, the first goal in the 2022 FIFA World Cup final is
an event that happens at the instant the ball crosses the goal line; it could
be seen as the end of a process that involves a team.

• Connected or scattered: A living bird is a single connected whole, but a
flock of birds is a scattered entity made up of multiple birds. March 2024
is a connected single but Tuesdays from 3:00 to 4:00 GMT is a scattered
temporal region.

• Material or immaterial. An independent continuant is either a material
entity or an immaterial entity. A material entity has some matter as a
part. Material entities are localized in space and can move in space. Ex-
amples of material entities are a person, a football team, Mount Everest,
and Hurricane Katrina. Immaterial entities are abstract. Examples of im-
material entities are the first email you sent last Monday, a plan, and an
experimental protocol. Note that you need a physical embodiment of an
email to receive it (e.g., as text on your smartphone or spoken by a speech
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synthesizer), but the email is not that physical embodiment; a different
physical embodiment could still be the same email.

Different categories can be formed by choosing among these dichotomies.
A material entity that is a single coherent whole is an object. An object main-
tains its identity through time even if it gains or loses parts (e.g., a person who
loses some hair, a belief, or even a leg, is still the same person). A person, a
chair, a cake, or a computer are all objects. The left leg of a person (if it is still
attached to the person), a football team, or the equator are not objects. If a robot
were asked to find three objects, it would not be reasonable to bring a chair and
claim the back, the seat, and the left-front leg are three objects.

Designing a top-level ontology is difficult. It probably will not satisfy ev-
eryone. There always seem to be some problematic cases. In particular, bound-
ary cases are often not well specified. However, using a standard top-level
ontology should help in connecting ontologies together.

16.4 Social Impact

To make predictions on data, the provenance of the data or data lineage –
where the data came from and how it was manipulated – can make a difference
between a good prediction and nonsense. Provenance is typically recorded as
metadata – data about the data – including:

• Who collected each piece of data? What are their credentials?

• Who transcribed the information?

• What was the protocol used to collect the data? Was the data chosen at
random or chosen because it was interesting or some other reason?

• What were the controls? What was manipulated, when?

• What sensors were used? What is their reliability and operating range?

• What processing has been done to the data?

Such metadata is needed for environmental, geospatial, and social data –
data about the Earth – that is collected by people and used for environmental
decision making [Gil et al., 2019].

This is particularly important if the data should be FAIR [Wilkinson et al.,
2016]:

• Findable – the (meta)data uses unique persistent identifiers, such as IRIs.

• Accessible – the data is available using free and open protocols, and the
metadata is accessible even when the data is not.
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• Interoperable – the vocabulary is defined using formal knowledge repre-
sentation languages (ontologies).

• Reusable – the data uses rich metadata, including provenance, and an ap-
propriate open license, so that the community can use the data.

Data repositories based on these principles are available for many areas
including Earth observations [NASA, 2022], social sciences [King, 2007], com-
putational workflows [Goble et al., 2020], and all research domains [Springer
Nature, 2022]. FAIR data is an important part of modern data-driven science,
however, some researchers that have commercial or military reasons to think
of themselves as being in competition with one another may have an incentive
to not follow FAIR guidelines.

Stodden et al. [2016], Gil et al. [2017], and Sikos et al. [2021] overview ways
to enhance reproducibility in data science. Gebru et al. [2021] propose 57 ques-
tions about the content of a dataset and the workflow used to produce it.

16.5 Review

The following are the main points you should have learned from this chapter:

• Individual–property–value triples form a flexible, universal representa-
tion for relations.

• Ontologies allow for semantic interoperability and knowledge sharing.
• OWL ontologies are built from individuals, classes, and properties. A

class is a set of real and potential individuals.
• A top-level ontology allows for a framework where domain ontologies

can be designed to interoperate.
• Data repositories with provenance, based on ontologies, are widely used

in modern data-driven science.

16.6 References and Further Reading

Sowa [2000] and Brachman and Levesque [2004] give an overview of knowl-
edge representation. Davis [1990] is an accessible introduction to a wealth of
knowledge representation issues in commonsense reasoning. Brachman and
Levesque [1985] present many classic knowledge representation papers. See
Woods [2007] for an overview of semantic networks.

Hogan et al. [2021] and Chaudhri et al. [2022] provide a comprehensive
introduction to knowledge graphs.

For an overview of the philosophical and computational aspects of ontolo-
gies, see Smith [2003] and Sowa [2011].

The semantic web and its technologies are described by Berners-Lee et al.
[2001], Hendler et al. [2002], Antoniou and van Harmelen [2008], and Allemang
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et al. [2020]. Janowicz et al. [2015] explain the role of semantics in big data.
Kendall and McGuinness [2019] overview modern ontology engineering.

The description of OWL is based on OWL-2; see W3C OWL Working Group
[2012], Hitzler et al. [2012], and Motik et al. [2012]. Krötzsch [2012] describes
the OWL 2 profiles. Baader et al. [2007] overview description logic.

Heath and Bizer [2011] overview the vision of linked data. DBpedia [Auer
et al., 2007], YAGO [Suchanek et al., 2007; Hoffart et al., 2013; Mahdisoltani
et al., 2015], Wikidata [Vrandečić and Krötzsch, 2014] (http://www.wikidata.
org/), and Knowledge Vault [Gabrilovich et al., 2014] are large knowledge bases
that use triples and ontologies to represent facts about millions of entities.

The top-level ontology is based on BFO, the Basic Formal Ontology 2.0,
described by Smith [2015] and Arp et al. [2015] and the ontology of Sowa
[2000]. Other top-level ontologies include DOLCE [Gangemi et al., 2003], Cyc
[Panton et al., 2006], and SUMO [Niles and Pease, 2001; Pease, 2011]. A more
lightweight and widely used ontology is at http://schema.org.

SNOMED Clinical Terms (SNOMED CT) [IHTSDO, 2016] is a large medical
ontology that is used in clinical practice. You can explore it at http://browser.
ihtsdotools.org/.

16.7 Exercises

Exercise 16.1 There are many possible kinship relationships you could imag-
ine, like mother, father, great-aunt, second-cousin-twice-removed, and natural-
paternal-uncle. Some of these can be defined in terms of the others, for example:

brother(X, Y)← father(X, Z) ∧ natural paternal uncle(Y, Z).
sister(X, Y)← parent(Z, X) ∧ parent(Z, Y) ∧

female(X) ∧ different(X, Y).

Give two quite different representations for kinship relationships based on differ-
ent relations being primitive.

Consider representing the primitive kinship relationship using relation

children(Mother, Father, List of children).

What advantages or disadvantages may this representation have compared to the
two you designed above?

Exercise 16.2 A travel site has a database that represents information about hotels
and feedback from users that uses the relations

hotel(Hotel Id, Name, City, Province or state, Country, Address)
reported clean(Hotel Id, RoomNumber, Cleanliness, day(Year, Month, Day)).

Show how the following facts can be represented using triple notation, using vo-
cabularies that make sense:

http://www.wikidata.org/
http://www.wikidata.org/
http://schema.org
http://browser.ihtsdotools.org/
http://browser.ihtsdotools.org/
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hotel(h345, "The Beach Hotel", victoria, bc,

canada, "300 Beach St").

reported_clean(h345, 127, clean, day(2023,01,25)).

Is it reasonable to represent the hotel name and address as strings? Explain.

Exercise 16.3 Christine Sinclair (Q262802) was born in Burnaby (Q244025), British
Columbia. Give the triples in Wikidata that relate her place of birth to the name of
the province she was born in. The result should be a sequence of triples starting
with one with Q262802 as the subject, and ending with “British Columbia”(en),
where the object of each tuple is the subject of the next tuple. Give both the Wiki-
data tuples as well as the English translation. The information can be found start-
ing from https://www.wikidata.org/wiki/Q262802. The first triple is

Q262802 P19 Q244025. ”Christine Sinclair’s place of birth was Burnaby”.

The next tuple then has Q244025 as the subject.

Exercise 16.4 Give 10 tuples that are related to the first goal scored in the 2010
FIFA World Cup Final (Q208401 in Wikidata), scored by Andrés Iniesta (Q43729)
at 116 minutes. Either draw the relationships as in Figure 16.1 (page 706) or write
the triples using the Wikidata names, as well as a translation into English. The
triples should be connected (as they are in Figure 16.1). The information can be
found at https://www.wikidata.org/wiki/Q208401.

Exercise 16.5 Sam has proposed that any n-ary relation P(X1, X2, X3, . . . , Xn) can
be re-expressed as n− 1 binary relations, namely

P1(X1, X2), P2(X2, X3), P3(X3, X4), . . . , Pn−1(Xn−1, Xn).

Explain to Sam why this may not be such a good idea. What problems would arise
if Sam tried to do this? Use an example to demonstrate where the problem arises.

Exercise 16.6 Write an ontology for the objects that often appear on your desk
that may be useful for a robot that is meant to tidy your desk. Think of the cate-
gories that (a) the robot can perceive and (b) should be distinguished for the task.

Exercise 16.7 Suppose a “beach resort” is a resort near a beach that the resort
guests can use. The beach has to be near the sea or a lake, where swimming is
permitted. A resort must have places to sleep and places to eat. Write a definition
of beach resort in OWL.

Exercise 16.8 A luxury hotel has multiple rooms to rent, each of which is com-
fortable and has a view. The hotel must also have more than one restaurant. There
must be menu items for vegetarians and for meat eaters to eat in the restaurants.

(a) Define a luxury hotel in OWL, based on this description. Make reasonable
assumptions where the specification is ambiguous.

(b) Suggest three other properties you would expect of a luxury hotel. For each,
give the natural language definition and the OWL specification.

Exercise 16.9 For the following, explain how each is categorized by the top-level
ontology of Section 16.3.2 (page 723):

(a) your skin

https://www.wikidata.org/wiki/Q262802
https://www.wikidata.org/wiki/Q208401
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(b) the period at the end of the first sentence of this chapter
(c) the excitement a child has before a vacation
(d) the trip home from a vacation
(e) a computer program
(f) summer holidays
(g) the ring of a telephone
(h) the dust on your desk
(i) the task of cleaning your office
(j) the diagnosis of flu in a person

(k) France.

Based on this experience, suggest and justify a modification of the top-level ontol-
ogy. Think about categories that are not exclusive or other distinctions that seem
to be fundamental.
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Chapter 17

Relational Learning and
Probabilistic Reasoning

The mind is a neural computer, fitted by natural selection with combi-
natorial algorithms for causal and probabilistic reasoning about plants,
animals, objects, and people.

In a universe with any regularities at all, decisions informed about
the past are better than decisions made at random. That has always been
true, and we would expect organisms, especially informavores such as hu-
mans, to have evolved acute intuitions about probability. The founders of
probability, like the founders of logic, assumed they were just formalizing
common sense.

– Steven Pinker [1997, pp. 524, 343]

In the machine learning and probabilistic models presented in earlier chap-
ters, the world is made up of features and random variables. As Pinker points
out, we generally reason about things. Things are not features or random vari-
ables; it doesn’t make sense to talk about the probability of an individual an-
imal, but you could reason about the probability that it is sick, based on its
symptoms. This chapter is about how to learn and make probabilistic predic-
tions about things or entities.

The representation dimension (page 24) has, as its top level, reasoning in
terms of individuals (entities) and relations. Reasoning in terms of relations
allows for compact representations that can be built independently of the par-
ticular entities, but can also be used to learn and reason about each entity.
This chapter outlines how feature-based representations as used in learning
and probabilistic reasoning can be expanded to deal also with entities and re-
lations. A relational model can benefit from being able to be built before the
entities are known and, therefore, before the features are known.

731
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Statistical relational AI or neuro-symbolic AI involves making predictions
about relations based on relational data consisting of a relational database,
and perhaps metadata (page 726). Statistical relational AI is a general term
for relational predictions based on data, whereas neuro-symbolic AI involves
using neural networks and other embedding-based techniques for predictions.
This encompasses:

• Predicting attributes of entities based on their other attributes and at-
tributes of entities they are related to.

• Predicting relations based on properties and relations of the entities in-
volved. The simplest case is learning a single binary relation (Section
17.2.1), which is useful for domains like movie recommendations. This is
extended to learning triples in Section 17.2.2, and learning more general
relations in Section 17.3.

• Predicting identity, whether descriptions denote the same entity – the
descriptions are equal (page 687) – for example, which citations refer to
the same papers, or whether two descriptions refer to the same person
(Section 17.4).

• Predicting existence, whether an entity exists that fits a description, for
example whether there is a person in a particular room (Section 17.4).

The set of all entities of a type is called the population. In this chapter,
a property where the range is an entity (e.g., a person or a movie) is called a
relation and the term property is used when the range is a fixed set, such as
Boolean or the reals.

17.1 From Relations to Features and Random
Variables

The learning of Chapters 7 and 8 and the probabilistic reasoning of Chapter 9
were in terms of features (page 127) and random variables (page 377). Neither
entities, properties, nor relations are features or random variables, but they can
be used to construct random variables.

Unfortunately, the name “variable” is used for random variables (page 377)
and logical variables (page 649), but these are not related; a logical variable
denotes an entity and a random variable is a function on worlds or states. This
chapter always distinguishes the two; for other sources you need to determine
which is meant from the context.

The random variables from a knowledge graph (Section 16.1) are defined
as follows:
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• There is a random variable for each entity–property pair for functional
properties and a random variable for each entity–relation pair for func-
tional relations. Recall (page 710) that p is functional if there is a unique
object for each subject; i.e., if (x, p, y1) and (x, p, y2) then y1 = y2. The
range of the property is the domain of the random variable. For ex-
ample, height in centimeters (at age 20) of Christine Sinclair (Q262802
in Wikidata) is a real-valued random variable if property height is func-
tional. Month-of-birth is a categorical random variable for each person.
Birth-mother of a particular person is a random variable with people as
the domain.

For a functional relation (the object of each triple is an entity), such as
birth-mother, a prediction is a probability distribution over entities. Such
a probability distribution cannot be defined independently of the popu-
lation; instead, the probability over entities needs to be learned for the
particular population or a function of the embeddings of the entity and
relationships needs to be defined.

• For non-functional properties, there is a Boolean random variable for
each subject–property–value or subject–relation–object triple. For exam-
ple, participated-in is a non-functional relation, and there is a Boolean ran-
dom variable for triples such as Q262802 participated-in Q181278 (whether
Christine Sinclair participated in the 2020 Summer Olympics).

For more general relationships r(X1, . . . , Xk):

• If one argument, say Xk, is a function of the other arguments, there is a
random variable for each tuple r(e1, . . . , ek−1) where the domain of the
random variable is the set of values that Xk can take. For example, the
relation rated(U, M, R), which means that R was the rating (from 1 to 5)
given by user U to movie M, gives a random variable for each user–movie
pair with domain the set of possible ratings, namely {1, 2, 3, 4, 5}. Predict-
ing the rating for a particular user and movie can be seen as a regression
task, where the prediction is a real number, or a classification task, where
the prediction is a probability distribution over the numbers from 1 to 5.

• Otherwise, there is a Boolean random variable for each tuple r(e1, . . . , ek).

In the description below, the functional case is treated as a relation of k − 1
arguments, with a non-Boolean prediction.

A relation of k arguments gives nk random variables, where n is the number
of entities. This might be fewer depending on the domains of the arguments;
for example, if the first argument is users and the second argument is movies,
the number of random variables is the number of users times the number of
movies. If arbitrary interdependence among the random variables is allowed,
there are 2nk − 1 probabilities to be assigned, just for a single Boolean relation
with k arguments. How to avoid this combinatorial explosion of the number of
random variables is the subject of lifted inference.
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17.2 Embedding-Based models

17.2.1 Learning a Binary Relation

Suppose you are given a database of a binary relation where both arguments
are entities, and the aim is to predict whether other tuples are true. The ma-
chine learning methods of Chapters 7 and 8 are not directly applicable as the
entities are represented using meaningless names (identifiers). An algorithm
that does this is defined below, for the case where there are no other relations
defined, but where there can also be a numeric prediction for the pair. This is
explained using a particular example of predicting a user’s ratings for an item
such as a movie.

In a recommender system, users are given personalized recommendations
of items they may like. One technique for recommender systems is to predict
the rating of a user on an item from the ratings of similar users or similar items,
by what is called collaborative filtering.

Example 17.1 MovieLens (https://movielens.org/) is a movie recommenda-
tion system that acquires movie ratings from users. The rating is from 1 to 5
stars, where 5 stars is better. The first few tuples of one dataset are shown in
Table 17.1, where each user is given a unique number, each item (movie) is
given a unique number, and the timestamp is the Unix standard of seconds
since 1970-01-01 UTC. Such data can be used in a recommendation system to
make predictions of other movies a user might like.

One way for a recommender system to personalize recommendations is
to present the user with the top-n items, where n is a positive integer, say 10.
This can be done by first estimating the rating of each item for a user and then
presenting the n items with the highest predicted rating. This is not a good
solution in general, as all of the top items might be very similar. The system
should also take diversity into account when choosing the set of items.

In the example above, the items were movies, but they could also be con-
sumer goods, restaurants, holidays, or other items.

Suppose Es is a dataset of 〈u, i, r〉 triples, where 〈u, i, r〉 means user u gave
item i a rating of r (ignoring the timestamp). Let r̂(u, i) be the predicted rating

User Item Rating Timestamp
196 242 3 881250949
186 302 3 891717742
22 377 1 878887116

244 51 2 880606923
253 465 5 891628467
. . . . . . . . . . . .

Table 17.1: Part of the MovieLens dataset

https://movielens.org/
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of user u on item i. The aim is to optimize the sum-of-squares error

∑
〈u,i,r〉∈Es

(̂r(u, i)− r)2.

As with most machine learning, the aim is to optimize for the test examples
(page 263), not for the training examples.

Following is a sequence of increasingly sophisticated models for r̂(u, i), the
prediction of the rating of a user for an item. Each model adds more terms to
the model, in a similar way to how features are added in boosting (page 309)
and residuals in deep learning (page 349).

Make a single prediction The simplest case is to predict the same rating for all
users and items: r̂(u, i) = μ, where μ is the mean rating. Recall (page 277)
that when predicting the same value for every instance, predicting the
mean minimizes the sum-of-squares error.

Add user and item biases Some users might give higher ratings than other
users, and some movies may have higher ratings than other movies. You
can take this into account using

r̂(u, i) = μ + b1[u] + b2[i]

where user u has bias b1[u] and item i has bias b2[i]. The parameters b1[u]
and b2[i] are chosen to minimize the sum-of-squares error. If there are

Netflix Prize

There was a considerable amount of research on collaborative filtering with
the Netflix Prize to award $1,000,000 to the team that could improve the pre-
diction accuracy of Netflix’s proprietary system, measured in terms of sum-
of-squares, by 10%. Each rating gives a user, a movie, a rating from 1 to 5 stars,
and a date and time the rating was made. The dataset consisted of approxi-
mately 100 million ratings from 480,189 anonymized users on 17,770 movies
that was collected over a 7-year period. The prize was won in 2009 by a team
that averaged over a collection of hundreds of predictors, some of which were
quite sophisticated. After 3 years of research, the winning team beat another
team by just 20 minutes to win the prize. They both had solutions which had
essentially the same error, which was just under the threshold to win. Inter-
estingly, an average of the two solutions was better than either alone.

The algorithm presented here is the basic algorithm that gave the most
improvement.

The Netflix dataset is no longer available because of privacy concerns.
Although users were only identified by a number, there was enough informa-
tion, if combined with other information, to potentially identify some of the
users.
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n users and m items, there are n + m parameters to tune (assuming μ is
fixed). Finding the best parameters is an optimization problem that can
be done with a method like gradient descent (page 169), as was used for
the linear learner (page 288).

One might think that b1[u] should be directly related to the average
rating for user u and b2[i] should be directly related to the average rating
for item i. However, it is possible that b1[u] < 0 even if all of the ratings
for user u were above the mean μ. This can occur if user u only rated
popular items and rated them lower than other people.

Optimizing the b1[u] and b2[i] parameters can help get better esti-
mates of the ratings, but it does not help in personalizing the recommen-
dations, because the movies are still ordered the same for every user.

Add a latent property You could hypothesize that there is an underlying prop-
erty of each user and each movie that enables more accurate predictions,
such as the age of each user, and the age-appeal of each movie. A real-
valued latent property or hidden property for each entity can be tuned
to fit the data.

Suppose the latent property for user u has a value f1[u], and the latent
property for item i has value f2[i]. The product of these is used to offset
the rating of that item for that user:

r̂(u, i) = μ + b1[u] + b2[i] + f1[u] ∗ f2[i].

If f1[u] and f2[i] are both positive or both negative, the property will in-
crease the prediction. If one of f1[u] or f2[i] is negative and the other is
positive, the property will decrease the prediction.

Example 17.2 Figure 17.1 (page 737) shows a plot of the ratings as a
function of a single latent property. This uses the subset of the MovieLens
100k dataset, containing the 20 movies that had the most ratings, and the
20 users who had the most ratings for these movies. It was trained for
1000 iterations of gradient descent, with a single latent property.

On the x-axis are the users, ordered by their value, f1[u], on the prop-
erty. On the y-axis are the movies, ordered by their value, f2[i] on the
property. Each rating is then plotted against the user and the movie, so
that triple 〈u, i, r〉 is depicted by plotting r at the (x, y) position (f1[u], f2[i]).
Thus each vertical column of numbers corresponds to a user, and each
horizontal row of numbers is a movie. The columns overlap if two users
have very similar values on the property. The rows overlap for movies
that have very similar values on the property. The users and the movies
where the property values are close to zero are not affected by this prop-
erty, as the prediction uses the product of values of the properties.

In general, high ratings are in the top-right and the bottom-left, as
these are the ratings that are positive in the product, and low ratings in
the top-left and bottom-right, as their product is negative. Note that what
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is high and low is relative to the user and movie biases; what is high for
one movie may be different from what is high for another movie.

Add k latent properties Instead of using just one property, consider using k
latent properties for each user and item. There is a value E1[u][f ] (using
Python notation for matrices (page 352)) for each user u and property f ∈
{0, . . . , k− 1}. The vector E1[u] of length k is called the user embedding
for user u, analogous to the word embeddings used in deep learning
(page 350). Similarly, there is a value E2[i][f ] for every item i and property
f , where E2[i] is the item embedding for item i. The contributions of the
separate properties are added. This gives the prediction

r̂(u, i) = μ + b1[u] + b2[i] + ∑
f

E1[u][f ] ∗ E2[i][f ].

This is often called a matrix factorization method as the summation cor-
responds to matrix multiplication (page 352) of E1 and the transpose –

Figure 17.1: Movie ratings as a function of a single latent property; see Example
17.2 (page 736)
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flipping the arguments – of E2.

Regularize To avoid overfitting, a regularization (page 302) term can be added
to prevent the parameters from growing too much and overfitting the
given data. Here an L2 regularizer (page 303) for each of the parameters
is added to the optimization. The goal is to choose the parameters to

minimize

(
∑

〈u,i,r〉∈Es
(̂r(u, i)− r)2

)

+ λ

(
∑
u
(b1[u]2 + ∑

f
E1[u][f ]2) + ∑

i
(b2[i]2 + ∑

f
E2[i][f ]2)

)
(17.1)

where λ is a regularization parameter, which can be tuned by cross vali-
dation (page 304).

The parameters b1, b2, E1, and E2 can be optimized using stochastic gradient
descent (page 293), as shown in Figure 17.2 (page 739). The parameters there
are adjusted in each iteration, but regularized after going through the dataset,
which might not be the best choice; see Exercise 17.3 (page 761). Note that the
elements of E1[i][f ] and E2[u][f ] need to be initialized randomly (and not to the
same value) to force each property to be different.

To understand what is being learned, consider the following thought ex-
periment:

Example 17.3 In the rating running example, suppose there is a genre of
movies that some people really like and others hate. Suppose property f has 1
for movies of that genre, and 0 for other movies. Users who like that genre more
than would be expected from other properties have a high value for property f ,
those that dislike it more have a negative value, and others have values close to
zero. This can be seen as a soft clustering – as in expectation maximization (EM)
(page 478) – for users into the categories of likes, dislikes, and indifferent. Suppose
now that the user property f is fixed to these values, but the corresponding
property for the movie is learned, so it might not exactly correspond to the
genre. The movies that have a high value for the property are the movies that
are liked by the people who like the genre and disliked by those who hate the
genre. Thus it learns which movies those people like or dislike. Again it is
providing a soft clustering of movies. With multiple latent properties, it can
find multiple soft clusterings, with the values added together in a similar way
to boosting (page 309) and residuals in deep learning (page 349).

The alternating least squares algorithm acts like the above description, al-
ternating fixing user or item properties and optimizing the other, but starting
with random assignments. Optimizing Equation (17.1) with user or item pa-
rameters fixed gives a linear regression on the other parameters. The adjust-
ments in Figure 17.2 (page 739) are more fine grained, but the results are simi-
lar.
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This algorithm can be evaluated by how well it predicts future ratings by
training it with the data up to a certain time, and testing it on future data.

The algorithm can be modified to take into account observed attributes of
items and users by fixing some of the properties. For example, the Movie-
lens dataset includes 19 genres, which can be represented using 19 of the em-
bedding positions, one position for each genre (forming a one-hot encoding
(page 331) for part of the embedding space). If position g represents a par-
ticular genre, a movie has 1 at position g if the movie has the corresponding

1: procedure Collaborative filter learner(Es, η, λ)
2: Inputs
3: Es: set of 〈user, item, rating〉 triples
4: η: gradient descent step size
5: λ: regularization parameter
6: Output
7: function to predict rating for a 〈user, item〉 pair
8: μ := average rating
9: assign E1[u][f ], E2[i][f ] randomly

10: assign b1[u], b2[i] arbitrarily
11: define r̂(u, i) = μ + b1[u] + b2[i] + ∑f E1[u][f ] ∗ E2[i][f ]
12: repeat
13: # Update parameters from training data:
14: for each 〈u, i, r〉 ∈ Es do
15: error := r̂(u, i)− r
16: b1[u] := b1[u]− η ∗ error
17: b2[i] := b2[i]− η ∗ error
18: for each property f do
19: E1[u][f ] := E1[u][f ]− η ∗ error ∗ E2[i][f ]
20: E2[i][f ] := E2[i][f ]− η ∗ error ∗ E1[u][f ]
21: # Regularize the parameters:
22: for each item i do
23: b1[u] := b1[u]− η ∗ λ ∗ b1[u]
24: for each property f do
25: E1[u][f ] := E1[u][f ]− η ∗ λ ∗ E1[u][f ]
26: for each user u do
27: b2[i] := b2[i]− η ∗ λ ∗ b2[i]
28: for each property f do
29: E2[i][f ] := E2[i][f ]− η ∗ λ ∗ E2[i][f ]
30: until termination
31: return r̂

Figure 17.2: Gradient descent for collaborative filtering
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genre and 0 otherwise. Each user has a learnable parameter at position g to
indicate whether the genre is positive or negative for that user, as in Example
17.3 (page 738). Different positions are used for user properties. Using explicit
properties is useful when users or items have few ratings from which to learn,
or for the cold-start problem, which is how to make recommendations about
new items or for new users; predictions can be made just on the observed prop-
erties, without any ratings needed.

This algorithm ignores the timestamp, but using the timestamp may help as
users’ preferences may change and items may come in and out of fashion. The
dynamics of preferences becomes important when predicting future ratings –
which is usually what is wanted – but there is usually very little data to learn
the dynamics for each user.

The above was for regression, predicting the numerical rating of an item
for a user. For Boolean classification, for example, whether the rating is greater
than 3, the sigmoid (page 290) of a linear function provides a probabilistic pre-
diction. When trained to optimize binary log loss (page 276), the algorithm can
remain unchanged, except for an added sigmoid in the definition of r̂ on line
11 of Figure 17.2.

The Boolean function of whether a rating is greater than 3 is atypical be-
cause both positive and negative examples are provided. Most relations do not
contain negative examples. For some, the closed-world assumption (page 207)
– everything not stated is false – may be appropriate, but then there is nothing
to learn. For relations where only positive examples are provided, for example
predicting rated, which is true when a rating is provided, the above algorithm
will conclude that everything is true, as that prediction minimizes Equation
(17.1). The mean value (μ in Figure 17.2 (page 739)) is not defined. To handle
this case, either μ can be treated as a parameter which must be regularized,
or negative examples need to be provided. The ratio of positive to negative
examples and the regularization parameter both provide a prior assumption
of the probability, which is not something that can be estimated from the data.
Because the algorithm can handle noise, it is reasonable to just choose random
cases as negative examples, even though they could be positive. The absence
of negative examples also makes evaluation challenging and is one reason why
relational prediction methods are often judged using ranking, such as predict-
ing the top-n (page 734) items for each user.

When used for recommendations, it might be better to take the diversity of
the recommendations into account and recommend very different items than
to recommend similar items. Thus, while predicting the ratings is useful, it
does not lead directly to useful recommendations.

17.2.2 Learning Knowledge Graphs

Suppose the aim is to learn the triples of a knowledge graph (page 701). Con-
sider predicting the truth of the triple (s, r, o), where s is the subject, r is the
relation (verb), and o the object of the triple. A straightforward extension to
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matrix factorization (page 737) to predict triples is the polyadic decomposi-
tion, which decomposes a tensor (page 352) into matrices. It can be used to
predict the probability of a triple – an element of a three-dimensional tensor –
as

p̂((s, r, o)) = sigmoid(μ + b1[s] + b2[r] + b3[o] +∑
f

E1[s][f ] ∗ E2[r][f ] ∗ E3[o][f ])

using the tunable parameters

• a global bias μ

• two biases for each entity e, namely b1[e], used when e is in the first posi-
tion, and b3[e], used when e is in the third position

• a bias for each relation r, given by b2[r]

• a matrix E1, indexed by entities and properties, so that E1[e] is the vector
of length k, called the subject embedding for e, used when e appears as
the first item of a triple, and a matrix E3, providing the object embedding
for each entity when it appears as the third item of a triple

• a matrix E2, indexed by relations and properties, where E2[r] is the rela-
tion embedding for relation r.

All of the embeddings E1[e], E2[r], and E3[e] are the same length.
Training this model on a dataset of triples, minimizing categorical log loss

(page 273) with L2 regularization (page 303), is like the algorithm of Figure 17.2
(page 739), but with a different predictor and more parameters to tune and reg-
ularize. With only a knowledge graph of triples with no negative examples, as
with the binary case above, without regularizing μ, all triples being true min-
imizes the error. Either negative examples need to be added or regularization
of μ is required. The ratio of positive to negative examples, and the regulariza-
tion of μ, convey prior information about the proportion of tuples expected to
be true, which cannot be obtained from a dataset of only positive triples.

The polyadic decomposition, however, does not work well because the sub-
ject and object embeddings are independent of each other.

Example 17.4 Suppose user u likes movies directed by a particular person d,
and the knowledge is represented as (u, likes, m) and (m, directed by, d). Whether
someone likes a movie only depends on the object embedding of the movie,
but the directorship depends only on the subject embedding of the movie.
As these embeddings do not interact, there is no way for the above embed-
ding model to represent the interdependence. A solution to this is to also
represent the inverse of the relations where (m, likes−1, u) ↔ (u, likes, m) and
(d, directed by−1, m)↔ (m, directed by, d).
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The polyadic decomposition with inverses has embeddings for each rela-
tion r and its inverse r−1, where (s, r, o) = (o, r−1, s), to make the prediction that
is the average of the prediction from the two ways of representing the same tu-
ple:

p̂(s, r, o) =
1
2
(p̂d(s, r, o) + p̂d(o, r−1, s))

where p̂d is the prediction from the polyadic decomposition. This allows the
interdependence of the subject and object embeddings, which can solve the
problem of Example 17.4 (page 741).

The polyadic decomposition with inverses is fully expressive, meaning it
can approximate any relation with a log loss less than and ε > 0, even if all
embeddings are restricted to be non-negative, and the value of all embedding
values is bounded by a constant (which may depend on ε). This means that
it can memorize any relation, which is the best it can do in general; see the
no-free-lunch theorem (page 315). It also means that there are no inherent re-
strictions on what can be represented. If the same embedding is used for the
subject and the object, only symmetric relations can be represented or approx-
imated.

Example 17.3 (page 738) explains how the user and items embedding used
in prediction can be used to understand what is being learned. That explana-
tion holds for a relation, for each embedding position where the relation has
a non-zero value. In particular, for the case where all embeddings are non-
negative:

• For the subject embedding, each embedding position is a soft clustering
(page 478) of entities. Those entities in the cluster have a large value for
that position, where large is relative to the other values. Similarly, for the
object embedding.

• For each position, the product of the subject, relation, and object embed-
dings is only large if all three are large. When the relation embedding is
large at a position, the entities in the subject clustering for that position
are related to the entities in the corresponding object clustering.

• The addition (∑f ) provides for multiple clusterings to be added together.

In the general case, when an even number of the values being multiplied are
negative, the result is positive and it acts like the above. When an odd number
of the values is negative (one or three of the subject, relation, and object is
negative), the product is negative and this position can act like exceptions.

This method – and related methods – is clustering entities in various ways
to provide the best predictions. What is learned is not general knowledge that
can be applied to other populations. If the goal is to model a single population,
for example in a social network, that might be adequate. However, if the aim is
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to learn knowledge that can be applied to new populations, this method does
not work.

Decomposing a relation into matrices does not work well for relations with
multiple arguments. If the relation is converted to triples using reification
(page 703), the introduced entity has very few instances – the number of ar-
guments to the relation – which makes learning challenging. If the polyadic
deposition is used directly, the problem of independent positions – which mo-
tivated the inverses above – occurs for every pair of positions. Modeling the
interaction between every pair of argument predictions leads to overfitting.

Embedding-based models that decompose a relation do not work for pre-
dicting properties with a fixed range, such as the age of users, because they
rely on a lower-dimensional representation and there isn’t one for properties.
The vector for a user can be used to memorize the age in one or more of the
embedding positions, which means it does not generalize.

17.3 Learning Interdependence of Relations

17.3.1 Relational Probabilistic Models

An alternative to the previous models that learn embedding of entities and
relations is to learn the interdependencies of relations, building models that
predict some relations in terms of others, similar to how graphical models of
Chapter 9 represented the interdependencies of random variables.

The belief networks of Chapter 9 were defined in terms of random vari-
ables. Many domains are best modeled in terms of entities and relations. Agents
must often build models before they know what entities are in the domain and,
therefore, before they know what random variables exist. When the probabili-
ties are being learned, the probabilities often do not depend on the identity of
the entities. Probability models with entities and relations are studied in the
area of statistical relational AI, and the models are referred to as relational
probabilistic models, probabilistic relational models, or probabilistic logic
models.

Example 17.5 Consider the problem of predicting how well students will do
in courses they have not taken. Figure 17.3 (page 744) shows some fictional
data designed to show what can be done. Students s3 and s4 have a B average,
on courses both of which have B averages. However, you should be able to
distinguish them as you know something about the courses they have taken.

A relational probabilistic model (RPM) is a model in which the probabili-
ties are specified on the relations, independently of the actual entities. The enti-
ties share the probability parameters. The sharing of the parameters is known
as parameter sharing or weight tying, as in convolutional neural networks
(page 347).
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A parameterized random variable is of the form R(t1, . . . , tk), where each
ti is a term (a logical variable or a constant). The parameterized random vari-
able is said to be parameterized by the logical variables that appear in it. A
ground instance of a parameterized random variable is obtained by substi-
tuting constants for the logical variables in the parameterized random vari-
able. The ground instances of a parameterized random variable correspond to
random variables, as in Section 17.1 (page 732). The domain of the random
variable is the range of R. A Boolean parameterized random variable R cor-
responds to a predicate symbol. For example, Grade(S, C) is a parameterized
random variable, and Grade(s3, c4) is a random variable with domain the set of
all possible grades.

We use the Datalog convention (page 655) that logical variables start with
an upper-case letter and constants start with a lower-case letter. Parameterized
random variables are written starting with an upper-case letter, with the cor-
responding proposition in lower case (e.g., Diff (c1) = true is written as diff (c1),
and Diff (c1) = false is written as ¬diff (c1)), similar to the convention for ran-
dom variables (page 377).

A plate model consists of

• a directed graph in which the nodes are parameterized random variables
• a population of entities for each logical variable, and
• a conditional probability of each node given its parents.

A rectangle – a plate – is drawn around the parameterized random variables
that share a logical variable. There is a plate for each logical variable. This
notation is redundant, as the logical variables are specified in both the plates
and the arguments. Sometimes one of these is omitted; often the arguments are
omitted when they can be inferred from the plates.

Example 17.6 Figure 17.4 (page 745) gives a plate model for predicting student
grades. There is a plate C for the courses and a plate S for the students. The
parameterized random variables are

• Int(S), which represents whether student S is intelligent

Student Course Grade
s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Figure 17.3: Predict which student is likely to do better in course c4
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• Diff (C), which represents whether course C is difficult,

• Grade(S, C), which represents the grade of student S in course C.

The probabilities for P(Int(S)), P(DiffC)), and P(Grade(S, C) | Int(S), DiffC))
need to be specified. If I and D are Boolean (with range true and false) and Gr
has range {A, B, C}, then there are 10 parameters that define the probability
distribution. Suppose P(Int(S)) = 0.5 and P(DiffC)) = 0.5 and P(Grade(S, C) |
Int(S), DiffC)) is defined by the following table:

Int(S) DiffC) Grade(S, C)
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.1 0.9
false false 0.1 0.4 0.5

Eight parameters are required to define P(Grade(S, C) | Int(S), Diff (C)) because
there are four cases, and each case requires two numbers to be specified; the
third can be inferred to ensure the probabilities sum to one.

If there were n students and m courses, in the grounding there would be n
instances of Int(S), m instances of DiffC), and n ∗m instances of Grade(S, C). So
there would be n + m + n ∗m random variables in the grounding.

A model that contains parametrized random variables is called a lifted
model. A plate model means its grounding – the belief network in which
nodes are all ground instances of the parameterized random variables (each
logical variable replaced by an entity in its population) and the arcs are pre-
served. That is, the parametrized random variables in each plate are replicated
for each entity. The conditional probabilities of the grounded belief network
are the same as the corresponding instances of the plate model.

Example 17.7 Consider conditioning the plate model of Figure 17.4 on the
data given in Figure 17.3 (page 744), and querying the random variables cor-
responding to the last two rows. There are 4 courses and 4 students, and so
there would be 24 random variables in the grounding. All of the instances

C

S

Grade(S,C)

Int(S) Diff(C)

Figure 17.4: A plate model to predict the grades of students
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of Grade(S, C) that are not observed or queried can be pruned (page 417) or
never constructed in the first place, resulting in the belief network of Figure
17.5. From this network, conditioned on the obs, the observed grades of Fig-
ure 17.3, and using the probabilities of Example 17.6, the following posterior
probabilities can be derived:

A B C
P(Grade(s3, c4) | obs) 0.491 0.245 0.264
P(Grade(s4, c4) | obs) 0.264 0.245 0.491

Thus, this model predicts that s3 is likely to do better than s4 in course c4.

Figure 17.6 (page 747) shows the three cases of how a directed arc interacts
with a plate. The population of logical variable X is {x1, . . . , xn}. The random
variable A(xi) is written as Ai, and similarly for B. The parametrization can be
inferred from the plates.

In Figure 17.6(a), A and B are both within the plate, and so represent the
parametrized random variables A(X) and B(X). In the grounding, the arc is
replicated for every value of X. The conditional probability P(Bi | Ai) is the
same for every i, and is the one modeled by P(B | A) in the lifted model. Ai
and Bi are independent of Aj and Bj for i �= j, unless there is another arc to
make them dependent.

In Figure 17.6(b), the parent is outside of the plate, and so it is not repli-
cated for each element of the population. P(Bi | A) is the same for all i. This

Grade(s1, c1)

Int(s1)

Int(s2)

Int(s3)
Grade(s2, c1)

Grade(s1, c2)

Grade(s2, c3)

Diff(c1)
Diff(c2)

Int(s4)

Diff(c3)
Diff(c4)

Grade(s3, c2)

Grade(s4, c3)

Grade(s4, c4)

Grade(s3, c4)

Figure 17.5: A grounding that is sufficient to predict from the data in Figure
17.3. Instances of Grade(S, C) that are not observed or queried do not need to be
created.
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makes the Bi dependent on each other when A is not observed. The number
of parameters in the lifted models of Figure 17.6(a) and (b) is the same as the
network without the plates, and so is independent of the population size n.

In Figure 17.6(c), the child is outside of the plate, with a variable number of
parents. In this case B has n parents and so cannot use the conditional probabil-
ity P(B | A). It needs an aggregator to compute the probability from arbitrary
many parents. The aggregator is symmetric, as the index is of no significance;
exchanging the names has no effect. This symmetry is called exchangeability.
Some aggregators are the following:

• If the model is specified as a probabilistic logic program (page 397) with
Boolean logical variables, the existential quantification of the logical vari-
ables in the body of a clause (page 649) results in a noisy-or (page 398)
aggregation. In the aggregator of Figure 17.6(c), the noisy-or is equiva-
lent to b ← (∃X a(X) ∧ n(X)) ∨ n0, where n0 and n(x) are independent
random variables for all instances x of X.

• The model can be specified using weighted logical formulas (page 401),
extended to first-order logic. A first-order weighted logical formula is
a pair of a first-order logic formula and a weight. The conditional prob-
ability is proportional to the exponential of the sum of weights of the

X

A

B
X

A

B

X
A

B

A1

B1

A2

B2

An

Bn

…

B1

A

B2 Bn

…

A1 A2

B

An

…

(a) (b) (c)

Figure 17.6: Three cases of arcs with plates: (a) an arc inside a plate; (b) an arc
going into a plate; (c) an arc going out of a plate. On the top is a plate model
and underneath is its grounding
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groundings of formulas that are true. In this case, the aggregation be-
comes a case of logistic regression (page 400), called relational logistic
regression.

For example, the first-order weighted formulas (b : w0), (b∧ a(X), w1)
and (b ∧ ¬a(X), w2) result in P(b | as) = sigmoid(w0 + c1 ∗ w1 + c2 ∗ w2),
where as is an assignment of values to the parents consisting of c1 entities
with A(e) = true and c2 entities with A(e) = false.

• Standard database aggregators such as average, sum, or max of some
values of the parents can be used.

• A more sophisticated aggregation, latent Dirichlet allocation (LDA), is
when the population of the plate corresponds to the domain of the child.
The value of A(v) can be used to compute P(B = v). For example, using
a softmax

P(B = v) =
exp(A(v))

∑v′ exp(A(v′))

(or perhaps without the exponentiation, if A(v) ≥ 0). The aggregation
is thus implementing an attention mechanism, similar to that used in
transformers (page 360).

For overlapping plates, the values are duplicated for each plate separately,
as in the following example.

Example 17.8 Suppose someone was shot and the problem is to determine
who did it. Assume the shooting depends on having motive, opportunity, and

X

Shot(X,Y)

Has_motive(X,Y)

Someone_shot(Y) Y

Has_opportunity(X,Y)

Has_gun(X)

Figure 17.7: A plate model for determining who shot someone
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a gun. A plate model for this is shown in Figure 17.7 (page 748), where Y is the
person shot and X is the shooter.

When a particular person y is observed to be shot, the aim is to determine
which person x could have shot them. The motive and the opportunity depend
on both x and y, but whether the shooter, x, has a gun does not depend on
y. Noisy-or is an appropriate aggregator here; y is shot if there exists some-
one who shot them, but there is some chance they were shot even if no one
shot them (e.g., a gun went off randomly). There are probably different prob-
abilities for the cases where X = Y (they shot themself) and for X �= Y (the
shooter and victim were different people). If there are 1000 people, there are
3,002,000 random variables in the grounding, including a million instances of
Has motive(X, Y) and a thousand instances of Has gun(X). If all of the vari-
ables are Boolean, there are 13 parameters to be assigned: eight for Shot, two
for Someone shot, and one each for the other (parameterized) random variables.
Each of these other variables could have parents; see Exercise 17.5 (page 761).

17.3.2 Collective Classification and Crowd Sourcing

Suppose there are many true/false questions that you would like the answer
to. One way to find the answer might be to ask many people using crowd
sourcing, where the users might be paid for reliable answers. Each person
answers some subset of the questions; the aim is to determine which questions
are true, and who to pay. Some people and bots may give random answers, in
the hope of being paid for very little work. The problem of determining truth
from crowd sourcing is called truth discovery.

One application for truth discovery is to evaluate predictions of an AI al-
gorithm on a knowledge graph. You cannot just use a held-out test set for
evaluation as there are only positive examples in a knowledge graph. Nega-
tive examples are required to evaluate probabilistic predictions, for example,
using log loss. Negative examples can be acquired by crowd sourcing.

One way to represent this problem is the plate model of Figure 17.8, where
Answer(U, Q), the provided answer by user U to question Q, depends on the
reliability of U and the truth of Q.

Q
U

Answer(U,Q)

Reliable(U) True(Q)

Figure 17.8: A plate model for truth discovery
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The conditional probabilities can specify that the answer provided by re-
liable users is highly likely to be the truth, and the answer provided by an
unreliable person is likely to be random. When conditioned on the answers
provided, the users are classified as reliable or not and the questions are clas-
sified as true or false. It may not take many reliable users answering a partic-
ular question to make us quite sure of the truth of the question, but users who
answer randomly provide no information about the answer. Simultaneously
classifying multiple entities, as in this case, is called collective classification.

Exact inference in this model is intractable because the treewidth (page 417)
of the grounding containing the Reliable, True, and observed Answer random
variables grows quickly; see Exercise 17.6 (page 761). One way to carry out
inference is to use Markov-chain Monte Carlo (MCMC) (page 447), alternating
between the truth random variables and reliability random variables.

Once there is a rough division into reliable and unreliable users and the
truth of questions, expectation maximization (EM) (page 478) can be used to
learn the probability that a reliable user will give the correct answer and the
prior probability that a user is reliable.

Such methods, however, can be manipulated by collusion among the users
to give misinformation, which for this case means wrong answers. When some
users are colluding to give misinformation, other methods can be used to help
determine which users are reliable. You could start with some questions for
which you know the truth; probabilistic inference can be used to determine
reliability. Alternatively, some users can be deemed to be reliable; users that
agree with them will be more likely to be reliable. It is also possible to have
more than two classes as the domain of Reliable; how many classes to use is
beyond the scope of the book, but the Chinese restaurant process provides one
answer to that question. It is very difficult to counter the case where a group of
people collude to give correct answers to all of the questions except for one; you
can just hope that non-colluding reliable users will out number the colluding
ones. Sometimes the best one can do is to check answers and find that collusion
probably has occurred. Be warned, however, that just because people agree
that something is true does not mean that it is true.

17.3.3 Language and Topic Models

The probabilistic language models of Section 9.6.6 (page 430), including the
topic models (page 435) of Figure 9.38, are simpler when viewed as relational
models. Inferring the topic(s) of a document can help disambiguate the words
in a document, as well as classify the documents.

Figure 17.9 (page 751) shows a plate representation of a model where a
document, represented as a set of words (page 430), has a single topic. In this
model:

• D is the set of all documents

• W is the set of all words
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• A(W, D) is a parametrized random variable such that Boolean A(w, d) is
true if word w appears in document d

• T(D) is a parametrized random variable such that T(d), with domain the
set of all topics, is the topic of document d.

In this model, the topic for a document is connected to all words. There is no
aggregation, as there are no arcs out of a plate. The documents are independent
of each other.

Figure 17.10 shows a plate representation of a model where a document,
represented as a set of words, can have multiple topics. Instead of having a
random variable with domain the set of all topics – implying a document can
only have a single topic – there is a Boolean random variable for each topic and
document:

• D is the set of all documents

• W is the set of all words

• T is the set of all topics (with a slight abuse of notation from the previous
model)

• Boolean A(w, d) is true if word w appears in document d

• Boolean S(t, d) is true if topic t is a subject of document d.

D
W

A(W,D)T(D)

Figure 17.9: Topic model: single topic and a set of words

D
T W

A(W,D)S(T,D)

Figure 17.10: Topic model using plates: multiple topics and a set of words
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In this model, all topics for a document are connected to all words. The docu-
ments are independent of each other. The grounding for a single document is
show in Figure 9.29 (page 435). Because there is an arc out of a plate, this model
requires a form of aggregation. Noisy-or (page 398) was used in Google’s
Rephil; see Example 9.38 (page 435).

Figure 17.11 is like the previous case, but with a bag-of-words (page 432)
(unigram) model of each document. In this model

• D is the set of all documents

• I is the set of indexes of words in the document; I ranges from 1 to the
number of words in the document

• T is the set of all topics

• W(d, i) is the i’th word in document d; the domain of W is the set of all
words.

• S(t, d) is true if topic t is a subject of document d; S is Boolean.

Example 17.9 Consider a document, d1, that just consists of the words “the
cat sat on the mat”, and suppose there are three topics, animals, football, and AI.

In a set-of-words model, there is a Boolean random variable for each word.
To condition on this document, A(”the”, d1) and A(”cat”, d1) are observed to be
true. A(”neural”, d1) is observed to be false, because the word “neural” does
not appear in the document. Similarly for the other words.

In a bag-of-words model, there is a random variable for each position in
the document, with domain the set of all words. In this model, the observation
about document d1 is w(1, d1) = ”the”, w(2, d1) = ”cat”, etc., and w(7, d1) = ⊥
where ⊥ is a value representing the end of the document.

In Figure 17.9 (page 751) there is a single topic for each document. This is
represented by the random variable T(d1) with domain {animals, football, AI}.

In the other two models, with document possibly containing multiple top-
ics, there is a Boolean random variable for each topic. In this case there are
three random variables, including S(animals, d1) that is true when animals is a
topic of document d1, and S(football, d1) that is true when football is a topic of
document d1.

D
T I

W(D,I)S(T,D)

Figure 17.11: Topic model using plates: multiple topics and a bag of words
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Figure 17.12 shows a model called latent Dirichlet allocation (LDA), with
the following meaning:

• D is the document and I is the index of a word in the document.

• T is the topic.

• w(d, i) is the ith word in document d. The domain of w is the set of all
words; thus, this is a bag-of-words model.

• to(d, i) is the topic of the ith word of document d. The domain of to is the
set of all topics. P(w(d, i) | to(d, i) gives the word distribution over each
topic.

• pr(d, t) represents the proportion of document d that is about topic t. The
domain of pr is the reals. If pr(d, t) is positive (pseudo)counts, this is a
Dirichlet distribution (page 465), with

P(to(D, I) = t | pr(D, T)) =
pr(D, T = t)

∑t′ pr(D, T = t)
.

Alternatively, pr(d, t) could be represented as a softmax, with

P(to(D, I) = t | pr(D, T)) =
exp(pr(D, T = t))

∑t′ exp(pr(D, T = t′))

which is similar to an attention mechanism (page 360), where each word
pays attention to the topics.

To go beyond set-of-words and bag-of-words, for example, to model the se-
quence of words an n-gram (page 433), more structure is needed than is spec-
ified by a plate model. In particular, these require the ability to refer to the
sequence previous words, which can be represented using structure in the log-
ical variables (plates), such as can be provided by function symbols in logic
(page 667).

D
T I

to(D,I)pr(D,T) w(D,I)

Figure 17.12: Topic model using plates: latent Dirichlet allocation
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17.3.4 Some Specific Representations

Any of the representations of belief networks can be used for representing re-
lational probabilistic models. However, because plates correspond to logical
variables, representations defined in terms of first-order logic most naturally
represent these models. The models can also provide structure in the logical
variables. In the neural network literature, plate models are referred to as con-
volutional models, due to the parameter sharing, which also corresponds to
universal quantification in logic (page 652).

The representations mainly differ in the way they handle aggregation, and
whether latent features are random variables or tunable weighted formulas (as
in neural networks).

Some notable representations include the following.

Probabilistic Logic Programs

In a probabilistic logic program, the model is described in terms of a logic
program with parametrized noise variables (page 397). Plates correspond to
logical variables.

Example 17.10 To represent the domain of Figure 17.7 (page 748), as de-
scribed in Example 17.8:

is shot(Y)← shot by no one(Y)
is shot(Y)← shot(X, Y) ∧ shot succeeds(X, Y).

Each instance of shot by no one and shot succeeds are parameterized noise vari-
ables (page 397). P(shot by no one(Y)) is the probability that Y was shot even if
no one shot them. P(shot succeeds(X, Y)) is the probability that Y would be shot
if X shot Y. These two rules implement a noisy-or (page 398) over the instances
of X for each Y. The parametrized random variable shot can be represented
using rules such as:

shot(X, Y)← has motive(X, Y) ∧ has gun(X)

∧ has opportunity(X, Y) ∧ actually shot(X, Y).

P(actually shot(X, Y)) is the probability that X would shoot Y if they had a mo-
tive, gun, and opportunity. Other rules could cover cases such as where X
doesn’t have motive.

Probabilistic logic programs go beyond the plate model, as they can handle
recursion, which gives loops in the lifted model.

Weighted First-Order Logic Formulas

An alternative is to use weighted formulas (page 401), where the formulas con-
tain logical variables, corresponding to the plates. The formulas can either de-
fine a directed model, called relational logistic regression (page 748), or an
undirected (page 403), called a Markov logic network (MLN).
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Example 17.11 The domain of Figure 17.7 (page 748) can be represented using
the weighted formulas

(is shot(Y), w0)

(is shot(Y) ∨ ¬shot(X, Y), w1)

(shot(X, Y) ∨ ¬has motive(X, Y) ∨ ¬has gun(X)

∨ ¬has opportunity(X, Y) ∨ ¬actually shot(X, Y), w2)

where w0, w2, and w3 are weights that are shared by all ground instances of the
corresponding formula. Note that the last weighted formula has the same form
as an implication with conjunctions in the body; it is true for all cases except
for exceptions to the rule.

Inference in Markov logic networks and in models with relational logis-
tic regression require marginalizing (page 405) unobserved variables in the
grounding. Probabilistic soft logic has weighted logical formulas like Markov
logic networks, but the latent variables are represented like latent features in
neural networks. This means that inference is much faster, as marginalization
is avoided, and learning can use standard gradient descent methods. It means
that the latent variables cannot be interpreted as random variables, which may
make interpretation more difficult.

Directed models, such as probabilistic logic programs, have the advantages
of being able to prune irrelevant variables in the grounding – in cases such as
truth discovery, most are pruned – and being able to be learned modularly.
One problem with the grounding being a belief network is the need for it to
be acyclic, for example friends(X, Y) might depend on friends(Y, Z), and mak-
ing the grounding acyclic entails arbitrary orderings. Relational dependency
networks are directed models that allow cycles. The probabilities in the model
define the transitions in a Markov chain (page 418). The distribution defined
by the model is the stationary distribution (page 419) of the induced Markov
chain.

Graph Neural Networks

Graph neural networks are neural networks that act on graph data. Each node
has an embedding that is inferred from parametrized linear functions and ac-
tivation functions of the node’s neighbors, and their neighbors, to some depth.

A relational graph convolutional network (R-GCN) is used to learn em-
beddings for knowledge graphs (page 701), where nodes are entities and arcs
are labelled with relations. The properties for entity e in the knowledge graph
are used to give an embedding h(0)e , similar to the encoder used for word em-
beddings (page 350). These embeddings provide inputs to the neural network.
There are multiple layers, with shared parameters, that follow the graph struc-
ture to give an output embedding for each entity.

The output embedding for an entity can be used to predict properties of
the entity, or can be used in models such as polyadic decomposition (page 740)
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to predict arcs. It is called convolutional because, like other relational models,
the same learnable parameters for the layers are used for each entity. These
layers provide separate embeddings for each entity based on the properties of
the entity and its local neighborhood.

The layers are defined as follows. The embedding of layer l + 1 for entity e
is the vector h(l+1)

e defined in terms of the embeddings of e and its neighbors in
the knowledge graph in the previous layer:

h(l+1)
e = φ

(
W(l)

0 h(l)e + ∑
r∈R

∑
{n:(e,r,n)∈KG}

1
Ce,r

W(l)
r h(l)n

)
where φ is an activation function (page 289), such as ReLU, defined by φ(x) =
max(x, 0). R is the set of all relations and KG is the set of triples in the knowl-
edge graph. h(l)e is the embedding for entity e from layer l. W(l)

r is a matrix
(page 352) for relation r for layer l, which is multiplied by the vector h(l)n for
each neighbor n. W(l)

0 is a matrix defining how the embedding for entity e in
layer l affects the same entity in the next layer. Ce,r is a normalization constant,
such as |{n : (e, r, n) ∈ KG}|, which gives an average for each relation. The base
case is h(0)e , which doesn’t use any neighborhood information.

This model uses separate parameters for each relation, which can result in
overfitting for relations with few instances. To help solve this, the relation ma-
trices, W(l)

r , can be represented as a linear combination of learned basis matri-
ces which are shared among the relation; the weights in the linear combination
depend on the relation.

Whereas the embedding-based models of Section 17.2.2 (page 740) did not
work well for reified entities, because reified entities had very few instances,
the use of two or more layers in relational graph convolutional network allows
a node to depend on the neighbors of neighbors.

The depth of the network is directly related to the size of the neighborhood
of a node used. A network of size k uses paths of length k from each node.

The methods based on lifted graphical models work the same whether the
intermediate variables are observed or not. For example, in the shooting ex-
ample, Has motive(X, Y) can depend on other parametrized random variables,
such as whether someone hired X to shoot Y (see Example 17.5), in which
case Has motive(X, Y) needs to be marginalized out. However, graph neural
networks treat relations specified in the knowledge graph differently from in-
ferred relations, and thus need to learn the model as a function of the specified
relations. This lack of modularity makes them less flexible.

17.4 Existence and Identity Uncertainty

The models of Section 17.3 are concerned with relational uncertainty; uncer-
tainty about whether a relation is true of some entities. For example, a proba-
bilistic model of likes(X, Y) for X �= Y, whether different people like each other,
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could depend on properties of X and Y and other relations they are involved in.
A probabilistic model for likes(X, X) is about whether people like themselves.
Models about who likes whom may be useful, for example, for a tutoring agent
to determine whether two people should work together.

The problem of identity uncertainty concerns uncertainty of whether two
symbols (terms or descriptions) are equal (page 687) (denote the same entity).

Example 17.12 Figure 17.13 shows the denotation for some symbols; each
arrow indicates what entity a symbol denotes. Huan = Jing’s twin, because
they denote the same entity. Huan’s glasses �= Kiran’s glasses, because they de-
note different pairs of glasses, even though the glasses might be identical; they
would only be equal if they shared the same pair of glasses. Milo’s glasses might
not exist because Milo doesn’t have a pair of glasses.

Identity partitions the symbols. Huan, Jing’s twin, and Kiran’s teacher are
in the same partition as they denote the same entity. They are in a different
partition from Jing. The symbols with no entity, Milo’s glasses and cat in the yard,
can be in a special partition.

Identity uncertainty is a problem for medical systems, where it is important
to determine whether the person who is interacting with the system now is
the same person as one who visited yesterday. This problem is particularly
difficult if the patient is non-communicative or wants to deceive the system, for
example, to get drugs. This problem is also referred to as record linkage, as the
problem is to determine which (medical) records are for the same person. This

🧟

🧟

🧟

🕶

👓

🐈⬛

🐈⬛

🐈⬛
Milo

Kitty

Huan

Kiran’s teacher

Huan’s glasses
🕶

Kiran’s glasses

Milo’s glasses

Huan’s twin

Jing

Cat in the yard

Symbols Entities

Jing’s twin

Figure 17.13: Existence and identity

https://doi.org/10.1017/9781009258227.023


758 17. Relational Learning and Probabilistic Reasoning

problem also arises in citation matching, determining if authors on different
papers are the same person, or if two citations denote the same paper.

Identity uncertainty is computationally intractable because it is equivalent
to partitioning the symbols. For citation matching, the partition is over the
citations; the citations denoting the same paper are in the same partition. The
number of partitions of n items is called the Bell number, which grows faster
than any exponential in n. The most common way to find the distribution over
partitions is to use Markov-chain Monte Carlo (MCMC) (page 447). Given a
partition, entities can be moved to different partitions or to new partitions.

The techniques of the previous sections assumed the entities are known to
exist. Given a description, the problem of determining whether there exists
an entity that fits the description is the problem of existence uncertainty. Ex-
istence uncertainty is problematic because there may be no entities who fit a
description or there may be multiple entities. For example, for the description
“the cat in the yard”, there may be no cats in the yard or there might be mul-
tiple cats. You cannot give properties to non-existent entities, because entities
that do not exist do not have properties. If you want to give a name to an entity
that exists, we need to be concerned about which entity you are referring to if
there are multiple entities that exist.

One particular case of existence uncertainty is number uncertainty, about
the number of entities that exist. For example, a purchasing agent may be
uncertain about the number of people who would be interested in a package
tour, and whether to offer the tour depends on the number of people who may
be interested.

Reasoning about existence uncertainty can be tricky if there are complex
roles involved, and the problem is to determine whether there are entities to
fill the roles. Consider a purchasing agent who must find an apartment for
Sam and Sam’s child Chris. Whether Sam wants an apartment probabilisti-
cally depends, in part, on the size of Sam’s room and the color of Chris’s room.
However, entity apartments do not come labeled with Sam’s room and Chris’s
room, and there may not exist a room for each of them. Given a model of an
apartment Sam would want, it is not obvious how to condition on the observa-
tions.

17.5 Social Impact

Recommender systems are the most commercial offshoot of AI. Many of the
largest companies, including Meta (Facebook) and Alphabet (Google), make
their money from advertising. When the companies get paid by clicks, the prof-
itability is directly related to how well they target advertisements to individual
users, and how well they keep people engaged on their platform. Streaming
services, such as Netflix, have competitive advantages if good recommenda-
tions help to keep people going back to their sites.
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These systems use a diverse collection of AI tools for their recommenda-
tions. Steck et al. [2021] describe challenges that arise in the Netflix recommen-
dation system, in particular, integrating deep learning into their recommender
systems. “Through experimentation with various kinds of recommendation al-
gorithms, we found that there is no ‘silver bullet’; the best-performing method
(whether deep learning or other) depends on the specific recommendation task
to be solved as well as on the available data. For this reason, different kinds of
machine learning models are used to generate personalized recommendations
for the different parts (e.g., rows) of the Netflix homepage” [Steck et al., 2021].

The recommendations of social media companies trying to maximize en-
gagement, and so their profits, leads to increased polarization [Sunstein, 2018;
Levy, 2021]. People engage more with extreme views than with moderate, con-
sidered content, forming filter bubbles and echo chambers where users only
communicate with like-minded people [Acemoglu et al., 2021]. Because the
content is targeted, public people, including politicians, can tell different peo-
ple different, even inconsistent, messages. With technologies where the mes-
sages are public, many people moderate their messages to not turn off other
people. This mix of relative privacy and optimization for engagement makes
for toxic online forums.

17.6 Review

The following are the main points you should have learned from this chapter:

• Relational representations are used when an agent requires models to
be given or learned before it knows which entities it will encounter, or
when the data includes identifiers (page 705), such as part numbers and
booking numbers.

• Collaborative filtering and other embedding-based methods can be used
to make predictions about instances of relations from other instances by
inventing latent properties.

• Plate models allow for the specification of probabilistic models before the
entities are known.

• Many of the probabilistic representations in earlier chapters can be made
relational by including universally quantified logical variables and pa-
rameter sharing.

• The recommendation systems at the heart of many large corporations are
optimizing engagement, which leads to increased polarization.

17.7 References and Further Reading

Jannach et al. [2021] overview recommender systems. The Netflix prize and the
best algorithms are described by Bell and Koren [2007] and Jahrer et al. [2010].
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The collaborative filtering algorithm is based on Koren et al. [2009]; see also Ko-
ren and Bell [2011]. The MovieLens datasets are described by Harper and Kon-
stan [2015] and available from http://grouplens.org/datasets/movielens/. Jan-
nach and Bauer [2020] explain why recommendations require more than opti-
mizing an easy-to-optimize criteria.

The polyadic decomposition by Hitchcock [1927] was used in knowledge
graph completion by Trouillon et al. [2016]. Its use with inverses for knowledge
graph prediction was independently proposed by Kazemi and Poole [2018] and
Lacroix et al. [2018]. Fatemi et al. [2020] extend this method for relations with
multiple arguments.

Statistical relational AI is overviewed by De Raedt et al. [2016]. Plate mod-
els are due to Buntine [1994], who used them to characterize learning. Latent
Dirichlet allocation and the plate models of language are by Blei et al. [2003].

Li et al. [2016] discuss truth discovery from crowdsourcing, which can be
more general than the Boolean case presented here. Van den Broeck et al. [2021]
provide an introduction to lifted inference, which allows inference without
grounding.

Probabilistic logic programming was proposed by Poole [1993] and imple-
mented in Problog [De Raedt et al., 2007]. De Raedt et al. [2008] and Getoor
and Taskar [2007] provide collections of papers that overview probabilistic re-
lational models and how they can be learned. Domingos and Lowd [2009]
discuss Markov logic networks and how (undirected) relational models can
provide a common target representation for AI. Pujara et al. [2015] discuss
how statistical relational AI techniques and ontological constraints are used
for making predictions on knowledge graphs. Probabilistic soft logic is de-
scribed by Bach et al. [2017]. Relational dependency networks are by Neville
and Jensen [2007].

Graph neural networks are described by Xu et al. [2019], Hamilton [2020],
and Chaudhri et al. [2022]. Schlichtkrull et al. [2018] define relational graph
convolutional networks (R-GCNs).

The classic method existence and identity uncertainty, called record linkage,
is by Fellegi and Sunter [1969]. The integration of existence and identity un-
certainty into relational graphical models are discussed by Pasula et al. [2003],
Milch et al. [2005], and Poole [2007].

17.8 Exercises

Exercise 17.1 A variant of the gradient descent algorithm for collaborative fil-
tering (Figure 17.2) can be used to predict P(rating > threshold) for various values
of threshold in {1, 2, 3, 4}. Modify the code so that it learns such a probability.
[Hint: Make the prediction the sigmoid of the linear function as in logistic regres-
sion.] Does this modification work better for the task of recommending the top-n
movies, for, say n = 10, where the aim is to have the maximum number of movies
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rated 5 in the top-n list? Which threshold works best? What if the top-n is judged
by the number of movies rated 4 or 5?

Exercise 17.2 An alternative regularization for collaborative filtering is to mini-
mize

∑
〈u,i,r〉∈D

(
(̂r(u, i)− r)2 + λ(ib[i]2 + ub[u]2 + ∑

p
(ip[i, p]2 + up[u, p]2))

)
.

(a) How doe this differ from the regularization of formula (17.1) (page 738)?
[Hint: Compare the regularization for the items or users with few ratings
with those with many ratings.]

(b) How does the code of Figure 17.2 (page 739) need to be modified to imple-
ment this regularization?

(c) Which works better on test data? [Hint: You will need to set λ to be different
for each method; for each method, choose the value of λ by cross validation.]

Exercise 17.3 Change the stochastic gradient descent algorithm of Figure 17.2
(page 739) that minimizes formula (17.1) so it adjusts the parameters, including
regularization, after a batch of examples. How does the complexity of this algo-
rithm differ from the algorithm of Figure 17.2? Which one works better in prac-
tice? [Hint: Think about whether you need to regularize all of the parameters or
just those used in the batch.]

Exercise 17.4 Suppose Boolean parameterized random variables young(Person)
and cool(Item) are parents of Boolean buys(Person, Item). Suppose there are 3000
people and 200 items.

(a) Draw this in plate notation.
(b) How many random variables are in the grounding of this model?
(c) How many numbers need to be specified for a tabular representation of this

model. (Do not include any numbers that are functions of other specified
numbers.)

(d) Draw the grounding belief network assuming the population of Person is
{sam, chris} and the population of Item is {iwatch, mortgage, spinach}.

(e) What could be observed to make cool(iwatch) and cool(mortgage) probabilis-
tically dependent on each other given the observations?

Exercise 17.5 Consider Example 17.8 (page 748). Suppose that the motive for X to
shoot Y is that they are being paid by someone else, Z, who needs to have motive
to kill Y. Draw the corresponding plate model. (If the plates become complicated
to draw, just use the arguments of the parametrized random variables). It must be
clear what logical variables the parametrized random variables depend on.

Exercise 17.6 Suppose you have a relational probabilistic model for movie pre-
diction, which represents

P(likes(P, M) | age(P), genre(M))

where age(P) and genre(M) are a priori independent.
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(a) What is the treewidth (page 417) of the ground belief network (after prun-
ing irrelevant variables) for querying age(Sam) given age and genre are not
observed and given the observations for likes in Figure 17.14.

(b) For the same probabilistic model, for m movies, n people, and r ratings, what
is the worst-case treewidth of the corresponding graph (after pruning irrel-
evant variables), where only ratings are observed? [Hint: The treewidth
depends on the structure of the observations; think about how the observa-
tions can be structured to maximize the treewidth.]

(c) For the same probabilistic model, for m movies, n people, and r ratings, what
is the worst-case treewidth of the corresponding graph, where only some of
the ratings but all of the genres are observed?

Exercise 17.7 Consider diagnosing the errors school students make when adding
multi-digit numbers. Consider adding two multi-digit numbers to form a third
multi-digit number, as in

A1 A0
+ B1 B0
C2 C1 C0

where Ai, Bi, and Ci are all digits.

(a) Suppose you want to model whether students know the skills of single-digit
addition and carrying. If students know how, they usually get the correct
answer, but sometimes make mistakes. Students who do not know simply
guess. Draw a belief network for a single student and problem involving
adding two 2-digit numbers to get a 3-digit number. [Hint: Each of the Ai,
Bi, and Ci, and the carries, are variables, and there is a variable for each skill
of the student.]

(b) Suppose there are multiple students and multiple problems. Give a plate
representation, either drawing plates or specifying the parametrized ran-
dom variables. There should be plates for students and problems. Think
about what variables depend on the student, the problem, or both.

Person Movie Likes
Sam Hugo yes
Chris Hugo no
Sam Avatar no
Sam Harry Potter 6 yes
Chris Harry Potter 6 yes
Chris AI no
Chris Avatar no
David AI yes
David Avatar yes

Figure 17.14: Data for Example 17.6 (page 761)
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(c) Suppose now you want to also represent multiple digits and multiple times.
Assume that the students’ knowledge can change through time. Draw the
plate model. What challenge arises in plate models for times and digits that
did not arise for students and problems?

Exercise 17.8 Represent the electrical domain of previous chapters as a prob-
abilistic logic program, so that it will run in AIPython (aipython.org) or Problog.
The representation should include the probabilistic dependencies of Example 9.15
(page 391) and the relations of Example 15.11 (page 656).
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Part VI

The Big Picture

What are the social impacts of AI, and what are the likely future
scenarios for AI science and technology?
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Chapter 18

The Social Impact of
Artificial Intelligence

Never in the history of humanity have we allowed a machine to autonomously
decide who should live and who should die, in a fraction of a second, with-
out real-time supervision. We are going to cross that bridge any time now,
and it will not happen in a distant theatre of military operations; it will
happen in that most mundane aspect of our lives, everyday transportation.
Before we allow our cars to make ethical decisions, we need to have a global
conversation to express our preferences to the companies that will design
moral algorithms, and to the policymakers that will regulate them.

– Awad et al. [2018, p. 63]

Artificial intelligence is a transformational set of ideas, algorithms, and tools.
AI systems are now increasingly deployed at scale in the real world [Littman
et al., 2021; Zhang et al., 2022a]. They have significant impact across almost all
forms of human activity, including the economic, social, psychological, health-
care, legal, political, government, scientific, technological, manufacturing, mil-
itary, media, educational, artistic, transportation, agricultural, environmental,
and philosophical spheres. Those impacts can be beneficial but they may also
be harmful. Ethical and, possibly, regulatory concerns, as raised by Awad et al.
[2018], apply to all the spheres of AI application, not just to self-driving cars.

Autonomous agents (page 14) perceive, decide, and act on their own. They,
along with semi-autonomous agents (page 14), represent a radical, qualitative
change in technology and in our image of technology. Such agents can take
unanticipated actions beyond human control. As with any disruptive tech-
nology, there may be substantial beneficial and harmful consequences – many
that are difficult to evaluate and many that humans simply cannot, or will not,
foresee.

767
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Consider social media platforms, which rely on AI algorithms, such as deep
learning and probabilistic models, trained on huge datasets generated by users.
These platforms allow people to connect, communicate, and form social groups
across the planet in healthy ways. However, the platforms typically optimize a
user’s feed to maximize engagement, thereby increasing advertising revenue.
Maximizing engagement often leads to adversarial behavior and polarization
(page 758). The platforms can also be manipulated to drive divisive political
debates adversely affecting democratic elections, and produce other harmful
outcomes such as deep fakes (page 366). They can also be very invasive of
users’ privacy. Automated decision systems, possibly biased, are used to qual-
ify people for loans, mortgages, and insurance policies, and even to screen
potential employees.

People expect to have the right to receive fair and equitable treatment, to
appeal decisions, to ask for accountability and trustworthiness, and to expect
privacy. Is it possible to ensure that those rights are indeed available?

18.1 The Digital Economy

The science, the technology and the applications of AI have developed rapidly
in the era of ubiquitous digital communication and the Internet. The world
economy has been transformed by these developments. Most of the ten largest
global corporations, measured by market capitalization, rely heavily upon AI
applications. Those companies are centred more on the use of information than
on the production of material goods. The shift from matter to information is
characterized as dematerialization.

Physical mail has been disrupted by email, texting, and social media. In-
cidentally, email was overwhelmed by spam until AI methods were used to
filter it out (page 486). Printed books are now supplemented by e-books. Ana-
log photography, film, and video are supplanted by digital media. Some travel
in planes and cars has been replaced by digital communication. CDs have
been replaced by streaming audio and newspapers by news websites. This
process, the atoms-to-bits transformation, allows transactions with less friction
and more speed. It is easier, quicker, cheaper, and more material and energy
efficient to stream music than to go to a store to buy a CD.

Digitalization, in turn, leads to a general temporal speedup of society and
the economy. It also shrinks distances through telecommunication. We all live
now in a global village, as characterized by Marshall McLuhan [1962]. Further-
more, the digital revolution reduces or eliminates the need for intermediaries,
such as retail clerks, bank tellers, and travel agents, between the producers and
consumers of goods and services – a process known as disintermediation.

The digital revolution and AI are transforming the world economy. These
effects are beneficial for some but harmful for others. The benefits, and the
harms, are far from evenly distributed in the new economy. There is a winner-
take-all dynamic as the most powerful corporations use their power to increase
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their dominance until a monopoly, or oligopoly, market position is established.
AI and machine learning algorithms, relying on tracking and modeling users,
are central to this dynamic. Zuboff [2019] characterized the new economy as
surveillance capitalism, epitomized by the large-scale harvesting of personal
data online to facilitate targeted monitoring and advertising for commercial
and political purposes. Human values such as privacy, dignity, equity, diver-
sity, and inclusion are compromised.

Human attention, selective concentration on available information, is a
critical and limited resource. Attention is a psychological issue but it is also
an economic issue, as pointed out long ago by Simon [1971] when he created
the key concept of the attention economy. He observed:

In an information-rich world, the wealth of information means a dearth
of something else: a scarcity of whatever it is that information consumes.
What information consumes is rather obvious: it consumes the attention of
its recipients. Hence a wealth of information creates a poverty of attention
and a need to allocate that attention efficiently among the overabundance
of information sources that might consume it.

In English, a person is said to be “paying attention” to a salient event. In other
words, attention is a currency to be spent, like money, in this economy. The
central role of human attention in our screen-filled digital age is described by
Richtel [2014]. Turning attention into a commodity requires monitoring users,
which, in turn, triggers privacy concerns. Corporations, and other actors, not
only want to know a lot about us but they also use that knowledge to manipu-
late our attention, our thoughts, and our actions.

18.2 Values and Bias

Learning systems, trained on large datasets, produce outputs that reflect any
bias present in the training sets. Since the datasets were acquired in the past,
using them to predict outcomes in the future propagates any bias from the past
to the future. What if the future will not, or should not, resemble the past?

In machine learning, bias has a neutral technical meaning (page 262), “the
tendency to prefer one hypothesis over another”. The no-free-lunch theorem
(page 315) implies that any effective learning algorithm must have a bias in that
sense. But in ordinary language use, human bias has a negative connotation,
meaning “prejudice in favor of or against one thing, person, or group com-
pared with another, usually in a way considered to be unfair” [Stevenson and
Lindberg, 2010].

Training sets for facial recognition, often acquired without informed con-
sent, typically do not represent people equitably, thereby causing misclassifi-
cation, often with harmful effect as discussed in Section 7.7 (page 317). Large
language models (page 364), pre-trained on vast text corpora, when prompted
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often produce new text that is racist, sexist, or otherwise demeaning of human
dignity.

Any AI-based decision system inherently reflects certain implicit values,
or preferences. The key question to ask is: whose values are they? Typically,
the values embedded in an AI system are the values of the designer or owner
of the system, or the values implicit in a deep learning training set. Further
questions arise. Can those values be made explicit? Can they be specified? Is
it possible to ensure those are democratic values, avoiding discrimination and
prejudice? Can they be transparent to the users, or targets, of the system? Do
they reflect the values of everyone who may be affected, directly or indirectly?
Can systems be designed that respect privacy, dignity, equity, diversity, and
inclusion?

The role of social bias in training data is described in Section 7.7 (page 317).
Bias and other social impact concerns in modern deep learning systems trained
on large corpora are discussed in Section 8.7 (page 367). These questions, ongo-
ing challenges to AI system designers, are examined critically by O’Neil [2016],
Eubanks [2018], Noble [2018], Broussard [2018], Benjamin [2019], and Bender
et al. [2021].

18.3 Human-Centred Artificial Intelligence

Mary Wollstonecraft Shelley’s Frankenstein; or, The Modern Prometheus [Shelley,
1818], is the first true science fiction novel. It can be read as a morality tale,
as signaled by Shelley’s alternate title, The Modern Prometheus. According to
ancient Greek mythology, Prometheus stole fire from the gods and gave it to
humanity. Zeus punished that theft, of technology and knowledge, by sen-
tencing Prometheus to eternal torment. Dr. Frankenstein’s creature attempted
to assimilate into human society by learning human customs and language, but
humankind rejected him and misinterpreted his genuine acts of kindness. That
rejection and his loneliness, given his lack of a companion, led to his choice to
exact revenge. Frankenstein’s monster has now come to symbolize unbridled,
uncontrolled technology turning against humans.

Concerns about the control of technology are now increasingly urgent as AI
transforms our world. Discussions of so-called artificial general intelligence
(AGI) envisage systems that outperform humans on a wide range of tasks, un-
like so-called “narrow” AI that develops and trains systems for specific tasks.
Some believe that AGI may lead to a singularity when AGI bootstraps to a
superintelligence, that could dominate humans [Good, 1965]. Or, as Bostrom
[2014] hypothesized, an imagined AGI system, given a goal that includes max-
imizing the number of paperclips in the universe, could consume every re-
source available to it, including those required by humans. This seemingly
absurd thought experiment purports to show that an apparently innocuous
AGI, without common sense, could pose an existential threat to humanity if
its goals are misspecified or otherwise not aligned with the long-term survival
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of humans and the natural environment. This safety concern has come to be
known as the alignment problem [Christian, 2020].

A more immediate threat is that AI systems, such as self-driving cars and
lethal autonomous weapons, may make life-or-death decisions without mean-
ingful human oversight. Less dramatically, AI systems may make harmful,
even if not life-threatening, value-laden decisions impinging on human wel-
fare, such as deciding who should get a mortgage or a job offer. This has given
rise to a focus on autonomy and human control. How can designers create
human-centred AI or human-compatible AI? Can human values be instilled
in AI systems? These questions are examined by Russell [2019], Marcus and
Davis [2019], and Shneiderman [2022]. One proposed technique for incorporat-
ing human values is Reinforcement Learning from Human Feedback (RLHF)
[Knox and Stone, 2009]. RLHF is the framework for a key module of ChatGPT
(page 6) [OpenAI, 2022].

Increasingly, especially in high-stakes applications, human decision-makers
are assisted by semi-autonomous agents; this combination is known as human-
in-the-loop. As shown in Chapter 2, intelligent systems are often structured
as a hierarchy of controllers (page 58), with the lower levels operating very
quickly, on short time horizons, while the higher levels have longer time hori-
zons, operating slowly on more symbolic data. Human interaction with hi-
erarchically structured systems typically occurs at the higher levels. Human
drivers cannot meaningfully modify the anti-lock braking systems on a car in
real time, but they can provide high-level navigation preferences or directions.
Humans can steer or brake to avoid accidents but only if they are paying at-
tention; however, as vehicles become more automated the driver may well be
distracted, or asleep, and unable to redirect their attention in time.

The concept of attention in neural networks (page 360) is inspired by the
concept of human attention (page 769). Concepts directly related to human
attention include vigilance, the state of keeping careful watch for possible dan-
ger, and salience, the quality of being particularly noticeable or important. De-
signing AI systems so that humans can meaningfully interact with them re-
quires designers who understand the economic, social, psychological, and eth-
ical roles of vigilance, salience, and attention. Early research on human atten-
tion and vigilance is reported by N. H. Mackworth [1948] and J. F. Mackworth
[1970]. Mole [2010] presents a philosophical theory of attention. The papers
collected in Archer [2022] show how issues concerning salience, attention, and
ethics intersect.

Designers of interactive AI systems must be well versed in the principles
and practices of both human–computer interaction (HCI) [Rogers et al., 2023]
and AI. Good designs for AI can go a long way in creating trustworthy systems.
For example, the “Guidelines for Human–AI Interaction” by Amershi et al.
[2019] give strategies for doing less when the system is uncertain to reduce the
costs and consequences of incorrect predictions.

Assistive technology for disabled and aging populations is being pioneered
by many researchers and companies. Assisted cognition, including memory
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prompts, is one application. Assisted perception and assisted action, in the
form of smart wheelchairs, companions for older people, and nurses’ assis-
tants in long-term care facilities, are beneficial technologies. Assistive technol-
ogy systems are described by Pollack [2005], Liu et al. [2006], and Yang and
Mackworth [2007]. Semi-autonomous smart wheelchairs are discussed by Mi-
hailidis et al. [2007] and Viswanathan et al. [2011]. However, Sharkey [2008]
and Shneiderman [2022] warn of some dangers of relying upon robotic assis-
tants as companions for the elderly and the very young. As with autonomous
vehicles, researchers must ask cogent questions about the development and
use of their creations. Researchers and developers of assistive technology, and
other AI applications, should be aware of the dictum of the disability rights
movement presented by Charlton [1998], “Nothing about us without us.”

A plethora of concepts are used to evaluate AI systems from a human
perspective, including transparency, interpretability, explainability, fairness,
safety, accountability, and trustworthiness. They are useful concepts but they
have multiple, overlapping, shifting, and contested meanings. Transparency
typically refers to the complete ecosystem surrounding an AI application, in-
cluding the description of the training data, the testing and certification of the
application, and user privacy concerns. But transparency is also used to de-
scribe an AI system whose outcomes can be interpreted or explained, where
humans can understand the models used and the reasons behind a particular
decision. Black-box AI systems, based, say, on deep learning, are not trans-
parent in that sense. Systems that have some understanding of how the world
works, using causal models, may be better able to provide explanations. See,
for example, this presentation on explainable human–AI interaction from a
planning perspective by Sreedharan et al. [2022]. Enhancements in explain-
ability may make an application more trustworthy, as Russell [2019] suggests.

Enhanced transparency, interpretability, and fairness may also improve trust-
worthiness. Interpretability is useful for developers to evaluate, debug and
mitigate issues. However, the evidence that it is always useful for end-users is
less convincing. Understanding the reasons behind predictions and actions is
the subject of explainable AI. It might seem obvious that it is better if a sys-
tem can explain its conclusion. However, having a system that can explain an
incorrect conclusion, particularly if the explanation is approximate, might do
more harm than good. Bansal et al. [2021] show that “Explanations increased
the chance that humans will accept the AI’s recommendation, regardless of its
correctness.”

As discussed in Section 7.7 (page 317), models built by computational sys-
tems are open to probing in ways that humans are not. Probing and testing can-
not cover all rare events, or corner cases, for real-world domains. Verification
of systems, proving that their behaviors must always satisfy a formal specifi-
cation that includes explicit safety and goal constraints (page 244) could make
them more trusted [Mackworth and Zhang, 2003]. Semi-autonomous systems
that interact and collaborate with humans on an ongoing basis can become
more trusted, if they prove to be reliable; however, that trust may prove to be
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misplaced for corner cases. The role of explicit utilities in open and accountable
group decision making is described in Section 12.6 (page 571). In Section 13.10
(page 604), concerns about real-world deployment of reinforcement learning
are outlined. Trust has to be earned.

18.4 Work and Automation

The impact of automation, in general, and AI, in particular, on the nature of
work and employment has been widely studied by economists and sociolo-
gists; however, there is no consensus yet on the impact of automation or AI.
Some claim that AI, including robotics, will lead to large-scale unemployment;
others claim that many new job categories will develop based on AI-enabled
developments. A better way to look at the phenomenon is to understand that
any particular job requires a suite of skills. Some of those skills may indeed be
rendered redundant. Other skills may become more necessary and may also
require upgrading. As discussed above, disintermediation eliminates many
job categories but also requires “upskilling” other job categories. These issues
are explored by Brynjolfsson and McAfee [2014], Agrawal et al. [2019], and
Ford [2021]. One theme, developed by Agrawal et al. [2022], is that business
decisions require prediction and judgment. Machine learning is now enabling
automated prediction so human judgment and decision analysis skills become
relatively more valuable. Danaher [2021] considers the ethics of automation
and the future of work.

AI and related technologies are creating many new job categories; however,
the new post-industrial high-tech corporations typically employ many fewer
people than corporations based in the older industrial economy, with similar
market size. AI is now permeating the entire economy, with AI-related jobs
being created in the older industrial corporations, such as the auto industry
and other manufacturing sectors as well as in the health, legal, education, en-
tertainment, and financial sectors. One aspect of the role of AI in the video
game industry is described in Section 6.6 (page 252). Perhaps fewer people
will be required to produce society’s goods and services. Moreover, AI could
generate so many significant new wealth opportunities that a universal basic
income (UBI) guaranteed to everyone, without qualification, is possible, and
necessary, to redistribute some of that wealth equitably [Ford, 2021]. The ar-
gument for UBI is that AI will reduce the need for much manual and mental
labour, so the human rights to housing and sustenance should not be tied en-
tirely to employment income. This could allow more creative leisure time and
informal caregiving.

It is already the case that the employment picture is changing significantly,
disrupted by AI. Many workers now have a portfolio of employment gigs,
working on short-term ad hoc contracts. The so-called gig economy allows
AI-enabled scheduling and organizing of the resources needed for just-in-time
ordering and delivery of consumer goods and services, including ride-hailing
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and food delivery. This has produced radical changes in the nature of retail
shopping and employment. A permanent full-time job with a single employer
for life is no longer the standard model. The gig economy has the benefit of
flexibility, for both the employee and the employer. On the downside, workers
are losing the advantages and protections of organizing in unions, including
security of employment, bargaining for wages and salaries, and benefits such
as vacations, paid sick leave, pensions and health care coverage (if it is not uni-
versal). Enhancements to government legislation, regulation, and enforcement
are being proposed to cope with these emerging challenges.

18.5 Transportation

Transportation, of people and cargo, is a key sector of the economy, satisfying a
variety of social needs. It serves as a useful case study to examine the social and
economic impact of AI. Autonomous vehicles are being developed and de-
ployed. The technologies used for accurate positioning in self-driving vehicles
are covered in Section 9.8 (page 449). Some of the ethical choices surrounding
self-driving cars are considered in Section 2.4 (page 71). The role of preferences
in automated route planning is discussed in Section 3.9 (page 120). Using con-
straints to schedule deliveries by a fleet of vehicles is described in Section 4.9
(page 170). The positive impact of having intelligent cars and trucks could be
large [Thrun, 2006]. There is the safety aspect of reducing the annual carnage
on the roads; it is estimated that 1.2 million people are killed, and more than
50 million are injured, in traffic accidents each year worldwide [Peden et al.,
2004]. Vehicles could communicate and negotiate at intersections. Besides the
consequent reduction in accidents, there could be up to three times the traffic
throughput [Dresner and Stone, 2008].

The improvements in road usage efficiency come both from smarter inter-
section management and from platooning effects, whereby automated, com-
municating vehicles can safely follow each other closely because they can com-
municate their intentions before acting and they react much quicker than hu-
man drivers. This increase in road utilization has potential positive side-effects.
It not only decreases the capital and maintenance cost of highways, but has po-
tential ecological savings of using highways so much more efficiently instead
of paving over farmland, forests, or wilderness.

With full autonomy, elderly and disabled people would be able to get around
on their own, without a driver. People could dispatch vehicles to the parking
warehouse autonomously and then recall them later. Individual car owner-
ship could become mostly obsolete, when an autonomous taxi ride becomes
cheaper and more convenient than a private vehicle. Most private vehicles are
used only about 5% of the time. Better utilization of the vehicle fleet would sig-
nificantly reduce the demand for vehicle production and storage. Supported
by AI systems, people could simply order up the most suitable available ve-
hicle for their trips. Automated robotic warehouses could store vehicles more

https://doi.org/10.1017/9781009258227.025


18.6. Sustainability 775

efficiently than using surface land for parking. In very dense cities, private car
ownership is already becoming obsolete. This trend would accelerate with au-
tonomous vehicles. Much of the current paved space in urban areas could be
used for housing, or for environmentally enhancing uses such as parks, play-
grounds, or urban farms. The rigid distinction between private vehicles and
public transit could dissolve.

These speculations are, at the moment, mostly science fiction. Many early
promises of full autonomy have not materialized. The transition to a mixed
transportation system of human drivers, autonomous vehicles, transit, pedes-
trians, cyclists, and so on is challenging.

Short of full vehicle autonomy, many smart driving features such as self-
parking, lane keeping, lane changing, adaptive cruise control, emergency brak-
ing, and automated avoidance of pedestrians and cyclists are now routine driver
aides and safety enhancements. A variety of vehicles, other than cars and
trucks, including microcars, e-bikes, e-scooters, and e-unicycles, are now avail-
able under the rubric micromobility, often with AI enhancements for semi-
autonomy, routing, and vehicle sharing. Public transit, with intelligent crew
and vehicle scheduling, and some autonomy is also improving.

Experimental autonomous vehicles are seen by many as precursors to robot
tanks, military cargo movers, and automated warfare. Although there may be,
in some sense, significant benefits to robotic warfare, there are also very real
dangers. In the past, these were only the nightmares of science fiction. Now,
as automated warfare becomes a reality, those dangers have to be confronted.
Sharkey [2008], Singer [2009a,b], Russell [2019], and Robillard [2021] discuss
the dangers and ethics of autonomous weapon systems and robotic warfare.

18.6 Sustainability

The sustainability crisis now facing humanity has many facets, including the
climate emergency, global inequity, biodiversity loss, and scarcity of water and
food resources. Sustainability is the ability to maintain the balance of a pro-
cess in a system over the long term. Ecological sustainability is the ability of
an ecosystem to maintain ecological processes, functions, biodiversity, and pro-
ductivity into the future. Ecosystem resilience is the capacity of an ecosystem
to tolerate disturbance without collapsing into a qualitatively different state. In
social systems, resilience is enhanced by the capacity of humans to anticipate
and plan for the future [Holling, 1973].

Sustainable development is the ability to recognize and meet the needs
of the present without compromising the ability of future generations to meet
their own needs. In the United Nations Brundtland Report, “Our Common
Future” [Brundtland et al., 1987], sustainable development was emphasized.
Sustainable development requires satisfying environmental, societal, and eco-
nomic constraints [Rockström et al., 2009; United Nations, 2015b]. Environ-
mental, social, and economic issues are intertwined.
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In An Essay on the Principle of Population, Malthus [1798] was concerned pri-
marily with the imbalance between population growth, which has grown ex-
ponentially, and the supply of food, which is limited. He wrote:

This natural inequality of the two powers, of population, and of production
of the earth, and that great law of our nature which must constantly keep
their effects equal, form the great difficulty.

In other words, the global planetary system must satisfy the constraint that
the consumption by the growing population is limited by the food production
of the Earth. It is just one of many constraints that must be satisfied for our
planetary system to be sustainable and resilient.

What is the relationship between sustainability and computation, in gen-
eral, and AI, in particular? Computation is a double-edged sword with respect
to sustainability. The amazing increase in the power of our computational and
communication networks has been significantly beneficial to sustainability as
the digital age unfolds. Computation is transforming society and the econ-
omy. As discussed in Section 18.1 (page 768), computation has, at its core, an
inherent sustainable dynamic, dematerialization, replacing atoms by bits. De-
materialization, inherently, saves many resources.

On the other hand, many resources are consumed and wasted in the digital
revolution. Mining to produce the materials needed to manufacture comput-
ers, devices, and batteries can have serious environmental effects. At the end
of the short product lifecycles, many million tonnes of electronic waste are pro-
duced each year, with devastating environmental consequences, especially in
the Global South. The power used by massive cloud servers is another ma-
jor resource consumed. In particular, the training of large models, discussed
in Section 8.5.5 (page 364), requires huge computational resources. AI is char-
acterized as a “technology of extraction” by Crawford [2021]. Similarly, the
mining of some cryptocurrency coins, such as Bitcoin, and the verification of
cryptocurrency transactions are also major resource sinks.

Countering these trends is the so-called green information technology move-
ment, which aims to design, manufacture, use, repair, and dispose of comput-
ers, servers, and other devices with minimal energy use and impact on the
environment.

A new discipline, computational sustainability, is emerging [Gomes et al.,
2019]. It applies techniques from AI, computer science, information science,
operations research, applied mathematics, and statistics for balancing environ-
mental, societal, and economic needs for sustainable development. Computa-
tional sustainability has two main themes:

• Developing computational models and methods for offline decision mak-
ing for the management and allocation of ecosystem resources.

• Developing computational modules embedded directly in online real-
time ecosystem monitoring, management, and control.
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AI plays a key role in both themes.
In Planetary Boundaries: Exploring the Safe Operating Space for Humanity, Rock-

ström et al. [2009] identified nine critical boundaries on the Earth’s biophysical
processes to ensure the sustainability of the planet. The boundaries are goal
constraints (page 244) on:

• climate change
• rate of biodiversity loss (terrestrial and marine)
• interference with the nitrogen and phosphorus cycles
• stratospheric ozone depletion
• ocean acidification
• global freshwater use
• change in land use
• chemical pollution
• atmospheric aerosol loading.

For example, a constraint on anthropogenic climate change requires atmo-
spheric carbon dioxide concentration to be less than 350 ppmv (parts per mil-
lion by volume). The pre-industrial value was 280 ppmv; in 2009 it was 387
ppmv and 412 ppmv in 2023. The rate of biodiversity loss is determined by the
extinction rate (number of species lost per million per year). Its boundary value
is set at 10, whereas it is greater than 100 in 2023. Constraint satisfaction, as
covered in Chapter 4 and Section 6.4 (page 244), is at the core of computational
sustainability.

In 2015, the United Nations adopted the “2030 Agenda for Sustainable De-
velopment” [United Nations, 2015a] which specifies 17 Sustainable Devel-
opment Goals (SDGs) [United Nations, 2015b]. The SDGs cover the nine
biophysical planetary boundary constraints and extend them to cover human
social and economic goals such as reducing poverty, hunger, and inequality,
while improving health, education, and access to justice. Many systems, us-
ing the full spectrum of AI methods, including deep learning, reinforcement
learning, constraint satisfaction, planning, vision, robotics, and language un-
derstanding, are being developed to help achieve the SDGs. For example, as
described earlier (page 638), Perrault et al. [2020] show how multiagent tech-
niques based on Stackelberg security games can enhance public health, secu-
rity, and social justice. Multiagent methods also address the so-called tragedy
of the commons (page 637), which is at the heart of sustainability concerns
[Hardin, 1968]. Ostrom [1990] showed that institutions for collective action can
evolve to govern the commons.

AI researchers and development engineers have some of the skills required
to address aspects of concerns about global warming, poverty, food produc-
tion, arms control, health, education, the aging population, and demographic
issues. They will have to work with domain experts, and be able to convince
domain experts that the AI solutions are not just new snake oil. As a simple
example, open access to tools for learning about AI, such as this book and AIs-
pace [Knoll et al., 2008], empowers people to understand and try AI techniques
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on their own problems, rather than relying upon opaque black-box commercial
systems. Games and competitions based upon AI systems can be very effec-
tive learning, teaching, and research environments, as shown by the success of
RoboCup for robot soccer [Visser and Burkhard, 2007]. Some of the positive
environmental impacts of intelligent vehicles and smart traffic control were
discussed in Section 18.5 (page 774). Bakker et al. [2020] present an overview
of digital technology applications for dynamic environmental management.

Environmental decision making often requires choosing a set of compo-
nents that work together as parts of a complex system. A combinatorial auc-
tion is an auction in which agents bid on packages, consisting of combina-
tions of discrete items [Shoham and Leyton-Brown, 2008]. Determining the
winner is difficult because preferences are usually not additive (page 526), but
items are typically complements or substitutes (page 526). Work on combi-
natorial auctions, already applied to spectrum allocation (allocation of radio
frequencies to companies for television or cell phones) [Leyton-Brown et al.,
2017], logistics (planning for transporting goods), and supply chain configura-
tion [Sandholm, 2007], could further be applied to support carbon markets, to
optimize energy supply and demand, and to mitigate climate change. There is
much work on smart energy controllers using distributed sensors and actua-
tors which improve energy use in buildings.

18.7 Ethics

Moral and ethical issues abound in considering the impacts of AI. Morals are
guidelines that apply to an individual’s sense of right and wrong. Ethical
principles apply at the level of a community, an organization, or a profession.
Morals and ethics are, of course, intimately connected: an individual may have
personal morals that derive from various sources, including the ethical princi-
ples of groups they belong to. Normative ethical codes are categorized, by
philosophers, as either virtue-based, consequentialist, or deontological [Hurst-
house and Pettigrove, 2018]:

• Virtue ethics emphasize the values and character traits that a virtuous
agent possesses [Vallor, 2021].

• Consequentialist (or utilitarian) ethics focus on the outcomes of possible
actions that the agent can take, measuring the global utility (page 518) of
each outcome.

• Deontological (or Kantian) ethical codes are based on a set of rules the
agent should follow.

A focus on AI ethics has arisen, motivated, in part, by worries about whether
AI systems can be expected to behave properly. Reliance on autonomous intel-
ligent agents raises the question: can we trust AI systems? They are not fully
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trustworthy and reliable, given the way they are built now. So, can they do
the right thing? Will they do the right thing? But trust is not just about the
system doing the right thing. A human will only see a system as trustwor-
thy if they are confident that it will reliably do the right thing. As evidenced
by popular movies and books, in our collective unconscious, the fear exists
that robots, and other AI systems, are untrustworthy. They may become com-
pletely autonomous, with free will, intelligence, and consciousness. They may
rebel against us as Frankenstein-like monsters.

Issues of trust raise questions about ethics. If the designers, implementers,
deployers, and users of AI systems are following explicit ethical codes, those
systems are more likely to be trusted. Moreover, if those systems actually em-
body explicit ethical codes, they are also more likely to be trusted. The disci-
pline of AI ethics is concerned with answering questions such as:

• Should AI scientists be guided by ethical principles in developing theo-
ries, algorithms, and tools?

• What are ethical activities for designers and developers of AI systems?

• For deployers of AI systems, are there applications that should not be
considered?

• Should humans be guided by ethical principles when interacting with AI
systems?

• Should AI systems be guided by ethical principles, in their interactions
with humans, other agents, or the rest of the world?

• What data should be used to train AI systems?

• For each of these concerns, who determines the ethical codes that apply?

AI ethics, as an emerging and evolving discipline, addresses two, distinct
but related, issues:

A. AI ethics for humans: researchers, designers, developers, deployers, and
users.

B. AI ethics for systems: software agents and embodied robots.

Each is concerned with developing and examining ethical codes, of one of the
three code types, either for humans or for systems.

With regard to AI ethics for humans, many perceive a need for strong pro-
fessional codes of ethics for AI designers and engineers, just as there are for
engineers in all other disciplines. Others disagree. The legal, medical, and
computing professions all have explicit deontological ethics codes that practi-
tioners are expected or required to follow. For computing, the ACM Committee
on Professional Ethics [2018], AAAI [2019], and IEEE [2020] have established
ethics codes that apply to their members.
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There are several issues around what should be done ethically in design-
ing, building, and deploying AI systems. What ethical issues arise for us, as
humans, as we interact with them? Should we give them any rights? There are
human rights codes; will there be AI systems rights codes, as well?

Philosophers distinguish among moral agents, moral patients, and other
agents. Moral agents can tell right from wrong and can be held responsible for
their actions. A moral patient is an agent who should be treated with moral
principles by a moral agent. So, for example, a typical adult human is a moral
agent, and a moral patient; a baby is a moral patient but not a moral agent,
whereas a (traditional) car is neither. There is an ongoing debate as to whether
an AI agent could ever be (or should ever be) a moral agent. Moreover, should
current AI systems be considered as moral patients, warranting careful ethi-
cal treatment by humans? Presumably not, but is it conceivable that future
AI systems, including robots, could be, or should be, ever treated as moral
patients? Some of the underlying issues are covered by Bryson [2011], Mack-
worth [2011], Bryson [2018], Gunkel [2018], and Nyholm [2021]. These issues
are partially addressed by the multitude of proposed codes of AI ethics such
as those developed by the IEEE Global Initiative on Ethics of Autonomous and
Intelligent Systems [2019], OECD [2019], and UNESCO [2022].

With regard to AI ethics for systems, how should AI systems make de-
cisions as they develop more autonomy? Consider some interesting, if per-
haps naive, proposals put forward by the science fiction novelist Isaac Asi-
mov [1950], one of the earliest thinkers about these issues. Asimov’s Laws of
Robotics are a good basis to start from because, at first glance, they seem logi-
cal and succinct.

Asimov’s original three laws are:

I. A robot may not harm a human being, or, through inaction, allow a hu-
man being to come to harm.

II. A robot must obey the orders given to it by human beings except where
such orders would conflict with the First Law.

III. A robot must protect its own existence, as long as such protection does
not conflict with the First or Second Laws.

Asimov proposed those prioritized laws should be followed by all robots
and, by statute, manufacturers would have to guarantee that. The laws consti-
tute a deontological code of ethics for robots, imposing constraints on accept-
able robotic behavior. Asimov’s plots arise mainly from the conflict between
what the humans intend the robot to do and what it actually does, or between
literal and sensible interpretations of the laws, because they are not codified in
any formal language. Asimov’s fiction explored many hidden implicit contra-
dictions in the laws and their consequences.

There are ongoing discussions of AI ethics for systems, but the discussions
often presuppose technical abilities to impose and verify AI system safety re-
quirements that just do not exist yet. Some progress on formal hardware and
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Facial Recognition

Selinger and Leong [2021], studying the ethics of facial recognition technol-
ogy, define four forms of facial recognition, each with their own risks and
benefits:

• facial detection finds the location of faces in images, it is common in
phones, putting square overlays on faces

• facial characterization finds features of individual faces, such as ap-
proximate age, emotions (e.g., smiling or sad), and what the person is
looking at

• facial verification determines whether the person matches a single tem-
plate; it is used to verify the user of a phone and in airport security

• facial identification is used to identify each person in an image from a
database of faces; it is used in common photo library software to identify
friends and family members.

Facial identification, usually considered the most problematic, has problems
that arise both when it is perfect and when it makes mistakes.

If facial identification is perfect and pervasive, people will know they are
constantly under surveillance. This means they will be very careful to not do
anything that is illegal or anything out of narrow social norms. People’s be-
havior is self-censored, even if they have no intention to commit any wrong-
doing. Preventing illegal activity becomes problematic when any criticism of
the ruling order or anything that deviates from a narrow definition of normal
behavior becomes illegal. Surveillance has a chilling effect that limits self-
expression, creativity, and growth, and deprives the marketplace of ideas.

When facial identification makes mistakes, they usually do not affect all
groups equally. The error rate is usually much worse for socially disadvan-
taged people, which can result in those people becoming more targeted.

Given a database of faces, facial identification becomes a combination of
facial detection and facial verification. The facial verification on an iPhone
uses multiple sensors to build a three-dimensional model of a face based on
30,000 points. It has privacy-by-design; the information is stored locally on
the phone and not in a server. It has a false-positive rate of 1 in 10 million,
which means it is unlikely to have a false positive in normal use. If the same
error rate was used on a database of everyone, on average there are about 800
people on Earth who match a particular face. Vision-only techniques have
much higher error rates, which would mean that mis-identification would be
very common.

People have argued that making facial recognition, in any of its forms,
part of normal life provides a slippery slope where it is easy to slip into prob-
lematic cases. For example, if a community already has surveillance cameras
to detect and prevent crime, it can be very cheap to get extra value out of the
cameras by adding on facial recognition.
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software verification is described in Section 5.10 (page 219). Joy [2000] was so
concerned about our inability to control the dangers of new technologies that
he called, unsuccessfully, for a moratorium on the development of robotics
(and AI), nanotechnology, and genetic engineering.

Perhaps the intelligent agent design space and the agent design principles
developed in this book could provide a more technically informed framework
for the development of social, ethical, and legal codes for intelligent agents.

However, in skeptical opposition, Munn [2022] argues that “AI ethical prin-
ciples are useless, failing to mitigate the racial, social, and environmental dam-
ages of AI technologies in any meaningful sense.” But see also “In defense of
ethical guidelines” by Lundgren [2023].

18.8 Governance and Regulation

It is increasingly apparent that ethical codes are necessary but not sufficient to
address some of the actual and potential harms induced by the widespread use
of AI technologies. There are already AI liability and insurance issues. Legis-
lation targeting AI issues is coming into force worldwide. Many countries are
now developing AI regulations and laws. A survey of the national AI policies
and practices in 50 countries is presented by the Center for AI and Digital Pol-
icy [2023]. Issues in robot regulation and robot law are covered in Calo [2014]
and Calo et al. [2016].

Zuboff [2019] used the term surveillance capitalism (page 769) to char-
acterize the nexus among AI-based user tracking, social media, and modern
commerce. This issue is hard to address solely at the national level since it is a
global concern. In 2016, the European Union (EU) adopted the General Data
Protection Regulation (GDPR) [European Commission, 2021] as a regulation
in EU law on data protection and privacy, as a part of the human right to pri-
vacy regime in the EU. The GDPR has influenced similar legislation in many
nations outside the EU. Given the size of the European market, many corpo-
rations welcomed the GDPR as giving uniformity to data protection; however,
GDPR has not put an end to surveillance capitalism. The EU also adopted the
Digital Services Act (DSA) in 2022 [European Commission, 2022c]. The DSA
defines a digital service as any intermediary that connects consumers with con-
tent, goods, or other services, including social media. It is designed to protect
the rights of children and other users, and to prevent consumer fraud, disinfor-
mation, misogyny, and electoral manipulation. There are substantial penalties
for infringement.

The OECD AI Principles [OECD, 2019] presented the first global frame-
work for AI policy and governance. In 2022, the EU was debating a draft of the
Artificial Intelligence Act (AI Act) [European Commission, 2022b], the first
legislation globally aiming to regulate AI across all sectors. It is designed pri-
marily to address harms caused by the use of AI systems, as explained by Al-
gorithm Watch [2022]. The underlying principle of the AI Act is that the more
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serious the harms, the more restrictions are placed on the systems. Systems
with unacceptable risks are prohibited. High-risk systems must satisfy cer-
tain constraints. Low-risk systems are not regulated. For example, social scor-
ing, evaluating individual trustworthiness, would be banned if government-
led but not if done by the private sector. Predictive policing would be banned.
Facial recognition (page 781) in public places by law enforcement would be
restricted. Subsequently, the EU followed up with the AI Liability Directive
[European Commission, 2022d,a] which would, if enacted, make it more fea-
sible for people and companies to sue for damages if they have been harmed
by an AI system. The US Office of Science and Technology Policy [2022] has
developed a “Blueprint for an AI Bill of Rights”, a set of five principles and as-
sociated practices to help guide the design, use, and deployment of automated
systems.

Governance covers government legislation and regulation, external gover-
nance, but it also refers to internal governance, within corporations, govern-
ment agencies, and other actors who are developing and deploying AI prod-
ucts and services. Many of those actors are putting in place internal gover-
nance measures, including ethics codes, to ensure responsible AI guidelines
are followed [Amershi et al., 2019; World Economic Forum, 2021]. The cultural
and organizational challenges that need to be addressed to create responsible
AI systems are described by Rakova et al. [2021]. As a note of caution, Green
[2022] suggests, “Rather than protect against the potential harms of algorith-
mic decision making in government, human oversight policies provide a false
sense of security in adopting algorithms and enable vendors and agencies to
shirk accountability for algorithmic harms.” Professional standards, product
certification, and independent oversight are other means, beyond external and
internal governance, to ensure AI safety, as discussed by Falco et al. [2021].

The scope of government regulation is hotly debated and subject to intense
lobbying efforts. Multinational corporations are alleged to use ethics washing
to fend off further regulation, arguing that the introduction of internal ethical
codes is sufficient to prevent harms. Moreover, the extent of regulatory cap-
ture, whereby legislators and regulators are influenced by, and aligned with,
the corporations they are supposed to regulate, is pervasive. It is a real and
significant concern for AI governance.

18.9 Review

The following are the main points you should have learned from this chapter:

• The digital economy puts the emphasis on information rather than mat-
ter.

• The atoms-to-bits transformation, dematerialization, and AI reduce fric-
tion in economic transactions, speeding them up.

https://doi.org/10.1017/9781009258227.025


784 18. The Social Impact of Artificial Intelligence

• The process of disintermediation, the elimination of intermediary roles,
is enabled by AI. It is disruptive to employment patterns in the digital
economy.

• Machine learning systems, trained on massive datasets, may embody
racist, sexist, and other attitudes demeaning of human dignity.

• There are concerns about the alignment between human values and AI
systems, in both the short term and the long term.

• AI applications are permeating the economy, eliminating the need for
many skills and increasing the demand for other skills.

• Transportation and sustainability are two areas of potentially beneficial
applications of AI.

• Ethical codes, legislation, regulation, and certification are being devel-
oped to restrict harmful applications of AI.

18.10 Exercises

Exercise 18.1 There have been proposals made for a global ban on the use of
lethal autonomous weapon systems (LAWS). Investigate and describe the current
status of action on a ban on the use of LAWS. Present a brief argument in favor or
against such a ban.

Exercise 18.2 Consider the use of robots and companions for the elderly, the
disabled, or infants. Investigate and describe briefly the current state of the art for
these companions for one of those populations. Present three reasons in favor of
their use and three reasons against.

Exercise 18.3 Human rights and animal rights are well recognized. Outline a case
for or against robot rights. Be specific about the robot rights you are discussing.

Exercise 18.4 Estimate and compare the energy use of deep learning systems and
Bitcoin miners, globally. Compare your results to the energy use of a typical city.

Exercise 18.5 Discuss how one of the normative ethical systems discussed (virtue,
consequentialism, and deontological) could be used in design guidelines for an
autonomous car.

Exercise 18.6 Consider the proposal to require strong professional codes of ethics
for AI designers and engineers. Give three reasons in favor of requiring such codes
and three reasons against. Which, on balance, do you support?

Exercise 18.7 Consider the need for government legislation, regulation, and en-
forcement of restrictions on the use of AI. Give three reasons in favor of restrictions
and three reasons against. Which, on balance, do you support?
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Retrospect and Prospect

Computation is the fire in our modern-day caves. By 2056, the compu-
tational revolution will be recognised as a transformation as significant
as the industrial revolution. The evolution and widespread diffusion of
computation and its analytical fruits will have major impacts on socioeco-
nomics, science and culture.

– Eric Horvitz [2006]

This chapter starts with the state-of-the-art in deploying AI for applications,
then looks at the big picture in terms of the agent design space (page 21), and
speculates on the future of AI. By placing many of the representations covered
in the agent design space, the relationships among them become more appar-
ent. This helps us to see where the frontier of AI research lies and provides a
sense of the evolution of the field. As Horvitz points out above, computation
is changing the world; its beneficial and harmful effects will impact us all.

19.1 Deploying AI

During deployment, when AI is used in an application, the data comes from
the world, and rather than using a test set to evaluate predictions, actions are
carried out in the world. Figure 19.1 (page 786) gives a decision tree to help
choose which AI technologies to use.

The conditions in this tree are:

• At the top level is the choice of whether the stakes are high or low. The
stakes are low when there are not severe consequences for errors, for ex-
ample, in a game, for recommending what videos to watch, or suggesting
a way to fold proteins when any resulting medicine will be fully tested.
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If a medical diagnostic agent is reminding doctors of possibilities they
might have forgotten, it might have low stakes, even if it would have
high stakes if it is relied on. In low-stakes cases, being better than the
competition may be enough.

The stakes are high when people or the environment can be harmed
or when a large amount of resources are spent for each decision. For
decisions that are repeated, there are typically many possible outcomes
that each have a low probability, but where the probability of one of them
arising is very high. For example, in a self-driving car, there are many
unusual things that could be on the road, each of which is unlikely, but
with millions of cars, the probability that one of these will eventually be
encountered by someone is very high. If the cost of errors is high, having
a low error rate may mean an application is still high stakes.

• When there is abundant homogenous data, for example from online im-
ages, text, high-throughput science experiments or when there is a simu-
lator to generate data, as in a game, data-hungry machine learning tools
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Figure 19.1: Choice of AI technology in deployment
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can be used. Sometimes there is a lot of data, but it is heterogenous.
For example, governments publish pollution data where there is, say,
monthly or irregular testing of multiple pollutants at many locations,
which become voluminous, even though there may be only tens or hun-
dreds of data points for any particular location and pollutant. As an-
other example, in medicine there are many rare diseases which have few
(recorded) cases. Although each disease is rare, there are so many dis-
eases that in a community it is common to find someone who has one
of them. Because there are so many diseases, for most pairs of diseases,
no one in the world has both, even though there are many people with
multiple diseases.

• When there is not a lot of data, often there is expert knowledge that can
be applied. Experts have the advantage that they do more than learning
from examples; they can build on established theories they learned in
school or from reading books, and can bring in diverse knowledge.

• Many machine learning algorithms assume that deployed cases are like
training cases: the data used in deployment is from the same distribution
as the training data. That assumption needs to be verified, and is often
not appropriate. In real-world domains, as opposed to games, the future
is typically not like the past, for example due to technology advances or
global warming. You might not want the future to be like the past.

• There are a number of types of data that arise. Some methods are used
for unstructured and perceptual data, such as text, speech, images, video,
and protein sequences, where there are no readily available features. Tab-
ular data sometimes has values, such as categories, Booleans, and num-
bers, that can be used to form features. Sometimes in tabular data the val-
ues are mostly identifiers (page 705), such as student numbers, product
ids, or transaction numbers, which contain no information in themselves
about what they refer to.

When the stakes are low, there is abundant homogenous data and the de-
ployed cases are expected to be like the training cases, pure machine learning
can be used. Deep learning (page 327) has proved to be the choice for unstruc-
tured and perceptual data where there are not pre-defined features, such as im-
ages, speech, text, and protein sequences. For tabular data where the values in
the tables can be used to construct features, gradient-boosted trees (page 311),
which use linear functions of conjunctions of propositions about these values,
work well. Relational models (page 731) are designed for tabular data with
identifiers.

If the assumption that deployment is like training is inappropriate, a causal
model (page 491)) can be built that takes into account possible changes or miss-
ing data. Observational data alone is provably not sufficient to predict the ef-
fect of actions, such as in Simpson’s paradox (page 504). The conditional prob-
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abilities of a causal model can be learned using the methods of Chapters 7 or 8,
or the whole model can be learned (page 481), taking into account the causality.

If there is not much data, but there is expert knowledge, building a causal
model with informed priors (e.g., using a Dirichlet distribution (page 465)) is
a way to combine expertise and data in a way that smoothly interpolates be-
tween the case with no data, and when the data is overwhelming (page 466).
If there is little data and no expertise, a simple model such as a decision tree
(page 281) or a linear model (page 288) is typically the best that can be done,
where the simplicity depends on the amount of data.

When the stakes are high, a complex cost–benefit analysis is appropriate,
based on the utility (page 518) of all stakeholders who might be affected by the
decision. When considerable resources are required for the actions, or when
poor outcomes can arise, decisions need to be explained. The system needs to
be able to be debugged when errors arise. High-stakes cases typically use a
combination of techniques, where each component is well tested and reliable.

19.2 Agent Design Space Revisited

The agent design space (page 21) provides a way to understand the frontier of
knowledge about AI. It is instructive to see how representations presented in
the book can be positioned in that space.

Figure 19.2 (page 789) reviews the dimensions of complexity and classifies,
in terms of the values for each dimension, some of the agent models covered in
the book. These agent models were selected because they have different values
in the dimensions.

Agent Models

The following describes the agent models that form the columns of Figure 19.2.

• Hier. Control, hierarchical control (page 58), means reasoning at multiple
levels of abstraction. As presented it was non-planning, and it did not
take goals or utility into account.

• State-space search, as presented in Chapter 3, allows for an indefinite
horizon but otherwise gives the simplest value in all the other dimen-
sions. Det. planning, deterministic planning (Chapter 6), either regres-
sion planning, forward planning, or CSP planning, extends state-space
search to reason in terms of features.

• Decision Net., decision networks (page 537), extend belief networks to
include decision and utility nodes, and can represent features, stochastic
effects, partial observability, and complex preferences in terms of utili-
ties. However, these networks only model a finite-stage planning hori-
zon. Markov decision processes (MDPs) (page 552) allow for indefinite
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Figure 19.2: Some agent models rated by dimensions of complexity

https://doi.org/10.1017/9781009258227.026


790 19. Retrospect and Prospect

and infinite-stage problems with stochastic actions and complex prefer-
ences; however, they are state-based representations that assume the state
is fully observable. Dynamic decision networks (dynamic DN) (page 565)
extend MDPs to allow feature-based representation of states. Partially
observable MDPs (POMDPs) (page 569) allow for partially observable
states but are much more difficult to solve.

• Game tree search for the extensive form of a game (page 612) extends
state-space search to include multiple agents and utility. It can handle
partially observable domains through the use of information sets (page 614).

• Q-learning (page 589) extends MDPs to allow for online learning, but
only deals with states. Deep reinforcement learning (Deep RL) (page 600),
and other methods that use function approximation in reinforcement learn-
ing (page 599), do reinforcement learning with features. These work for
single agents or adversaries, but not for arbitrary multiagent domains.

• Stochastic PI, stochastic policy iteration (page 634), allows for learning
with multiple agents but needs to play the same game repeatedly with
the same agents to coordinate.

Dimensions Revisited

None of the planning representations presented in Figure 19.2 handle hierar-
chical control (page 58). In hierarchical control, low-level controls act faster
than high-level deliberation. While deep reinforcement learning (page 600)
uses hierarchies in its representation of the state, it only plans at a single level
of abstraction. Hierarchical planning and hierarchical reinforcement learning
are not presented in this book, although much research exists. Hierarchical rea-
soning does not need to work as a monolith; different techniques can be used
at low levels than used at high levels. There is evidence (page 58) that humans
have quite different systems for high-level deliberative reasoning than for low-
level perception and reactions.

Some of the representations (such as decision networks) model each deci-
sion separately and are only applicable for a finite sequence of decisions. Some
allow for indefinitely many decisions, but then the policies are typically sta-
tionary (not dependent on time, unless time is part of the state space). The plan-
ning systems based on (discounted or average) rewards can handle infinite-
stage planning, where the agents go on forever collecting rewards. It does not
make sense for goal-oriented systems to go on forever.

All of the representations can handle states as the degenerate case of hav-
ing a single feature. Reasoning in terms of features is the main design choice
for many of the representations, either engineered features or learned features.
Reasoning in terms of features can be much more efficient than reasoning in
terms of states, as the number of states is exponentially more than the num-
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ber of features. None of the representations in Figure 19.2 allow for relational
models, although many of the algorithms can be made relational.

Bounded rationality (page 26) underlies many of the approximation meth-
ods used for applications; however, making the explicit trade-off between think-
ing and acting, in which the agent reasons about whether it should act imme-
diately or think more, is still relatively rare.

Figure 19.2 only shows three learning algorithms, although it is possible to
learn the models for the others, for example, learning the conditional proba-
bilities (page 461) or the structure (page 484) of probabilistic models, as, for
example, model-based reinforcement learning (page 597) learns the transition
and reward probabilities for an MDP.

The dimension that adds the most difficulty to the task of building an agent
is sensing uncertainty (page 29). With partial observability, there are many
possible states the world could be in. The outcome of an action by the agent
can depend on the actual state of the world. All the agent has access to is
its history (page 55) of past percepts and actions. There are many ways to
represent the function from the history of the agent to its actions. Ways to
extend planning with sensing uncertainty and indefinite and infinite-horizon
problems are discussed in the context of POMDPs (page 569). How to handle
sensing in all of its forms is one of the most active areas of current AI research.

The models that can use stochastic actions can also handle deterministic
actions (as deterministic is a special case of stochastic). Some of them, such as
MDPs and the reinforcement learning algorithms, work well in deterministic
domains.

Preferences are either specified in terms of goals or utilities; Proposition
12.3 (page 522) proved that complex preferences, under very mild assump-
tions, can be represented in terms of utility. The models that can handle com-
plex cardinal preferences can also handle goals by giving a reward to goal
achievement. A preference to the shortest path to a goal can be achieved by
negative rewards for actions that do not lead to a goal or discounting (page 556).
In general, utilities are more expressive than goals.

Dealing with multiple agents is much more difficult than planning for a
single agent. The case of an agent with a single adversary agent is simpler than
the more general cases. Multiple agents can be cooperative or competitive, or
more often somewhere in between, where they can compete in some aspects
and cooperate in others. Communication between agents is a standard way to
achieve cooperation in society. Another way to achieve cooperation between
self-interested agents is in the design of mechanisms (page 630) for making
society work, including money and legislation. This book has hardly scratched
the surface of what can be done.

Interactivity (page 34) is a single dimension, whereas real agents have to
make quick online decisions as well as make more long-term decisions. Agents
need to reason about multiple time-scales, and what can appear as offline in
relation to a decision that has to be made in a second could be seen as an online
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decision at the scale of days. Unlimited offline computation risks the possibility
of the agent never actually acting.

This book has presented the details of a small part of the design space of AI.
The current frontier of research goes beyond what is covered in this textbook.
There is much active research in all areas of AI. There have been and continue
to be impressive advances in planning, learning, perception, natural language
understanding, robotics, and other subareas of AI. Most of this work considers
multiple dimensions and how they interact. There is growing interest in con-
sidering all of the dimensions and multiple tasks simultaneously (for example,
under the rubric of artificial general intelligence), but doing everything well
is difficult.

The decomposition of AI into subareas is not surprising. The design space
is too big to explore all at once. Once a researcher has decided to handle, say,
relational domains and reasoning about the existence of objects, it is difficult to
add sensor uncertainty. If a researcher starts with learning with infinite hori-
zons, it is difficult to add hierarchical reasoning, let alone learning with infinite
horizons and relations together with hierarchies.

As AI practitioners, we still do not know how to build an agent that acts
rationally in infinite-stage, partially observable domains consisting of individ-
uals and relations in which there are multiple agents acting autonomously.
Arguably humans do this, perhaps by reasoning hierarchically and approxi-
mately. Although we may not yet be able to build an intelligent artificial agent
with human-level performance, we may have the building blocks to develop
one. The main challenge is handling the complexity of the real world. How-
ever, so far there seem to be no intrinsic obstacles to building computational
embodied agents capable of human-level performance or beyond.

19.3 Looking Ahead

The Navy revealed the embryo of an electronic computer today that it ex-
pects will be able to walk, talk, see, write, reproduce itself and be conscious
of its existence. . . . The service said it would . . . build the first of its Percep-
tron thinking machines that will be able to read and write. It is expected
to be finished in about a year at a cost of $100,000.

– New York Times [1958]

Predicting the future is always perilous. Brooks [2018] gives more recent in-
formed predictions, and updates the progress every year.

Over the last decade there has been an explosion of applications that rely
on large datasets and immense computation power, fueled by online datasets
and the use of vector processing units (including GPUs), especially by large
corporations that can afford huge computation centers. However, in the science
of AI, integrating more of the dimensions is happening much more slowly.
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For the technology, there are some predictions that seem safe, given the
current state of the art in Figure 19.1 (page 786).

For low-stakes decisions where there is abundant homogeneous data, such
as vision, text, video, and big-data science, it is likely that more data and more
compute power, together with improved algorithms that are being developed,
will lead to better predictions in these cases. Universal function approxima-
tors, functions that can approximate any functions on bounded domains, such
as neural networks, have been shown to be very effective when provided with
abundant data and computation power.

Generating images, video, text, code, and novel designs for drugs and other
chemicals, in what is known as generative AI, will get more sophisticated.
When used for high-stakes decisions, unless they are generated to be provably
correct, the predictions will need to undergo critical evaluation to ensure they
can be used as reliable components for the decision task.

Improvements in predictive technology are likely to have beneficial out-
comes because better predictions lead to better decisions. However, they can
also have harmful outcomes for people when the values embedded in deci-
sions do not coincide with the wellbeing of those people. For example, the use
of generative AI to produce text, images, video, and music is likely to explode.
These techniques could be used in the workflow to create art, possibly enhanc-
ing human creativity, or to create deep fakes (page 367), designed to mislead.
There is an arms race to build and detect these fakes, but note that adversar-
ial networks (including GANs) (page 366) explicitly build models to counter
efforts to detect them.

One medium-term development we can expect is for cases when the world
in deployment is different than the world the training data is from, or in trans-
fer learning, when using data from one domain in another. Observational
data alone is not sufficient to predict the effect of actions; causality and ex-
pert knowledge needs to be taken into account. We expect more interactions
between subareas.

There are many cases where there is no abundant data. For example, the
SNOMED CT (page 728) medical ontology has about 100,000 terms for dis-
eases and other underlying causes that humans can have. The long tail of the
probability of diseases means that for most diseases there are very few people
with the disease. For nearly all of the pairs of diseases, no one in the world
has both. We cannot learn the interactions of these diseases from data alone,
as there are not enough people to cover all of the interactions. For these cases,
more sophisticated models need to be considered, and expert knowledge can-
not be ignored. We expect to see more integration of data that has rich metadata
(page 726) and expert knowledge to build hypotheses that match both the data
and prior expectation.

For decision making in the world, an agent cannot learn from passive obser-
vation, such as text or video alone. Text only contains what someone thought
was interesting, and does not contain mundane details that everyone knows.
Video does not specify the actions of the agent, and if it did, it does not specify
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what the agent would have done in other circumstances, which is counterfac-
tual reasoning (page 508). Except in artificial domains, an agent is never in the
same state twice. An agent that is embodied interacts with the environment.
An embodied agent in the real world needs common sense (page 8) [Brachman
and Levesque, 2022b]. This includes being ready to react to the unexpected;
something never experienced before.

For high-stakes decisions, preference elicitation (page 526) from affected
stakeholders needs to be taken into account. In general, preferences are not
obtainable by learning from data. While maybe it is possible to hypothesize
someone’s preferences from their actions, in what is called inverse reinforce-
ment learning, it is difficult to know what they would have done in other cir-
cumstances, or they might regret their actions, or their preferences may have
changed. The various stakeholders may have very different preferences, and
somehow these need to be combined in a fair and transparent way for an agent
that affects multiple stakeholders.

Some have suggested that computers will become more intelligent than
people, reaching a singularity (page 770), in which case people might not be
needed. There is much speculation about when computers will be more intelli-
gent than humans. This is difficult to define, as it is not clear what “humans” or
“computers” mean. Humans could refer to a random person answering ques-
tions about a random culture, an educated person answering questions about
their own culture, a world expert, or a person who has access to the Internet
and others who are connected. A computer could refer to a standalone phone
or laptop, a phone or laptop connected to the Internet, the whole World Wide
Web without the humans in the loop, or the World Wide Web with humans in
the loop. At the most general level of these it isn’t clear what the difference is.

Some have predicted that AI will lead to a dystopian future ruled by ma-
chines, but others see a nirvana – an ideal or idyllic place – where good deci-
sions are made and people are looked after. Which of these arises depends on
the people who build the AI and those who regulate the AI.

Turing [1950] concluded his seminal paper with “We can only see a short
distance ahead, but we can see plenty there that needs to be done.” This is still
true today, even though there have been considerable advances since then.

19.4 References and Further Reading

Some of the other combinations of the dimensions include the following. Hi-
erarchical planning is discussed by Nau [2007]. Hierarchical reinforcement
learning is covered by Dietterich [2000b]. Multiagent reinforcement learning
is addressed by Stone [2007]. Inverse reinforcement learning is introduced by
Ng and Russell [2000] and discussed by Russell [2019]. Dzeroski et al. [2001]
overview relational reinforcement learning. Khardon and Sanner [2021] dis-
cuss relational decision-theoretic planning.
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Challenges for the future of AI are described by Russell [2019], Marcus and
Davis [2019], Littman et al. [2021] and Brachman and Levesque [2022a].

19.5 Exercises

Exercise 19.1 For each leaf in the decision tree of Figure 19.1 (page 786) (starting
with “use” or “do”), give an example of an application that has the characteristics
that would end at that leaf. For example, for the first leaf, give an application
where the stakes are low, there is abundant homogeneous data, etc.

Suggest an application that should not follow the advice of Figure 19.1. Ex-
plain why.

Exercise 19.2 Consider one of the following scenarios.

(i) You are working for a company and have been asked about the feasibility of
building a tool for predicting the results of an upcoming election so they can
plan appropriately. You will have access to data about the outcome of previ-
ous elections, demographic data from the census about the voters, informa-
tion about the parties and candidates. The goal is to predict the probability
of which party or parties will form government. A rival company has pro-
posed solving it by combining hidden Markov models and gradient-boosted
trees.

(ii) A large national coffee and donut shop is looking to modernize their donut
production operations. Currently they have a single production machine
that bakes and decorates the many kinds of donuts and pastries they make
and dumps them onto a single line. The donuts on this line are then sorted
by human operators into boxes for display and delivery. They need to fill
two types of boxes: boxes where all the donuts are the same type, and
boxes containing 12 unique types of donuts (there are more than 12 types
of donuts). The company is proposing to replace these human sorters with
robots. Your job is to advise them. A rival company has proposed using
deep learning with deterministic planning.

(iii) A biomedical firm approaches your company to develop a drug interaction
advisor for doctors to understand the interaction of different drugs on their
patients. They have access to a number of large databases of leading research
on the effects of different drugs. However, the databases overlap on some
drugs and diseases but not others. The databases use different notation for
representing drugs, diseases, and their impact. Each database makes prob-
abilistic predictions about drugs curing specific diseases, causing negative
side-effects, or having no impact. A rival company has proposed using a
mix of ontologies and probabilistic relational models to solve this problem.

(a) Explain how the problem fits into the abstraction of an agent.
(b) Explain how the rival company’s solution may work, and explain why they

may have chosen the technologies they proposed.
(c) What is the most challenging part of solving this problem? What would you

recommend as a way to solve this? Justify any recommendation made.
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Exercise 19.3 Find some current AI applications and classify the state-of-the-art
for that application in terms of the dimensions. Does the application automate
what Kahneman [2011] calls System 1 or System 2 (page 58) or neither or both?

Exercise 19.4 Give an argument for and against each of these propositions, about
the possibility of a singularity, when computers will be more intelligent than peo-
ple.

(a) The singularity will never occur as people have common sense that can
never be matched by a computer.

(b) The singularity has already occurred; I would trust an answer that Google
provides more than I would trust an answer from a random person.

(c) The singularity is meaningless as humans are so tightly integrated with com-
puters that the interaction will always be more intelligent than either one.

(d) The singularity will happen in a few decades and will make humans sub-
servient to computers.
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Appendix A

Mathematical Preliminaries and
Notation

This appendix gives some definitions of fundamental mathematical concepts
used in AI, but which are traditionally taught in other courses. It also intro-
duces some notation and data structures that are used in various parts of the
book.

A.1 Rolling Average

It is common to get information sequentially, and require a rolling average, the
mean of the values already seen, or the mean of the most recent values.

Suppose there is a sequence of numerical values, v1, v2, v3, . . . , and the goal
is to predict the mean after the first k values for each k. The rolling average, Ak,
is the mean of the first k data points v1, . . . , vk, namely

Ak =
v1 + · · ·+ vk

k
.

Thus

k ∗Ak = v1 + · · ·+ vk−1 + vk

= (k− 1)Ak−1 + vk.

Dividing by k gives

Ak =

(
1− 1

k

)
∗Ak−1 +

vk

k
.

Let αk =
1
k , then

Ak =(1− αk) ∗Ak−1 + αk ∗ vk

797

https://doi.org/10.1017/9781009258227.027


798 A. Mathematical Preliminaries and Notation

=Ak−1 + αk ∗ (vk −Ak−1). (A.1)

Predicting the mean makes sense if all of the values have an equal weight.
However, suppose you are keeping an estimate of the expected price of some
item in the grocery store. Prices go up and down in the short term, but tend to
increase slowly; the newer prices are more useful for the estimate of the current
price than older prices, and so they should be weighted more in predicting new
prices.

Suppose, instead, you want to maintain the average of the previous n val-
ues. The first n values need to be treated specially. Each example (after the
nth) contributes 1/n to the average. When a new value arrives, the oldest is
dropped. If Ak−1 is the average of the previous n values, the next average is

Ak = Ak−1 +
vk − vk−n

n
.

To implement this, the n most recent values need to be stored, and the average
is sensitive to what happened n steps ago. One way to simplify this is to use
the rolling average, Ak−1, instead of vk−n. This results in Equation (A.1), but
with αk a constant, namely 1/n.

Having αk = 1
k averages out noise, but treats all data equally. Having αk a

constant means more recent data is used, but any noise in the data become
noise in the rolling average. Using a constant, α, gives an exponentially-
decaying rolling average as item vk−n, which is n steps before the current
value, has weight (1− α)n in the average.

You could reduce α more slowly and potentially have the benefits of both
approaches: weighting recent observations more and still converging to the
mean. You can guarantee convergence if

∞

∑
k=1

αk = ∞ and
∞

∑
k=1

α2
k < ∞.

The first condition is to ensure that random fluctuations and initial conditions
get averaged out, and the second condition guarantees convergence.

The rolling average is used for the simple controller of Example 2.3 (page 57),
some of the optimizers for neural networks in Section 8.2 (page 336), and for
reinforcement learning in Section 13.3 (page 588).

A.2 Discrete Mathematics

The mathematical concepts we build on include:

sets A set has elements (members). s ∈ S means s is an element of set S. The
elements in a set define the set, so that two sets are equal if they have the
same elements.
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tuples An n-tuple is an ordered grouping of n elements, written 〈x1, . . . , xn〉.
A 2-tuple is a pair, and a 3-tuple is a triple. Two n-tuples are equal if they
have the same members in the corresponding positions. If S is a set, Sn is
the set of n-tuples 〈x1, . . . , xn〉, where xi is a member of S. S1 × S2 × · · · ×
Sn is the set of n-tuples 〈x1, . . . , xn〉, where each xi is in Si.

relations A relation is a set of n-tuples. The tuples in the relation are said to be
true of the relation. An alternative definition is in terms of the relation’s
characteristic function, a function on tuples that is true for a tuple when
the tuple is in the relation and false when it is not.

functions A function, or mapping, f from set D, the domain, into set R, the
range, written f : D → R, is a subset of D× R such that for every d ∈ D
there is a unique r ∈ R such that 〈d, r〉 ∈ f . We write f (d) = r if 〈d, r〉 ∈ f .

While these may seem like obscure definitions for commonsense concepts, you
can now use these concepts comfortable in the knowledge that you can check
the definitions.

A.3 Functions, Factors, and Arrays

Many of the algorithms in this book manipulate representations of functions.
We extend the standard definition of functions on sets to include functions on
variables. A factor is a representation of a function. An array is an explicit
representation of a function that can have its individual components modified.

If S is a set, we write f (S) to be a function, with domain S. Thus, if c ∈ S,
then f (c) is a value in the range of f . f [S] is like f (S), but individual components
can be updated. This notation is based on that of Python, C, and Java (but C
and Java only allow S to be the set of integers {0, . . . , n− 1} for arrays of size
n). Thus f [c] is a value in the range of f . If f [c] is assigned a new value, it will
return that new value.

This notation can be extended to (algebraic) variables. If X is an algebraic
variable with domain D, then f (X) is a function that given a value x ∈ D,
returns a value in the range of f . This value is often written as f (X = x) or
simply as f (x). Similarly, f [X] is an array indexed by X, that is, it is a function
of X whose components can be modified.

This notation can also be extended to set of variables. f (X1, X2, . . . , Xn) is a
function such that given a value v1 for X1, a value v2 for X2, . . . , and a value vn
for Xn, returns a value in the range of f . Note that it is the name of the variable
that is important, not the position. This factor applied to the specific values is
written as f (X1 = v1, X2 = v2, . . . , Xn = vn). The set of variables, X1, X2, . . . , Xn is
called the scope of f . The array f [X1, X2, . . . , Xn] is a function on X1, X2, . . . , Xn
where the values can be updated.

Assigning just some of the variables gives a function on the remaining vari-
ables. Thus, for example, if f is a function with scope X1, X2, . . . , Xn, then
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f (X1 = v1) is a function of X2, . . . , Xn, such that

(f (X1 = v1))(X2 = v2, . . . , Xn = vn) = f (X1 = v1, X2 = v2, . . . , Xn = vn).

Factors can be added, multiplied, or composed with any other operation
level on the elements. If f1 and f2 are factors, then f1 + f2 is a factor with scope
the union of the scopes of f1 and f2, defined point-wise:

(f1 + f2)(X1 = v1, X2 = v2, . . . , Xn = vn)

= f1(X1 = v1, X2 = v2, . . . , Xn = vn) + f2(X1 = v1, X2 = v2, . . . , Xn = vn)

where we assume that f1 and f2 ignore variables not in their scope. Multiplica-
tion and other binary operators work similarly.

Example 1.1 Suppose f1(X, Y) = X + Y and f2(Y, Z) = Y + Z. Then f1 + f2 is
X + 2Y + Z, which is a function of X, Y, and Z. Similarly, f1 × f2 = (X + Y)×
(Y + Z).

f1(X = 2) is a function of Y, defined by 2 + Y.
Suppose that variable W has domain {0, 1} and X has domain {1, 2}, the

factor f3(W, X) can be defined by a table such as

W X Value
0 1 2
0 2 1
1 1 0
1 2 3

f3 + f1 is a function on W, X, and Y such that, for example

(f3 + f1)(W = 1, X = 2, Y = 3) = 3 + 5 = 8.

Similarly, (f3 × f1)(W = 1, X = 2, Y = 3) = 3× 5 = 15.

Other operations on factors are defined in the book.

A.4 Relations and the Relational Algebra

Relations are common in AI and database systems. The relational algebra de-
fines operations on relations and is the basis of relational databases.

A scope S is a set of variables. A tuple t on scope S has a value on each
variable in its scope. A variable can be seen as a function on tuples; one that
returns the value for that variable for that tuple. We write X(t) to be the value
of tuple t on variable X. The value of X(t) must be in dom(X). This is like the
mathematical notion of tuple, except the index is given by a variable, not by an
integer.

A relation is a set of tuples, all with the same scope. A relation is often
given a name. The scope of the tuples is often called the relation scheme. A
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relational database is a set of relations. A scheme of a relational database is
the set of pairs of relation names and relation schemes.

A relation with scope X1, . . . , Xn can be seen as a Boolean factor on X1, . . . , Xn,
where the true elements are represented as tuples.

Often a relation is written as a table.

Example 1.2 The following is a tabular depiction of a relation, enrolled:

Course Year Student Grade
cs322 2008 fran 77
cs111 2009 billie 88
cs111 2009 jess 78
cs444 2008 fran 83
cs322 2009 jordan 92

The heading gives the scheme, namely {Course, Year, Student, Grade}, and every
other row is a tuple. The first tuple, call it t1, is defined by Course(t1) = cs322,
Year(t1) = 2008, Student(t1) = fran, Grade(t1) = 77.

The order of the columns and the order of the rows is not significant.

If r is a relation with scheme S, and c is a condition on the variables in S, the
selection of c in r, written σc(r), is the set of tuples in r for which c holds. The
selection has the same scheme as r.

If r is a relation with scheme S, and S0 ⊆ S, the projection of r onto S0,
written πS0(r), is the set of tuples of r where the scope is restricted to S0.

Example 1.3 Suppose enrolled is the relation given in Example A.2.
The relation σGrade>79(enrolled) selects those tuples in enrolled where the

grade is over 79. This is the relation:

Course Year Student Grade
cs111 2009 billie 88
cs444 2008 fran 83
cs322 2009 jordan 92

The relation π{Student,Year}(enrolled) specifies what years students were en-
rolled:

Student Year
fran 2008
billie 2009
jess 2009
jordan 2009

Notice how the first and the fourth tuple of enrolled become the same tuple in
the projection; they represent the same function on {Student, Year}.

If two relations are on the same scheme, the union, intersection, and set
difference of these are defined as the corresponding operations on the set of
tuples.

If r1 and r2 are two relations, the natural join of r1 and r2, written r1 �� r2, is
a relation where
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• the scheme of the join is the union of the scheme of r1 and the scheme of
r2

• a tuple is in the join if the tuple restricted to the scope of r1 is in the
relation r1 and the tuple restricted to the scope of r2 is in the relation r2.

Example 1.4 Consider the relation assisted:

Course Year TA
cs322 2008 yuki
cs111 2009 sam
cs111 2009 chris
cs322 2009 yuki

The join of enrolled and assisted, written enrolled �� assisted, is the relation

Course Year Student Grade TA
cs322 2008 fran 77 yuki
cs111 2009 billie 88 sam
cs111 2009 jess 78 sam
cs111 2009 billie 88 chris
cs111 2009 jess 78 chris
cs322 2009 jordan 92 yuki

Note how in the join, the information about cs444 was lost, as there was no TA
in that course.
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Appendix B

Mapping to Open-Source
Packages

B.1 Gradient-Boosted Trees

The open-source tools for gradient tree boosting XGBoost [Chen and Guestrin,
2016] and LightGBM [Ke et al., 2017] have been used for many winning en-
tries in machine learning competitions; see https://xgboost.readthedocs.io/ and
https://lightgbm.readthedocs.io/.

Table B.1 provides the mapping from the code of Table 7.21 into both XG-
Boost and LightGBM. They each have many parameters not shown here.

Figure 7.21 XGBoost LightGBM
Parameter Parameter Default Parameter Default
K num boost round 10 num iterations 100
λ lambda reg 1 lambda l2 0
η eta 0.3 learning rate 0.1
γ gamma 0 min gain to split 0
css colsample bytree 1 feature fraction 1
ss subsample 1 bagging fraction 1

Table B.1: Hyperparameters for two open-source gradient-boosted trees learning
packages
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B.2 Deep Learning

Table B.2 (page 805) gives the defaults for two common Python-based deep
learning frameworks, Keras [Chollet, 2021], a high-level interface to tensor-
flow, and PyTorch. For documentation on Keras, see https://keras.io. For doc-
umentation on PyTorch, see https://pytorch.org.

In Keras and PyTorch, the optimizers are specified separately. The one cor-
responding to the update of Figure 8.9 (page 347) is SGD (stochastic gradient
descent). In both, momentum is a parameter of SGD.

In Keras, the number of input features is implicit, matching the output of
the lower layer that the layer is connected to.

Our definition of RMS-Prop follows the original and Keras. In PyTorch, the
RMS-Prop update has ε outside of the square root (Line 5 of the method update
for RMP-Prop on page 340), similar to Adam.

https://keras.io. For documentation
https://keras.io. For documentation
https://pytorch.org
https://doi.org/10.1017/9781009258227.028


This Book Keras PyTorch
Algorithm Page Name Name Default Name Default
Dense 334 Dense Dense Linear

no units – out features –
ni (implicit) in features –

update 334 update SGD SGD

η learning rate 0.01 lr –
momentum 339 α momentum 0 momentum 0
RMS-Prop 339 RMSprop RMSprop

η learning rate 0.001 lr 0.01
ρ rho 0.9 alpha 0.99
ε epsilon 10−7 eps 10−8

Adam 340 Adam Adam

η learning rate 0.001 lr 0.01
β1 beta 1 0.9 betas[0] 0.9
β2 beta 2 0.999 betas[1] 0.999
ε epsilon 10−7 eps 10−8

Dropout 343 Dropout Dropout Dropout

rate rate – p 0.5
2D Conv 347 Conv2D Conv2D Conv2D

k kernel size kernel size

# output channels filters – out channels –
# input channels (implicit) in channels –

Table B.2: Hyperparameters for two deep learning packages
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Colmerauer, A. and Roussel, P. [1996]. The birth of Prolog. In Bergin, T. J. and
Gibson, R. G. (eds.), History of Programming Languages–II, pp. 331–367. ACM
Press/Addison-Wesley.

http://www.jstor.org/stable/10.1525/j.ctt1pnqn9
http://www.jstor.org/stable/10.1525/j.ctt1pnqn9
https://doi.org/10.1145/2939672.2939785
http://www.jair.org/papers/paper764.html
http://www.jair.org/papers/paper764.html
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://dx.doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.1017/9781009258227.029


814 References

Conati, C., Gertner, A. S., and VanLehn, K. [2002]. Using Bayesian networks
to manage uncertainty in student modeling. User Modeling and User-Adapted
Interaction, 12(4):371–417. http://dx.doi.org/10.1023/A:1021258506583.

Confucius [500 BCE]. Confucian Analects. translated by James Legge [1893].
https://www.sacred-texts.com/cfu/conf1.htm.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. [2022]. Introduction
to Algorithms. MIT Press, 4th edition.

Cover, T. M. and Thomas, J. A. [2006]. Elements of Information Theory. Wiley,
2nd edition.

Cramer, J. [2002]. The origins of logistic regression. Working Paper 2002-119/4,
Tinbergen Institute. http://dx.doi.org/10.2139/ssrn.360300.

Crawford, K. [2021]. The Atlas of AI: Power, Politics, and the Planetary Costs of
Artificial Intelligence. Yale University Press.

Culberson, J. and Schaeffer, J. [1998]. Pattern databases. Computational Intelli-
gence, 14(3):318–334.

Dadich, S. [2016]. Barack Obama, neural nets, self-driving cars, and the future
of the world. Wired.

Dahl, V. [1994]. Natural language processing and logic programming. Journal
of Logic Programming, 19/20:681–714.

Danaher, J. [2021]. Automation and the future of work. In The Oxford Handbook
of Digital Ethics. Oxford University Press. http://dx.doi.org/10.1093/oxfordhb/
9780198857815.013.37.

Darwiche, A. [2001]. Recursive conditioning. Artificial Intelligence, 126(1-2):5–
41.

Darwiche, A. [2009]. Modeling and Reasoning with Bayesian Networks. Cambridge
University Press.

Darwiche, A. [2018]. Human-level intelligence or animal-like abilities? Com-
munication of the ACM, 61(10):56–67. http://dx.doi.org/10.1145/3271625.

Davis, E. [1990]. Representations of Commonsense Knowledge. Morgan Kaufmann.
Davis, E. [2015]. A collection of Winograd schemas. http://www.cs.nyu.edu/
faculty/davise/papers/WinogradSchemas/WSCollection.html.

Davis, J. and Goadrich, M. [2006]. The relationship between precision-recall
and ROC curves. In 23rd International Conference on Machine Learning (ICML),
pp. 233–240.

Davis, M., Logemann, G., and Loveland, D. [1962]. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397.

Davis, M. and Putnam, H. [1960]. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215.

De Jong, K. A. [2006]. Evolutionary Computation: A Unified Approach. MIT Press.
de Kleer, J. [1986]. An assumption-based TMS. Artificial Intelligence, 28(2):127–

162.
de Kleer, J., Mackworth, A. K., and Reiter, R. [1992]. Characterizing diagnoses

and systems. Artificial Intelligence, 56:197–222.

http://dx.doi.org/10.1023/A:1021258506583
https://www.sacred-texts.com/cfu/conf1.htm
http://dx.doi.org/10.2139/ssrn.360300
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.37
http://dx.doi.org/10.1093/oxfordhb/9780198857815.013.37
http://dx.doi.org/10.1145/3271625
http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html
http://www.cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WSCollection.html
https://doi.org/10.1017/9781009258227.029


References 815

De Raedt, L., Frasconi, P., Kersting, K., and Muggleton, S. H. (eds.) [2008]. Prob-
abilistic Inductive Logic Programming. Springer.

De Raedt, L., Kersting, K., Natarajan, S., and Poole, D. [2016]. Statistical Re-
lational Artificial Intelligence: Logic, Probability, and Computation. Morgan &
Claypool. http://dx.doi.org/10.2200/S00692ED1V01Y201601AIM032.

De Raedt, L., Kimmig, A., and Toivonen, H. [2007]. ProbLog: A probabilistic
Prolog and its application in link discovery. In 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 2462–2467.

Dean, T. and Kanazawa, K. [1989]. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3):142–150.

Dean, T. L. and Wellman, M. P. [1991]. Planning and Control. Morgan Kaufmann.
Dechter, R. [1996]. Bucket elimination: A unifying framework for probabilistic

inference. In Twelfth Conference on Uncertainty in Artificial Intelligence (UAI-
96), pp. 211–219.

Dechter, R. [2003]. Constraint Processing. Morgan Kaufmann.
Dechter, R. [2019]. Reasoning with Probabilistic and Deterministic Graphical Mod-

els. Morgan & Claypool, 2nd edition.
Dechter, R. and Pearl, J. [1985]. Generalized best-first search strategies and the

optimality of A*. Journal of the Association for Computing Machinery, 32(3):505–
536.

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. [1999]. Monte Carlo localization
for mobile robots. In IEEE International Conference on Robotics and Automation
(ICRA).

Delling, D., Goldberg, A. V., Pajor, T., and Werneck, R. F. [2015]. Customizable
route planning in road networks. Transportation Science, 51(2):566–591. https:
//doi.org/10.1287/trsc.2014.0579.

Dempster, A., Laird, N., and Rubin, D. [1977]. Maximum liklihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39:1–38. With discussion.

Deng, J., et al. [2009]. ImageNet: A large-scale hierarchical image database. In
Computer Vision and Pattern Recognition Conference (CVPR).

Denil, M., Matheson, D., and de Freitas, N. [2014]. Narrowing the gap: Ran-
dom forests in theory and in practice. In International Conference on Machine
Learning (ICML).

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. [2019]. BERT: Pre-training
of deep bidirectional transformers for language understanding. In 2019 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 4171–4186. http://dx.doi.org/10.
18653/v1/N19-1423.

Dietterich, T. G. [2000a]. An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and random-
ization. Machine Learning, 40(2):139–158.

http://dx.doi.org/10.2200/S00692ED1V01Y201601AIM032
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1287/trsc.2014.0579
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://doi.org/10.1017/9781009258227.029


816 References

Dietterich, T. G. [2000b]. Hierarchical reinforcement learning with the MAXQ
value function decomposition. Journal of Artificial Intelligence Research,
13:227–303.

Dietterich, T. G. [2002]. Ensemble learning. In Arbib, M. (ed.), The Handbook of
Brain Theory and Neural Networks, pp. 405–408. MIT Press, 2nd edition.

Dijkstra, E. W. [1959]. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271. https://doi.org/10.1007/BF01386390.

Dijkstra, E. W. [1976]. A Discipline of Programming. Prentice-Hall.
Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J. [2010]. Path planning

for autonomous vehicles in unknown semi-structured environments. The
International Journal of Robotics Research, 29(5):485–501. http://dx.doi.org/10.
1177/0278364909359210.

Domingos, P. and Lowd, D. [2009]. Markov Logic: An Interface Layer for
Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool. http://dx.doi.org/doi:10.2200/
S00206ED1V01Y200907AIM007.

Doucet, A., de Freitas, N., and Gordon, N. (eds.) [2001]. Sequential Monte Carlo
in Practice. Springer-Verlag.

Doyle, J. [1979]. A truth maintenance system. AI Memo 521, MIT AI Labora-
tory.

Dresner, K. and Stone, P. [2008]. A multiagent approach to autonomous inter-
section management. Journal of Artificial Intelligence Research, 31:591–656.

du Boulay, B., Mitrovic, T., and Yacef, K. (eds.) [2023]. Handbook of Artificial
Intelligence in Education. Edward Elgar.

Dua, D. and Graff, C. [2017]. UCI machine learning repository. http://archive.
ics.uci.edu/ml.

Duda, R. O., Hart, P. E., and Stork, D. G. [2001]. Pattern Classification. Wiley-
Interscience, 2nd edition.

Dung, P. [1995]. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–357.

Dzeroski, S., De Raedt, L., and Driessens, K. [2001]. Relational reinforcement
learning. Machine Learning,, 43:7–52.

Einstein, A. [1934]. On the method of theoretical physics. Philosophy of Science,
1(2):163–169.

Eubanks, V. [2018]. Automating Inequality: How High-Tech Tools Profile, Police,
and Punish the Poor. St. Martin’s Publishing Group.

European Commission [2021]. The general data protection regulation. https:
//commission.europa.eu/law/law-topic/data-protection/data-protection-eu en.

European Commission [2022a]. AI liability directive. https://www.europarl.
europa.eu/RegData/etudes/BRIE/2023/739342/EPRS BRI(2023)739342 EN.
pdf.

European Commission [2022b]. The artificial intelligence act. https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.

https://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1177/0278364909359210
http://dx.doi.org/10.1177/0278364909359210
http://dx.doi.org/doi:10.2200/S00206ED1V01Y200907AIM007
http://dx.doi.org/doi:10.2200/S00206ED1V01Y200907AIM007
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu en
https://commission.europa.eu/law/law-topic/data-protection/data-protection-eu en
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739342/EPRS BRI(2023)739342 EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739342/EPRS BRI(2023)739342 EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739342/EPRS BRI(2023)739342 EN.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://doi.org/10.1017/9781009258227.029


References 817

European Commission [2022c]. The digital services act package. https://
digital-strategy.ec.europa.eu/en/policies/digital-services-act-package.

European Commission [2022d]. New liability rules on products and AI to
protect consumers. https://ec.europa.eu/commission/presscorner/detail/en/
ip 22 5807.

Falco, G., et al. [2021]. Governing AI safety through independent au-
dits. Nature Machine Intelligence, 3(7):566–571. http://dx.doi.org/10.1038/
s42256-021-00370-7.

Fanshel, S. and Bush, J. [1970]. Health-status index and its application to
health-services outcomes. Operations Research, 18.

Fatemi, B., Taslakian, P., Vazquez, D., and Poole, D. [2020]. Knowledge hyper-
graphs: Prediction beyond binary relations. In 29th International Joint Confer-
ence on Artificial Intelligence (IJCAI).

Fedus, W., Zoph, B., and Shazeer, N. [2021]. Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity. http://dx.doi.
org/10.48550/arXiv.2101.03961.

Fellegi, I. and Sunter, A. [1969]. A theory for record linkage. Journal of the
American Statistical Association, 64(328):1183–1280.

Felner, A., Korf, R. E., and Hanan, S. [2004]. Additive pattern database heuris-
tics. Journal of Artificial Intelligence Research, 22:279–318.

Feurer, M. and Hutter, F. [2019]. Hyperparameter optimization. In Auto-
mated Machine Learning. Springer. http://dx.doi.org/https://doi.org/10.1007/
978-3-030-05318-5 1.

Fikes, R. E. and Nilsson, N. J. [1971]. STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–
208.

Foot, P. [1967]. The problem of abortion and the doctrine of the double effect.
Oxford Review, 5:5–15. https://philpapers.org/archive/FOOTPO-2.pdf.

Forbus, K. [2019]. Qualitative Representations: How People Reason and Learn about
the Continuous World. MIT Press.

Forbus, K. D. and Hinrich, T. [2017]. Analogy and relational representations in
the companion cognitive architecture. AI Magazine, 38(4):34–42. http://dx.
doi.org/10.1609/aimag.v38i4.2743.

Ford, M. [2021]. Rule of the Robots: How Artificial Intelligence Will Transform
Everything. John Murray Press.

François-Lavet, V., et al. [2018]. An introduction to deep reinforcement learn-
ing. CoRR, abs/1811.12560. http://arxiv.org/abs/1811.12560.

Freuder, E. C. and Mackworth, A. K. [2006]. Constraint satisfaction: An emerg-
ing paradigm. In Rossi, F., Van Beek, P., and Walsh, T. (eds.), Handbook of
Constraint Programming, pp. 13–28. Elsevier.

Friedman, J. H. [2001]. Greedy function approximation: A gradient boost-
ing machine. The Annals of Statistics, 29(5):1189–1232. http://www.jstor.org/
stable/2699986.

https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
https://ec.europa.eu/commission/presscorner/detail/en/ip 22 5807
https://ec.europa.eu/commission/presscorner/detail/en/ip 22 5807
http://dx.doi.org/10.1038/s42256-021-00370-7
http://dx.doi.org/10.1038/s42256-021-00370-7
http://dx.doi.org/10.48550/arXiv.2101.03961
http://dx.doi.org/10.48550/arXiv.2101.03961
http://dx.doi.org/https://doi.org/10.1007/978-3-030-05318-5-1
http://dx.doi.org/https://doi.org/10.1007/978-3-030-05318-5-1
https://philpapers.org/archive/FOOTPO-2.pdf
http://dx.doi.org/10.1609/aimag.v38i4.2743
http://dx.doi.org/10.1609/aimag.v38i4.2743
http://arxiv.org/abs/1811.12560
http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986
https://doi.org/10.1017/9781009258227.029


818 References

Friedman, N., Greiger, D., and Goldszmidt, M. [1997]. Bayesian network clas-
sifiers. Machine Learning, 29:103–130.

Gabrilovich, E., et al. [2014]. Knowledge vault: A web-scale approach to prob-
abilistic knowledge fusion. In 20th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining.

Gal, K. and Grosz, B. J. [2022]. Multi-agent systems: Technical & ethical chal-
lenges of functioning in a mixed group. Daedalus.

Galton, F. [1886]. Regression towards mediocrity in hereditary stature. Jour-
nal of the Anthropological Institute, 15:246–263. http://galton.org/essays/
1880-1889/galton-1886-jaigi-regression-stature.pdf.

Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. [2003]. Sweetening
WordNet with DOLCE. AI Magazine, 24(3):13–24.

Garcia-Molina, H., Ullman, J. D., and Widom, J. [2009]. Database Systems: The
Complete Book. Prentice Hall, 2nd edition.

Gardner, H. [1985]. The Mind’s New Science. Basic Books.
Gebru, T., et al. [2021]. Datasheets for datasets. Communication of the ACM,

64(12):86–92. http://dx.doi.org/10.1145/3458723.
Geffner, H. and Bonet, B. [2013]. A Concise Introduction to Models and

Methods for Automated Planning. Springer. http://dx.doi.org/doi:10.2200/
S00513ED1V01Y201306AIM022.

Geffner, H., Dechter, R., and Halpern, J. Y. (eds.) [2022]. Probabilistic and Causal
Inference: The Works of Judea Pearl. ACM Books.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. [2013]. Bayesian Data
Analysis. Chapman & Hall/CRC, 3rd edition. http://www.stat.columbia.edu/
∼gelman/book/.

Gelman, A., Hill, J., and Vehtari, A. [2020]. Regression and Other Stories. Cam-
bridge University Press.

Genesereth, M. and Thielscher, M. [2014]. General Game Playing. Morgan &
Claypool. http://dx.doi.org/doi:10.2200/S00564ED1V01Y201311AIM024.

Gers, F. A., Schmidhuber, J., and Cummins, F. [2000]. Learning to forget:
Continual prediction with LSTM. Neural Computation, 12(10):2451–2471.
http://dx.doi.org/https://doi.org/10.1162/089976600300015015.

Getoor, L. and Taskar, B. (eds.) [2007]. Introduction to Statistical Relational Learn-
ing. MIT Press.

Ghahramani, Z. [2015]. Probabilistic machine learning and artificial intelli-
gence. Nature, 521(7553):452–459. http://dx.doi.org/10.1038/nature14541.

Ghallab, M., Nau, D., and Traverso, P. [2004]. Automated Planning: Theory and
Practice. Elsevier.

Gibbard, A. [1973]. Manipulation of voting schemes: A general result. Econo-
metrica, 41:587–601.

Gil, Y., et al. [2017]. Towards continuous scientific data analysis and hypothesis
evolution. In Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).
http://www.isi.edu/∼gil/papers/gil-etal-aaai17.pdf.

http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
http://dx.doi.org/10.1145/3458723
http://dx.doi.org/doi:10.2200/S00513ED1V01Y201306AIM022
http://dx.doi.org/doi:10.2200/S00513ED1V01Y201306AIM022
http://www.stat.columbia.edu/~gelman/book/
http://www.stat.columbia.edu/~gelman/book/
http://dx.doi.org/doi:10.2200/S00564ED1V01Y201311AIM024
http://dx.doi.org/https://doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1038/nature14541
http://www.isi.edu/%E2%88%BCgil/papers/gil-etal-aaai17.pdf
https://doi.org/10.1017/9781009258227.029


References 819

Gil, Y., et al. [2019]. Intelligent systems for geosciences: An essential research
agenda. Communications of the ACM, 62. http://dx.doi.org/10.1145/3192335.

Glorot, X. and Bengio, Y. [2010]. Understanding the difficulty of training deep
feedforward neural networks. In Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, pp. 249–256. https://proceedings.mlr.press/v9/
glorot10a.html.

Glorot, X., Bordes, A., and Bengio, Y. [2011]. Deep sparse rectifier neural net-
works. In 14th International Conference on Artificial Intelligence and Statistics,
pp. 315–323.

Goble, C., et al. [2020]. FAIR Computational Workflows. Data Intelligence, 2(1-
2):108–121. http://dx.doi.org/10.1162/dint a 00033.

Goldberg, D. E. [2002]. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Addison-Wesley.

Goldberg, Y. [2016]. A primer on neural network models for natural language
processing. Journal of Artificial Intelligence Research, 57:345–420. http://dx.doi.
org/doi:10.1613/jair.4992.

Gomes, C., et al. [2019]. Computational sustainability: Computing for a better
world and a sustainable future. Communication of the ACM, 62(9):56–65. http:
//dx.doi.org/10.1145/3339399.

Good, I. J. [1965]. Speculations concerning the first ultraintelligent machine. In
Alt, F. and Ruminoff, M. (eds.), Advances in Computers, volume 6. Academic
Press.

Goodfellow, I., Bengio, Y., and Courville, A. [2016]. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, I. J., et al. [2014]. Generative adversarial networks. In Advances
in Neural Information Processing Systems 27 (NIPS 2014). http://dx.doi.org/10.
48550/arXiv.1406.2661.

Gordon, M. L., et al. [2021]. The disagreement deconvolution: Bringing ma-
chine learning performance metrics in line with reality. In 2021 CHI Con-
ference on Human Factors in Computing Systems. http://dx.doi.org/10.1145/
3411764.3445423.

Green, B. [2022]. The flaws of policies requiring human oversight of gov-
ernment algorithms. Computer Law and Security Review, 45:105681. http:
//dx.doi.org/https://doi.org/10.1016/j.clsr.2022.105681.

Green, C. [1969]. Application of theorem proving to problem solving. In 1st
International Joint Conference on Artificial Intelligence, pp. 219–237.

Grosz, B. [2012]. What question would Turing pose today? AI Magazine,
33(4):73. http://dx.doi.org/10.1609/aimag.v33i4.2441.

Grosz, B. J. [2018]. Smart enough to talk with us? Foundations and challenges
for dialogue capable AI systems. Computational Linguistics, 44(1):1–15. http:
//dx.doi.org/10.1162/COLI a 00313.

Grünwald, P. D. [2007]. The Minimum Description Length Principle. MIT Press.
Gunkel, D. [2018]. Robot Rights. MIT Press.

http://dx.doi.org/10.1145/3192335
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://dx.doi.org/doi:10.1613/jair.4992
http://dx.doi.org/doi:10.1613/jair.4992
http://dx.doi.org/10.1145/3339399
http://dx.doi.org/10.1145/3339399
http://dx.doi.org/10.48550/arXiv.1406.2661
http://dx.doi.org/10.48550/arXiv.1406.2661
http://dx.doi.org/10.1145/3411764.3445423
http://dx.doi.org/10.1145/3411764.3445423
http://dx.doi.org/10.1162/COLI a 00313
http://dx.doi.org/10.1162/COLI a 00313
http://dx.doi.org/https://doi.org/10.1016/j.clsr.2022.105681
http://dx.doi.org/https://doi.org/10.1016/j.clsr.2022.105681
http://dx.doi.org/10.1609/aimag.v33i4.2441
http://www.deeplearningbook.org
http://dx.doi.org/10.1162/dint_a_00033
https://doi.org/10.1017/9781009258227.029


820 References

Halevy, A., Norvig, P., and Pereira, F. [2009]. The unreasonable effectiveness of
data. IEEE Intelligent Systems, 24(2):8–12.

Halpern, J. Y. [2003]. Reasoning about Uncertainty. MIT Press.
Hamilton, W. L. [2020]. Graph Representation Learning. Morgan & Claypool.
Hardin, G. [1968]. The tragedy of the commons: The population problem has

no technical solution; it requires a fundamental extension in morality. Sci-
ence, 162(3859):1243–1248.

Harper, F. M. and Konstan, J. A. [2015]. The MovieLens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems, 5(4). http://dx.
doi.org/10.1145/2827872.

Hart, P. E., Nilsson, N. J., and Raphael, B. [1968]. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.

Hart, T. P. and Edwards, D. J. [1961]. The tree prune (TP) algorithm. Memo 30,
MIT Artificial Intelligence Project.

Haslum, P., Lipovetzky, N., Magazzeni, D., and Muise, C. [2019]. An Intro-
duction to the Planning Domain Definition Language. Morgan & Claypool.
https://doi.org/10.2200/S00900ED2V01Y201902AIM042.

Hastie, T., Tibshirani, R., and Friedman, J. [2009]. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2nd edition.

Haugeland, J. [1985]. Artificial Intelligence: The Very Idea. MIT Press.
Haugeland, J. (ed.) [1997]. Mind Design II: Philosophy, Psychology, Artificial Intel-

ligence. MIT Press, revised and enlarged edition.
Hayes, P. J. [1973]. Computation and deduction. In 2nd Symposium on Mathe-

matical Foundations of Computer Science, pp. 105–118. Czechoslovak Academy
of Sciences.

He, K., Zhang, X., Ren, S., and Sun, J. [2015]. Deep residual learning for image
recognition. CoRR, abs/1512.03385. http://arxiv.org/abs/1512.03385.

Heath, T. and Bizer, C. [2011]. Linked Data: Evolving the Web into a Global Data
Space. Springer.

Heckerman, D. [1999]. A tutorial on learning with Bayesian networks. In Jor-
dan, M. (ed.), Learning in Graphical Models. MIT Press.

Hendler, J., Berners-Lee, T., and Miller, E. [2002]. Integrating applications
on the semantic web. Journal of the Institute of Electrical Engineers of Japan,
122(10):676–680. http://www.w3.org/2002/07/swint.

Henrion, M. [1988]. Propagating uncertainty in Bayesian networks by proba-
bilistic logic sampling. In Lemmer, J. F. and Kanal, L. N. (eds.), Uncertainty
in Artificial Intelligence 2, pp. 149–163. Elsevier Science.

Hewitt, C. [1969]. Planner: A language for proving theorems in robots. In 1st
International Joint Conference on Artificial Intelligence, pp. 295–301.

Hinton, G., et al. [2012a]. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. Signal
Processing Magazine, IEEE, 29(6):82–97. http://dx.doi.org/10.1109/MSP.2012.
2205597.

http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.2200/S00900ED2V01Y201902AIM042
http://arxiv.org/abs/1512.03385
http://www.w3.org/2002/07/swint
https://doi.org/10.1017/9781009258227.029


References 821

Hinton, G. E., et al. [2012b]. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580. http://arxiv.org/abs/
1207.0580.

Hitchcock, F. L. [1927]. The expression of a tensor or a polyadic as a sum of
products. Studies in Applied Mathematics, 6(1–4):164–189.

Hitzler, P., et al. (eds.) [2012]. OWL 2 Web Ontology Language Primer (Second
Edition). W3C Recommendation 11 December 2012. http://www.w3.org/TR/
owl2-primer/.

Ho, J., Jain, A., and Abbeel, P. [2020]. Denoising diffusion probabilis-
tic models. In Advances in Neural Information Processing Systems, vol-
ume 33, pp. 6840–6851. https://proceedings.neurips.cc/paper files/paper/
2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Hochreiter, S. and Schmidhuber, J. [1997]. Long short-term memory. Neural
Computation, 9:1735–1780.

Hoffart, J., Suchanek, F., Berberich, K., and Weikum, G. [2013]. YAGO2: A spa-
tially and temporally enhanced knowledge base from Wikipedia. Artificial
Intelligence, 194:28–61.

Hofstadter, D. [2022]. Artificial neural networks today are not conscious, ac-
cording to Douglas Hofstadter. The Economist, June 11th 2022.

Hogan, A. et al. [2021]. Knowledge graphs. ACM Computing Surveys, 54(4).
https://doi.org/10.1145/3447772.

Holland, J. H. [1975]. Adaption in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Univer-
sity of Michigan Press.

Holling, C. S. [1973]. Resilience and stability of ecological systems. Annual Re-
view of Ecology and Systematics, 4(1):1–23. http://dx.doi.org/10.1146/annurev.
es.04.110173.000245.
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Index of Algorithms

asynchronous value iteration, 563

boosting, 310
bottom-up

conflict, 205
definite clause, 190
negation-as-failure, 212

branch-and-bound, 106
factored optimization, 166

collaborative filtering, 739
conflict

bottom-up, 205
top-down, 206

constraint satisfaction problem (CSP)
branch-and-bound, 166
depth-first search, 134
domain splitting, 142
generalized arc consistency, 138
genetic algorithm, 160
local search, 147
variable elimination, 144

Conv2D, 347

Datalog
top-down proof procedure, 666

debugging

false positive, 198
missing answer, 199

decision network
depth-first search, 544
variable elimination, 546

single-stage, 536
decision tree learner, 284
definite clause

bottom-up, 190
top-down, 192

depth-first
branch-and-bound, 106
CSP solver, 134
decision network optimization,

544
iterative deepening, 98
probabilistic inference, 406
search, 93

domain splitting, 142
dropout, 343

expectation maximization (EM), 480

game tree search, 617
generalized arc consistency, 138
genetic algorithm, 160

crossover, 160
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Gibbs sampling, 448
gradient-boosted trees, 314

iterative deepening, 98

k-means, 475

learner
k-means, 475
boosting, 310
decision tree, 284
expectation maximization (EM),

480
gradient-boosted trees, 314
logistic regression

stochastic gradient descent, 292
neural network

Conv2D, 347
dense linear function, 334
dropout, 343
ReLU, 335
sigmoid, 335
stochastic gradient descent, 334

stochastic gradient descent
logistic regression, 292
neural network, 334

likelihood weighting, 442
local search, 147
logistic regression, 292

Markov decision process (MDP)
asynchronous value iteration, 563
policy iteration, 564
value iteration, 561

minimax with α–β pruning, 619
model-based reinforcement learning,

598
multiple-path pruning, 111

negation-as-failure
bottom-up, 212
top-down, 213

neural network
Conv2D, 347
dense linear function, 334
dropout, 343

stochastic gradient descent, 334

partial-order planner, 251
particle filtering, 446
planning

as CSP, 244
forward, 239
partial-order, 251
regression, 241

policy iteration, 564
probabilistic inference

depth-first, 406
Gibbs sampling, 448
likelihood weighting, 442
MCMC, 448
particle filtering, 446
recursive conditioning, 411
variable elimination, 414

proof procedure
conflict

bottom-up, 205
top-down, 206

Datalog
top-down, 666

definite clause
bottom-up, 190
top-down, 192

negation-as-failure
bottom-up, 212
top-down, 213

Q-learning, 590

recursive conditioning, 411
reinforcement learning

model-based, 598
Q-learning, 590
SARSA, 596

with generalization, 600
with linear function approxi-

mation, 602
stochastic policy iteration, 634

ReLU (neural network), 335

SARSA, 596
with generalization, 600
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with linear function approxima-
tion, 602

search
depth-first, 93
game tree, 617
generic, 88
iterative deepening, 98
minimax with α–β pruning, 619
multiple-path pruning, 111

sigmoid (neural network), 335
stochastic gradient descent

logistic regression, 292
neural network, 334

stochastic policy iteration, 634

top-down proof procedure
conflict, 206
Datalog, 666
definite clause, 192
negation-as-failure, 213

unification, 664

value iteration, 561
asynchronous, 563

variable elimination
belief network, 414
CSP, 144
decision network, 546
single-stage decision network, 536
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= (equals), 687
∧ (and), 178, 179, 185
← (if), 178, 179, 185
↔ (equivalence), 178, 179
∨ (or), 178, 179
⊥ (bottom), 88
ε-greedy exploration strategy, 592
|= (entails), 179, 653
¬ (not), 178, 179
�= (not equal to), 689
�|= (not entails), 179
φ (denotation of terms), 650, 669
π (denotation of predicate symbols),

650
π (meaning of atoms), 178
%−→ (rewritten as), 677
→ (implies), 178, 179
� (prove), 188
⊕ (exclusive-or), 178, 179
0–1 loss, 270

A∗ search, 102, 113
abduction, 214
abductive diagnosis, 216
abilities, 15
ableist, 572
ABox, 718

absolute loss, 270
absorbing state, 552
abstraction, 43
abundant homogenous data, 786
accident, 604
accountability, 772
accuracy, 270, 273
achievement goal, 31, 238
acting intelligently, 4
action, 52, 232

constraint, 247
feature, 247
function, 83
instance, 248
profile, 611, 623
replay, 603
variable, 244

activation function, 289, 329
active learning, 266
active sensor, 70, 196
acts, 3
actuator, 52
acyclic directed graph (DAG), 85
acyclic knowledge base, 210
Adam (optimizer), 340, 805
Adam (robot scientist), 695

847
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adaptive importance sampling, 445
additive independence, 526
additive utility, 526
adjective, 681
admissible

heuristic, 101, 104, 108
search algorithm, 104

adversarial
debiasing, 366
network, 366
reasoning, 33, 617

aerodynamics, 14
agent, 3, 14, 51, 52

autonomous, 14, 767
purposive, 15
semi-autonomous, 14, 767, 771

aggregator, 747
AGI , see artificial general intelligence
AI, 3
AI Act, see Artificial Intelligence Act
AI ethics, 778

for humans, 779
for systems, 779

AIPython (aipython.org), xxii, 64, 172
AIspace, 777
algebraic variable, 127
algorithm portfolio, 150, 171
alignment problem, 771
Allais Paradox, 525
alpha–beta (α–β) pruning, 618
AlphaGo, 639
AlphaZero, 636, 639
alternating least squares, 738
analysis, 4
Analytical Engine, 9
annealing, 153

schedule, 154
answer, 188, 192, 202, 657

clause, 191, 665
extraction, 657, 665

any-conflict algorithm, 152
any-space algorithm, 416
anytime algorithm, 26, 404, 562
aperiodic Markov chain, 420
application of substitution, 661

applications of AI, 4, 16
approximate inference, 404, 436
approximately optimal solution, 41
arc, 84
arc consistent, 137, 165
area under the ROC curve, 281
argument, 211, 649
Aristotelian definition, 711
array, 799
Arrow’s impossibility theorem, 629
art, 793
artificial general intelligence, 770, 792
artificial intelligence, 3
Artificial Intelligence Act, 782
ask, 181, 188
ask-the-user, 196
askable atom, 196
assertional knowledge base, 718
assignment, 129
assisted action, 772
assisted cognition, 771
assisted perception, 772
assistive technology, 771
assumable, 201, 214
assumption-based truth maintenance

system, 204, 221
asymptotic complexity, 40, 95
asynchronous value iteration, 562
ATMS, see assumption-based truth

maintenance system
atom, 177, 185, 649
atomic

proposition, 185
clause, 185, 692
proposition, 177
symbol, 649

atoms-to-bits, 768, 783
attention

economy, 769
human, 769, 771
neural network, 360, 748, 753,

771
to environment, 569

attribute, 704
auction, 632
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AUROC, see area under the ROC curve
autoencoder, 366
autoML, 319, 342
autonomous

agent, 14, 767
delivery robot, 16
vehicle, 71, 774

average reward, 556
axiom, 179, 180, 654
axiomatizing the domain, 180, 654
axioms of rationality, 518

backdoor criterion, 501
backpropagation, 332, 333
backtracking, 92
backward induction, 616
backward search, 115
bag, 262, 266
bag-of-words, 432, 752
bagging, 309
bandit, 593
base learner, 309
base-level algorithms, 308
Basic Formal Ontology, 728
batch, 291
Bayes classifier, 467
Bayes’ rule, 382, 459
Bayesian

information criteria (BIC), 473,
477

learning, 460
network, see belief network
probability, 376

beam search, 158
behavior, 4
belief, 39, 56

monitoring, 426
network, 11, 385, 386, 481
state, 15, 55, 355, 569

transition function, 56, 59, 355,
420, 570

Bell number, 758
best response, 623
best-first search, 102
beta distribution, 464

BFO , see Basic Formal Ontology
bias

human, 769
machine learning, 264, 299, 316,

330, 349, 769
representation, 299
search, 299

bias–variance trade-off, 299
bidirectional search, 115
bigram model, 432
binary

constraint, 131
cross-entropy loss, 276
log loss, 276, 330
variable, 127, 377, 384

binning, 287, 297
binomial distribution, 464
biology, 8, 363
bipartite graph, 136
bit, 275, 472
blame attribution problem, 586
blocks, 496
body

agent, 52
clause, 185

Boltzmann distribution, 154, 158, 592
Boolean

feature, 266
property, 704
variable, 127, 182, 377

boosting, 309
bot, 14, 52
bottom ⊥, 88
bottom-up proof procedure, 189

assumables, 204
Datalog, 662
definite clauses, 190
negation as failure, 211

bounded above zero, 104
bounded arc costs, 100
bounded rationality, 26, 791
branch-and-bound search, 105

factored optimization, 165
branching factor, 86
breadth-first search, 90

https://doi.org/10.1017/9781009258227.031


850 Index

bucket elimination, see variable elim-
ination

burn-in, 447

canonical representation, 401, 403,
526, 527, 688

canyon, 338
cardinal, 41

preference, 31, 523
case analysis, 141
catastrophic forgetting, 293, 603
categorical

cross entropy, 273
feature, 272
log loss, 273, 330
target, 295
variable, 465

causal, 55
link, 249
mechanism, 218, 493
model, 218, 492
network, 493, 511
rule, 237

causality, 11, 217, 218, 491
chain rule, 332, 381
chance node, 534
channel, 348
characteristic function, 708, 799
CHAT-80, 12
ChatGPT, 6, 771
checkers, 10
chess, 639
child, 86
choose, 89, 193
Church–Turing thesis, 9
Cicero, 639
citation matching, 758
clarity principle, 128, 388
Clark normal form, 692
Clark’s completion, 208, 692
class, 467, 708, 718
classification, 263, 266

tree, 282
clause, 182

definite, 185, 655

Horn, 200
climate change, 777
closed list, see explored set
closed-world assumption, 207
clustering, 473
CNF, see conjunctive normal form
CNN, see convolutional neural net-

work
cognitive science, 14
cold-start problem, 740
collaborative filtering, 734
collective classification, 750
collusion, 750
combinatorial auction, 778
command, 52, 57, 59, 589

function, 57, 59, 355, 570
trace, 53

common sense, 8, 770, 794
reasoning, 6, 41

competitive agents, 610
compile, 417
complement (activation function), 330
complements, 526
complete

algorithm, 113, 147
bottom-up proof procedure, 191
knowledge assumption, 207
proof procedure, 189

completeness of preferences, 519
complex preference, 31
complexity, 95
compound proposition, 178
compress, 366
computational

agent, 4
limits dimension, 26
linguistics, 674
sustainability, 776

concept, 724
conceptualization, 180, 648, 714
condition, 131
conditional

effect, 236, 238
expected value, 383
odds, 400
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plan, 570
probability, 378
probability distribution, 381
probability table, 394

conditionally independent, 384
Condorcet paradox, 629
conflict, 148, 202
conflicting variable, 152
confounder, 500
conjugate prior, 464
conjunction, 178
conjunctive normal form, 204
consequence set, 189
consistency-based diagnosis, 202, 203
consistent heuristic, 111
constant, 649
constrained optimization problem,

161
constraint, 131, 775

action, 247
binary, 131
effect, 244
frame, 244
goal, 244, 772, 777
hard, 127
initial-state, 244
network, 136
precondition, 244
satisfaction, 132, 777
soft, 163
state, 244

constraint satisfaction problem (CSP),
132

branch-and-bound, 166
depth-first search, 134
domain splitting, 142
generalized arc consistency, 138
genetic algorithm, 160
local search, 147
planning, 244
variable elimination, 144

context, 351, 353
context-free grammar, 677
context-specific independence, 385,

396

contingent attribute, 711
continuant, 724
continuous, 65, 167

time, 428
variable, 129

continuous bag of words (CBOW),
353

controller, 52, 55, 612
convolution mask, 344
convolutional

model, 754
neural network (CNN), 344, 347,

419, 743
relational graph (R-GCN), 755

cooperate, 634
cooperative agents, 610
cooperative games, 639
cooperative system, 211
coordinate, 634
coordination, 624
corner cases, 772
corpus, 350
cost, 84, 163, 279

function, 161
counterfactual

explanation, 511
counterfactual reasoning, 508
CPT, see conditional probability ta-

ble
credit assignment problem, 586
cross entropy, 275
cross validation, 305, 342

k-fold, 306, 343
crossover, 159
crowd sourcing, 749
cryptocurrency, 776
CSP, see constraint satisfaction prob-

lem
culture, 8
cumulative probability distribution,

437
cumulative reward, 555
curse of dimensionality, 265
cut, 286, 297
cut-set, 116
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Cyc, 715
cycle, 85

pruning, 109

d-separated, 496
d-separation, 495
DAG (directed acyclic graph), 85
data, 261, 262, 459

augmentation, 344
likelihood, 460
lineage, 726
provenance, 726
relational, 732
sequential, 350
structure, 668

Datalog, 655
datatype property, 718
DBN, see dynamic belief network
DCG, see definite clause grammar
dead reckoning, 67
death by GPS, 120
debugging

false negative, 198
false positive, 197
incorrect answers, 197
missing answer, 198

decision
function, 541
Markov decision process, 553
network, 537, 788

dynamic, 565
multiagent, 615
single-stage, 534

node, 534
process, 552
sequential, 536, 537
single, 533
variable, 532

decision tree, 10, 281, 396, 532, 571,
612

learning, 281, 471
decision-theoretic planning, 11, 565
decoder, 351, 357
deduction, 188, 214
deep, 329

fake, 366, 367, 768
learning, 36, 327
reinforcement learning, 600, 790

Deep Blue, 639
Deep Space One, 225
default, 210
deficiency, 146
definite clause, 185, 655

grammar (DCG), 677
resolution, 191

definitive prediction, 272
delay, 690
delivery robot, 16
dematerialization, 768, 776, 783
DENDRAL, 12
denoise, 367
denote, 650, 654
dense linear function, 333
deployed cases are like training cases,

787
deployment, 263, 785
depth bound, 96
depth of neural network, 329
depth-bounded search, 96

algorithm, 98
depth-first

branch-and-bound, 105
search, 91

derivation, 189, 192, 665
derivative, 168
derived, 188

atom, 217
feature, 235
knowledge, 707

description logic, 718
descriptive theory, 528
design, 4, 216

space, 21
design-time computation, 34
desire, 56
determinism, 416
deterministic, 30

planning, 231, 788
dev (development) set, 305
diagnosis, 216
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abductive, 216
consistency-based, 202
decision-theoretic, 533

diagnostic assistant, 17
dictator, 631
dictionary, 445
difference list, 677
differentia, 711
diffusion model, 367
Digital Services Act, 782
Dijkstra’s algorithm, 121
dimension, 366

computational limits, 26
effect uncertainty, 30
interactivity, 34
learning, 28
modularity, 22
number of agents, 33
planning horizon, 23
preference, 31
representation , 24
sensing uncertainty, 29

dimensionality reduction, 366
Diplomacy, 639
direct cause, 492
directed acyclic graph, 85
directed graph, 84
Dirichlet distribution, 465, 753
discount, 558
discount factor, 556
discounted reward, 556
discrete

feature, 65
optimization, 164
time, 53, 65, 427
variable, 127, 377

discretization, 379, 430
disintermediation, 768, 773, 784
disjoint union, 410
disjunction, 178, 200
disjunctive normal form, 204
distribution law, 407
distributional shift, 604
DNF, see disjunctive normal form
do

calculus, 502
command, 62, 589
notation, 494

document, 430
domain, 127, 266, 377, 650, 703, 710,

799
consistent, 137
ontology, 722
splitting, 141

dominant strategy, 630
dominated strategy, 626
dominates, 279
don’t-care non-determinism, 89
don’t-know non-determinism, 89
dot product, 427
down-sample, 349
DPLL algorithm, 184
dropout, 343
DSA, see Digital Services Act
dynamic

belief network, 427
decision network, 565

dynamic programming, 11, 117, 333,
413

dynamics, 30, 419, 420, 553, 569

early stopping, 306
echo chambers, 759
ecological sustainability, 775
economically efficient mechanism, 630
effect, 232, 235

constraint, 244
uncertainty dimension, 30

effectively computable function, 10
effector, 52
elimination ordering, 145
EM, see expectation maximization
embedding

item, 737
object, 741
relation, 741
subject, 741
user, 737
word, 350

embodied, 794
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agent, 12, 52
empirical frequency, 277
empirical systems, 4
empty body, 185
encoder, 351, 356
encoder–decoder recurrent neural net-

work, 356
encoding, 366
endogenous variable, 397
engagement, 758, 759
engineering goal, 4
ensemble learning, 308
entails, 179
entity, 25, 646, 724, 731
entropy, 274, 275, 285
environment, 14
epistemology, 12, 376
epoch, 291
equality, 687

uncertainty, 757
equilibrium distribution, 420
equivalence, 178
ergodic Markov chain, 419
error, 263

data, 265
debugging, 197
false negative, 198, 279
false positive, 197, 279

error function, 161
ethics, 778

AI, 778
ethics

consequentialist, 778
deontological, 778, 779
Kantian, 778
utilitarian, 778
virtue, 778
washing, 783

Euclidean distance, 112
evaluate (learner), 263
evaluation function, 148, 620
event, 725
evidence, 378, 459
evidential model, 218
evolutionary algorithm, 587, 604

exact inference, 404
example, 262

test, 263
training, 262, 263, 266
validation (dev), 305

exchangeability, 747
exclusive-or, 178, 294
existence, 732
existence uncertainty, 758
existentially quantified variable, 649,

652
exogenous variable, 397
expanding a path, 87
expectation, 479
expectation maximization (EM), 478,

482, 750
expected

monetary value, 522
return of policy, 557
sample size, 486
utility, 533

decision network, 542
value, 383

of policy, 557
experience, 589
expert, 11

knowledge, 466, 787
system, 12, 69

explainability, 772
explainable AI, 40, 318, 772
explained away, 216, 391
explanation, 215, 511
exploit, 591
exploration, 591

safe, 604
explore, 591
explore–exploit dilemma, 586
explored set, 110
exponentially-decaying rolling aver-

age, 798
extension, 131
extensional set, 708
extensive form of game, 612, 790
external knowledge source, 70
external validity, 318
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extrapolation, 265

f (p) in A∗, 102
facial

recognition, 318
facial

characterization, 781
detection, 781
identification, 781
recognition, 769, 781, 783
verification, 781

fact, 185, 655
factor, 394, 799

graph, 403
factored finite state machine, 58
factored optimization problem, 163
factored representation, 58
factorization, 386
failure, 89, 212

natural, 97
fairness, 38, 89, 571, 671, 772
false, 178, 651
false-negative error, 42, 198, 279
false-positive error, 42, 197, 279
false-positive rate, 279
fault, 202
feasible, 161
feature, 24, 127, 266

action, 247
state, 247

feature engineering, 297, 327, 601
feature selection, 304
feature-based representation of ac-

tions, 237
feedback, 263
feedforward neural network, 329
fictitious play, 636
FIFO, 90
filter, 344
filter bubbles, 759
filtering, 67, 422, 426
finite failure, 214
finite horizon, 23
finite state controller, 58
finite state machine, 58

first-order predicate calculus, 672
first-order weighted logical formula,

747
fitness proportional selection, 159
fixed point, 191
flat structure, 22
flatten, 349
floundering goal, 694
flying machines, 13
fold, 306
for all (∀), 649
forward

chaining, 189
planner, 239
prediction, 67
sampling, 439
search, 115

found a solution, 87
foundation models, 371
frame

constraint, 244
rule, 237

frames, 11
framing effect, 525
free parameters, 384
fringe, 86
front-door criterion, 503
frontier, 86
fully convolutional neural network,

349
fully expressive, 742
fully observable, 29, 616

Markov decision process (MDP),
555

function, 799
symbol, 668

functional gradient boosting, 309
functional property, 710, 733
fuzzy terms, 66

gambling, 376
game

adversarial, 617
decision network, 615
extensive form, 612
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normal-form, 611
tree, 612
zero-sum, 610, 617

game tree search, 790
GAN, see generative adversarial net-

work
GDPR, see General Data Protection

Regulation
General Data Protection Regulation,

782
general game playing, 639
generalization, 263, 707
generalized additive independence,

527
generalized answer clause, 665
generalized arc consistency (GAC),

137
generate and test, 133
generative

adversarial network, 10, 366
AI, 10, 367, 370, 793
image model, 366
language model, 357, 368, 433

generic search algorithm, 87
genetic algorithm, 159
genus, 711
Gibbard–Satterthwaite theorem, 631
Gibbs distribution, 154, 158, 592
Gibbs sampling, 447
gig economy, 773
global optimum, 148, 167
global positioning system (GPS), 67,

449
Glorot uniform initializer, 342
Go, 639
goal, 15, 31, 56, 83, 84, 238, 239

constraint, 244, 772, 777
node, 84
state, 83

Google, 421, 436, 752
translate, 363

governance, 783
external, 783
internal, 783

GPT, 686

GPT-3, 6, 364, 365
GPU, 352
gradient descent, 169, 291
gradient-boosted trees, 11, 311, 787
grammar, 677

context-free, 677
definite clause, 677

granularity, 428
graph, 84

neural network, 755
graphical models, 11, 403
graphics processing units, 352
greedy, 23

ascent, 148
best-first search, 102
decoding, 357
descent, 148
optimal split, 283

green information technology, 776
ground expression, 650
ground instance, 661, 662, 744
ground truth, 269, 299
grounding, 745
guaranteed bounds, 404

h(n), see heuristic function
Hanabi, 640
hard clustering, 473
hard constraint, 127, 131
HCI, 771
head, 185, 706

transformer, 363
help system, 430, 469
Herbrand interpretation, 663
heuristic, 89

depth-first search, 101
function, 101
knowledge, 81
search, 101

hidden
Markov model (HMM), 420, 555
property, 736
variable, 388, 478, 482

hidden layer, 329
hierarchical
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control, 58, 788, 790
softmax, 296
structure, 22

high stakes, 786
hill climbing, 148
history, 14, 55, 588
HMM, see hidden Markov model
Hoeffding’s inequality, 438, 465
holdout, 305
horizon, 23, 58, 244
Horn clause, 200
human–computer interaction, 771
human-centred AI, 771
human-compatible AI, 771
human-in-the-loop, 4, 14, 771
hybrid system, 65
hyperbolic tangent, 358
hyperparameter, 303, 305

tuning, 303, 319, 342
hyperplane, 293

i.i.d., see independent and identically
distributed

identifiable, 498
identifier, 705
identity, 688, 732

uncertainty, 757
ImageNet, 10
immaterial entity, 725
imperfect data, 265
imperfect information, 550

game, 614, 621
implication, 178
importance sampling, 441, 443
incoming arc, 84
inconsistent, 201
incorrect answer, 197
incremental gradient descent, 293
indefinite horizon, 23, 552
independent and identically distributed

(i.i.d.), 461
independent continuant, 725
independent variables, 384
indicator variable, 182, 286, 297, 341,

350

indifferent, 519
individual, 25, 158, 646, 650, 718
individual–property–value triple, 703
induction, 214
inductive bias, 264
inference, 188
infinite horizon, 24, 552
influence diagram, 537
information

content , 275
gain, 285
seeking actions, 536
set, 614
theory, 275, 472

inheritance, 709
initial part of a path, 84
initial-state constraint, 244
innate, 11
input

feature, 266
layer, 329

insects, 38
instance, 657, 660, 661

ground, 662
instrumental variable, 506
insurance, 524
integrity constraint, 200
intelligence, 4

augmentation, 4
intended interpretation, 180, 647, 654,

714
intension, 131, 132
intensional set, 708
intention, 56
interactivity dimension, 34, 791
internal validity, 318
internationalized resource identifier,

705, 715
interpolation, 265
interpretability, 772
interpretation, 178, 650
intersection, 801
intervention, 218, 492
inverse graph, 115
inverse reinforcement learning, 794
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IRI, see internationalized resource iden-
tifier

is a, 704
island, 116
island-driven search, 116
item embedding, 737
iterative best improvement, 148
iterative deepening, 96
iterative soft-thresholding, 304

Java, 712
join, 143, 801
joint probability distribution, 378, 386

k-fold cross validation, 306, 343
k-means, 473
Kaggle, 319
Keras, 335, 336, 339, 341, 342, 370,

804
kernel, 344

function, 308
one-dimensional, 345
size, 345
two-dimensional, 346

key embedding, 361
keys

in attention, 361
knowledge, 8, 39

base, 179, 185, 654
designer, 180

given, 28
graph, 706
learned, 28
level, 44, 196

debugging, 197
map, 707

knowledge graph, 755

L0 loss, 270
L1

loss, 270
regularizer, 304

L2
loss, 270
regularizer, 303

L∞ loss, 270

lambda calculus, 9
landmark, 66
language, 677

model
definite clause, 674
probabilistic, 430, 750

natural, 430, 674
language model

large, 364, 440
neural, 350

Laplace smoothing, 302, 464, 466
large language model, 364, 440, 686,

769
lasso, 304
latent

Dirichlet allocation (LDA), 748,
753

property, 736
tree model, 471
variable, 388, see hidden variable

law of large numbers, 438
Laws of Robotics, 780
layer, 329
LDA, see latent Dirichlet allocation
leaf, 86
learning, 10, 69, 261–325, 459–489,

583–608, 734–760
as search, 264
Bayesian, 460
belief network, 481–485
bias, 264, 299, 460
collaborative filtering, 734
decision tree, 281, 471
deep, 327
dimension, 28
expectation maximization (EM),

478, 482
k-means, 473
minimum description length, 472
missing data, 482
multiagent, 633
naive Bayes classifier, 467
neural network, 327
probabilistic classifier, 467
probabilities, 459
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rate, 291
reinforcement, 583
relational, 731
stochastic policies, 633
structure, 484
supervised, 263
to act, 583
unsupervised, 263, 473

least fixed point, 191
least-cost search, 99
leave-one-out cross validation, 307
lethal autonomous weapon systems,

784
level of abstraction, 43
lifelong learning, 9
LIFO, 91
lifted inference, 733
lifted model, 745
LightGBM, 315, 320, 803
likelihood, 274, 382

of data, 460
ratio, 400
weighting, 441

linear
classifier, 289
function, 288
programming, 162
regression, 288, 601

linear rule for differentiation, 332
linearly separable, 293
linked data, 728
Linnaean taxonomy, 713
list, 670
literal, 182, 209
liveness, 38
local optimum, 148, 167
local search, 146, 147
locality, 347
localization, 423
log loss, 273, 290

binary, 276
categorical, 273

log-likelihood, 274
log-linear model, 399, 403
logic, 11

predicate, 648
program, 670
programming, 207, 221
propositional, 177

Logic Theorist, 10
logical

connectives, 178
consequence, 179, 653
form, 684
formula, 178, 649
variable, 649

logically follows, 179
logistic

function, 290
regression, 10, 290, 400, 468

relational, 748
long short-term memory (LSTM), 357
loop pruning, 109
loss, 263, 269

0–1, 270
absolute, 270
sum squares, 270
worst case, 270

loss function, 161
lottery, 519
low stakes, 785
lowest-cost-first search, 99
LSTM, 357

m-graph, 497
machine learning, see learning
maintenance goal, 31, 238
MAP model, 460
mapping, 799
marginalizing, 405, 407
Markov

assumption, 418
blanket, 385, 447
chain, 418

aperiodic, 420
ergodic, 419
periodic, 419

chain Monte Carlo (MCMC), 447,
750, 758
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decision process (MDP), 11, 553–
571, 584, 788

fully observable, 555
partially observable (POMDP),

555
hidden Markov model (HMM),

420
logic network (MLN), 754
network, 403
random field, 403

matched RNN, 354
material entity, 725
matrix, 352

factorization, 737
multiplication, 351, 352, 427, 737

max-pooling, 349
maximization, 479
maximum a posteriori probability model,

460
maximum likelihood estimate, 277
maximum likelihood model, 460
MCMC, see Markov chain Monte Carlo
MDL, see minimum description length
MDP, see Markov decision process
mean, 276

loss, 269
mean log loss, 273
measure, 377
measure of improvement, 262
measurement model, 571
measuring success, 263
mechanism, 610, 630

causal, 218, 493
mechanism design, 630
median, 276
mediating variable, 503
memory, 55, 355
metadata, 726
MGU, see most general unifier
micromobility, 775
min-factor elimination ordering, 146
mind map, 707
minibatch, 291
minimal

conflict, 202

diagnosis, 203
explanation, 215
model, 191, 663

minimax, 617, 633
minimum deficiency elimination or-

dering, 146
minimum description length (MDL),

472
MDL principle, 472

misinformation, 750
missing at random (MAR), 498
missing completely at random (MCAR),

498
missing data, 265, 468, 482
missingness graph, 497
MLN, see Markov logic network
MNIST, 336
mode, 276, 464
model, 43, 179, 262, 264

complexity, 298
MAP, 460
maximum likelihood, 460

model averaging, 461
modified policy iteration, 564
modular

structure, 22
modularity, 22
modus ponens, 189
momentum, 339, 805
money pump, 519
monitoring, 422, 426
monotone restriction, 111
monotonic logic, 210
Monte Carlo

Markov chain, 447
sequential, 445
tree search (MCTS), 440, 637

moral, 778
agent, 780
machines, 71
patient, 780

most general unifier, 661, 663
most improving step, 151
multi-armed bandit, 593
multi-head attention, 363
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multi-task learning, 344
multiagent decision network, 615
multiagent reasoning, 33, 609–642
multinomial

distribution, 465
logistic regression, 295
logit, 295

multiple-path pruning, 110
multiset, 262
mutex constraint, 247
MYCIN, 12
myopic, 23

n-gram, 433
naive baseline, 276
naive Bayes classifier, 431, 467, 478
Nash equilibrium, 623
natural kind, 470, 708
natural language processing, 430, 674
nature, 15, 33, 610
negation, 178, 200
negation as failure, 209, 213, 691, 692
negatively, 182
neighbor, 84
Netflix Prize, 735
neural

network, 10
graph, 755
relational graph convolutional,

755
neural network

convolutional (CNN), 344
neural language model, 350
neural network, 327–373, 511

recurrent, 354
neural networks, 328
neuro-symbolic AI, 732
neuroevolution, 587, 605
neuron, 10, 328
no answer, 188
no-forgetting

agent, 540
decision network, 540

no-free-lunch theorem, 316, 769
node, 84

noise, 265, 299
variable, 397, 398, 754

noisy observation, 420
noisy-or, 398, 436, 747, 754
non-cooperative games, 639
non-deterministic choice, 89
non-deterministic procedure, 89
non-monotonic logic, 210
non-planning agent, 23
non-serial dynamic programming, 171
non-terminal symbol, 677
nonlinear function, 330
nonlinear planning, 248
nonparametric distribution, 379
normal-form game, 611
normalize, 341
normative theory, 528
noun, 681
NP, 89
NP-complete, 89
NP-hard, 89
#NP (sharp-NP), 404
number of agents dimension, 33
number uncertainty, 758
NumPy, 352

object, 25, 646, 681, 703, 726
embedding, 741
property, 718

object-oriented languages, 712
objective function, 161
observation, 14, 195, 378
occurrent, 724
occurs check, 673
Ockham’s razor, 302, 316
odds, 400
off-policy learner, 595
offline, 776

computation, 69
learning, 265
reasoning, 34

offspring, 159
omniscient agent, 128
on-policy learner, 595
one-dimensional kernel, 345
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one-hot encoding, 297, 331, 341, 350
one-point crossover, 159
online, 776

computation, 34, 69
gradient descent, 293
learning, 265

ontology, 70, 196, 376, 716
open, 652
open-world assumption, 207
optimal

policy
decision network, 535, 542
MDP, 557
search, 118

single decision, 533
solution, 41, 85, 99

optimal solution, 41, 83
optimality criterion, 161
optimism in the face of uncertainty,

591
optimization problem, 161

constrained, 161
factored, 163

oracle, 89
orders of magnitude reasoning, 66
ordinal, 41

feature, 286, 297
preference, 31, 523

organizations, 8
outcome, 518, 532, 611
outgoing arc, 84
outlier, 271
output, 262
output layer, 329
over-parametrized, 295
overconfidence, 299
overfitting, 297, 460, 462
overflow, 296
OWL, 715, 718

PAC, see probably approximately cor-
rect

padding, 348
PageRank, 421
pair, 799

parameter sharing, 347, 355, 419, 743
parameterized random variable, 744
parametric distribution, 379
paramodulation, 688
parent

belief network, 386
graph, 86

partial derivative, 169
partial observation, 420
partial restart, 158
partial-order planning, 248
partially observable, 30, 569

game, 614, 621
Markov decision process, 555,

569
particle, 445
particle filtering, 445
partition function, 403, 460
passive sensor, 70
past experience, 14
path, 84

consistency, 140
pattern database, 109, 119
payoff matrix, 611
percept, 52, 589

function, 59
stream, 53
trace, 53

perceptron, 10
perdurant, 725
perfect information, 616
perfect rationality, 26
perfect-information game, 612, 632
periodic Markov chain, 419
personalized recommendations, 734
philosophy, 12
physical symbol system, 42

hypothesis, 42
piecewise constant function, 308
piecewise linear function, 308
pixel, 52
plan, 239
planner, 239
planning, 11, 239–257

CSP, 244
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deterministic, 231
forward, 239
horizon, 23, 58, 552

dimension, 23
partial-order, 248
regression, 241

plate, 744
model, 744

Pluribus, 639
point estimate, 269, 281

categorical, 272
poker, 639
policy, 118, 535

decision network, 541
MDP, 557
POMDP, 570
stochastic, 633

policy iteration, 563
stochastic, 634

policy search, 587
polyadic decomposition, 741

with inverses, 742
POMDP, see partially observable Markov

decision process
pooling, 349
population, 158, 445, 732
portfolio, 150
positional encoding, 363
positively, 182
possible action, 242
possible world, 377, 532, 542
posterior distribution, 387, 404
posterior probability, 376, 378, 382
pragmatics, 676
precision, 281
precondition, 232, 235
precondition constraint, 244
predicate

calculus, 648
logic, 648
symbol, 649

predictive policing, 318
predictor, 266, 269, 281
preference, 15, 161, 518

bias, 264

dimension, 31
elicitation, 526, 794
relation, 518

preposition, 681
primitive

atom, 217
feature, 235
knowledge, 707
proposition, 377
relation, 717

prior, 301
count, 301
knowledge, 14
odds, 400
probability, 376, 380, 382, 460

prisoner’s dilemma, 625
privacy, 735
privacy-by-design, 781
probabilistic

bounds, 404
causal model, 492
circuit, 417
independence, 384
inference, 404, 405
language model, 430, 750
logic model, 743
logic program, 397, 747, 754
logic programming, 509
prediction, 272
programming, 397, 509
relational model, see relational

probabilistic model
soft logic (PSL), 755

probabilistically
depends on, 386

probability, 375–457
Bayes’ rule, 382, 459
conditional, 378
density function, 379
distribution, 378
measure, 377
posterior, 378
prior, 380
semantics, 377

probable solution, 42
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probably approximately correct (PAC),
42, 438, 465

process, 24, 725
project, 143, 801
Prolog, 11, 193, 649
proof, 188

predicate calculus, 660
procedure, 188

bottom-up, 189, 662
conflict, 206
Datalog, 662, 665
negation-as-failure, 211
top-down, 191, 665

prop, 703
property, 25, 703, 718, 732

inheritance, 709
proposal distribution, 444
proposition, 25, 177, 178, 646
propositional

constraint, 181
definite clause, 185

resolution, 191
satisfiability, 182

prospect theory, 525, 528
Protégé, 723
protein folding, 363, 369
proved, 188
provenance, 726
pruning belief network, 417
pseudo-examples, 301
pseudocount, 301, 466, 469
psychology, 12
punishment, 552
pure literal, 184
pure strategy, 623
purposive agent, 15, 52
Python, 712
PyTorch, 335, 804

Q function
Qπ, 559
Q∗, 559, 589
Q-value, 559

Q-learning, 11, 589, 790
qualitative

derivatives, 66
reasoning, 66

quality-adjusted life year (QALY), 571
quantitative reasoning, 66
query

(Datalog), 657
(logic), 188
in attention, 361
variable (belief network), 387

query embedding, 361
querying the user, 195
queue, 90

random
forest, 308
initialization, 147
restart, 147, 149, 157, 476
sampling, 147
step, 149
variable, 377
walk, 148

randomized clinical trial, 510
randomized controlled trial, 501
range, 704, 710, 799
ranking, 740
rational, 522
rational agent, 518
RDF, 715
RDFS (RDF schema), 715
reactive system, 67
reasoning, 375
reasoning with uncertainty, 375
recall, 279
receiver operating characteristic space,

279
recognition, 216
recommender system, 734
record linkage, 757
recoverable, 498
rectified linear unit, 297, 330
recurrent neural network (RNN), 354,

427
reference point, 528
regression, 263, 266

linear, 288
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logistic, 290
planning, 241
to the mean, 298
tree, 282, 308

regularization, 302, 738
regularization parameter, 303
regularizer, 302
regulatory capture, 783
reify, 703
reinforcement learning, 11, 263, 583–

608
from human feedback, 771

rejection sampling, 440
relation, 25, 646, 731, 732, 799, 800

embedding, 741
relation scheme, 800
relational

algebra, 800
data, 732
database, 801
dependency network, 755
graph convolutional network (R-

GCN), 755
learning, 266, 731
logistic regression, 748, 754
probabilistic model, 743
representations, 26
uncertainty, 743, 756

ReLU, 297, 330
remember, 56, 59
renaming, 662
Rephil, 436, 752
representation, 40, 42, 366

bias, 264, 299
dimension, 24, 26
learning, 297

representation learning, 328
resampling, 445
residual network, 349
resilience, 775
resolution, 191, 192

SLD, 191, 665
resolvent, 192
resource, 705, 715

description framework (RDF), 715

goal, 238
retry, 87
return, 555, 557, 589
revelation principle, 631
reward, 263, 552, 555, 569

average, 556
discounted, 556
engineering, 571
function, 553
hacking, 604
total, 555

rewrite rule, 677, 688
ridge regression, 303
risk averse, 523
RL, see reinforcement learning
RLHF, see Reinforcement Learning

from Human Feedback
RMS-Prop, 339, 805
RNN, see recurrent neural network
RoboCup, 778
robot, 14, 16, 52

scientist, 695
ROC space, 279
rolling average, 797
root, 86
root-mean-square (RMS) error, 270
RPM, see relational probabilistic model
rule, 185, 655
rule of inference, 189
run, 613
run-time distribution, 155

saddle point, 338
safe exploration, 604
safety, 38, 771, 772, 774, 783
safety goal, 238
salience, 771
sample, 262
sample average, 438
SARSA, 595

with linear function approxima-
tion, 601

SAT, 182
satisfiable, 215
satisficing solution, 41, 80
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satisfy
constraint, 131
policy, 542

scalable oversight, 604
scenario, 215
schema (Kant), 11
scheme

relation, 800
scientific goal, 4
scope, 131, 163, 394, 652, 799, 800
SDG, see Sustainable Development

Goals
search, 79–125, 788

A∗, 102
bias, 265, 299
bidirectional, 115
breadth-first, 90
cycle-pruning, 109
depth-first, 91
domain splitting, 141
dynamic programming, 117
for CSPs, 133
gradient descent, 169
greedy best-first, 102
heuristic, 101
island driven, 116
iterative deepening, 96
local search, 146
lowest-cost-first, 99
minimax, 618
policy, 587
stochastic local, 149

search and score, 484
search strategy, 88
second-order logic, 672
second-price auction, 632
select, 89, 193
selection, 801
self-attention, 361
self-driving cars, 71
semantic interoperability, 70
semantic network, 706
semantic roles, 704
semantic web, 715
semantics, 178, 648

natural language, 676
predicate calculus, 650
propositional calculus, 178
variables, 652

semi-autonomous, 772
agent, 14, 767, 771

semi-decidable logic, 672
semi-supervised learning, 366
sensing uncertainty dimension, 29,

791
sensor, 52, 70
sensor fusion, 425
sentence, 430, 677
separable control problem, 68
sequence-to-sequence mapping, 356
sequential

decision problem, 537
Monte Carlo, 445
prisoner’s dilemma, 625
probability model, 418

sequential data, 350
set, 798

-of-words model, 430, 750
difference, 801

SGD, see stochastic gradient descent
shortcut connection, 349
SHRDLU, 12
side-effect, 604
sigmoid function, 290, 330, 400
Simpson’s paradox, 504
simulated annealing, 153
simultaneous localization and map-

ping (SLAM), 450
simultaneous-action games, 614
single agent, 33
single decision, 533
single-stage decision network, 534
singularity, 770, 794
situated agent, 12
skip connection, 349
Skip-gram model, 353
SLD derivation, 192, 665
SLD resolution, 191, 665
Smalltalk, 712
smart home, 20
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SMC, see sequential Monte Carlo
smooth, 168
smoothing, 422, 427
Sobel–Feldman operator, 346
social preference function, 629
society, 8
soft clustering, 473
soft constraint, 127, 163
softmax, 295, 330, 592

hierarchical, 296
softmax regression, 295
software agent, 14
software engineering, 40
solution, 81, 84, 132
sound, 189
spam filter, 486
squared loss, 270, 330, 474
squashed linear function, 289
stable assignment, 475
stack, 91
Stackelberg security games, 638, 777
stage, 23, 418
stakes, 785
start node, 84
start state, 83
starvation, 89, 671
state, 24, 81, 418

-space search problem, 83
constraint, 244
feature, 247
space, 81
space graph, 85, 234, 239
variable, 244

stationary
distribution, 419, 447
model, 418, 427, 553
policy, 557

statistical relational AI, 11, 732, 743
statistics, 11
step size, 169, 170
stimuli, 14, 52
stochastic

beam search, 158
dynamics, 31
gradient descent (SGD), 291

input, 397
local search, 149
policy, 633
policy iteration, 633, 790
simulation, 437
strategy, 623

stochastic gradient descent, 332
stopping state, 552
strategic agent, 610
strategic-form game, 611
strategy, 612, 613, 623

profile, 613, 623
strictly dominated, 166, 627
strictly preferred, 519
stride, 349
STRIPS assumption, 235
STRIPS representation, 235
structural causal model, 218, 493
structure learning, 484
structured prediction, 263, 267
STUDENT, 12
sub-property, 709
subclass, 708
subgame-perfect equilibrium, 626
subgoal, 191, 192, 241
subject, 681, 703

embedding, 741
subjective probability, 376
substitutes, 527
substitution, 660
successor, 147
sufficient statistics, 474, 479
sum of losses, 269
superintelligence, 770
supervised learning, 262, 263, 266–

325, 481
support set, 623, 626
surveillance capitalism, 769, 782
sustainability, 775
sustainable development, 775
Sustainable Development Goals, 777
symbol, 42, 128, 649

level, 44
system, 42

symptoms, 17
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syntax
natural language, 676
predicate calculus, 649
propositional calculus, 177
propositional definite clauses, 185

synthesis, 4
systems 1 and 2, 58, 73

tabu search, 151
tabu tenure, 151
tail, 706
tangent, 168
tanh, 358
target, 262
target features, 266
task, 262
TBox, 718
TD error, 588
tell, 59, 180
temperature, 592
temporal difference

equation, 588
error, 588

temporal-difference learning, 11
tensor, 352
tensorflow, 804
term, 649, 668
terminal symbol, 677
terminological knowledge base, 718
test example, 263
thematic relations, 704
theorem, 188
Theorist, 221
there exists (∃), 649
thing, 25, 646, 724
Thompson sampling, 593
thought, 4
threat, 626
time, 53
time granularity, 428
time-homogenous model, 418
tit-for-tat, 625
TMS, see truth maintenance system
token, 350, 677
tokenization, 350

top-n, 734, 740
top-down proof procedure, 191, 665
top-level ontology, 723
topic model, 435, 750
total assignment, 129
total reward, 555
tournament selection, 159
tractable, 40
trading agent, 20
tragedy of the commons, 637, 639,

777
training example, 262, 263, 266
transduction, 55
transfer learning, 793
transformer, 10, 433
transformers, 362
transient goal, 238
transitivity of preferences, 519
transparency, 772
tree, 86
tree-augmented naive Bayes (TAN)

network, 470
treewidth, 145, 417
triangle inequality, 112
trigram, 433
triple, 703, 799
triple representation, 703
triple store, 707
trolley problem, 71
trolley problems, 531
true, 178, 651, 799
true-positive rate, 279
trust, 778
trustworthiness, 772
truth discovery, 749
truth maintenance system, 221
truthful, 630
try (local search), 146
tuple, 799, 800
Turing machine, 9
Turing test, 5
tutoring, 22
tutoring agent, 19, 24, 27, 30, 32, 35,

83, 214, 216
two-dimensional kernel, 346
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two-player zero-sum game, 33
two-stage choice, 152
two-step belief network, 428
type, 704
type I error, 279
type II error, 279
types of data, 787

UCB1, 593
UML, 712
unary constraint, 131
unary relations, 646
unconditionally independent, 385
underflow, 296
undirected model, 403
unfolded network, 428, 566
unification, 663
unifier, 661
uniform resource identifier, 705
uniform-cost search, 99
unify, 661
unigram, 432, 752
uninformed search strategy, 88, 101
union, 801
unique names assumption (UNA),

689
unit (neural network), 328, 329
unit resolution, 183
universal basic income, 773
universal function approximator, 793
universally quantified variable, 649,

652
unnormalized probabilities, 395
unsatisfiable, 201
unstructured, 787
unsupervised learning, 263, 473, 478
upper confidence bound, 592
URI, see uniform resource identifier
useful action, 242
user, 69, 128, 195
user embedding, 737
utility, 41, 263, 522, 778

engineering, 571
utility node, 534

Vπ, 557, 559
V∗, 559
validation set, 305
value, 555, 557

decision network, 535
in attention, 361
iteration, 560
of control, 551
of information, 550

value embedding, 361
variable, 127

action, 244
algebraic, 127
assignment, 652
binary, 127, 377
Boolean, 127, 182, 377
continuous, 129
decision, 532
discrete, 127, 377
existentially quantified, 649
logical, 649
random, 377
state, 244
universally quantified, 649

variable elimination, 143, 413
belief network, 413, 451
CSP, 143
decision network, 545
single-stage decision network, 535
soft constraints, 167

variance, 299
variational inference, 404
VCG (Vickrey–Clarke–Groves) mech-

anism, 631
VE, see variable elimination
vector, 329, 352
verb, 681, 703
vigilance, 771
violates, 131
virtual body, 58
vocabulary, 350

walk, 147
Watson, 12, 695
weak learner, 309
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weakly dominated, 166
weakly preferred, 518
web ontology language, see OWL
web services, 20
weight, 289
weight tying, 347, 419, 743
weighted logical formula, 401

first-order, 747
weighted model counting, 397
width (neural network), 331
Wikidata, 705, 706, 728
winner-take-all, 768
Winograd schema, 6
word, 350, 430, 677
word embedding, 350, 351, 737
Word2vec, 353, 371
world, 14

possible, 377, 532
worst-case loss, 270
wrapper, 70

XGBoost, 315, 320, 803
XML, 715

YAGO, 728
yes answer, 188

Zeno’s paradox, 100
zero padding, 348
zero–one loss, 270
zero-sum game, 610, 617
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